Package ‘ggdemetra’

November 11, 2022

Type Package

Title 'ggplot2' Extension for Seasonal and Trading Day Adjustment with 'RJDemetra'

Version 0.2.3

Description Provides 'ggplot2' functions to return the results of seasonal and trading day adjustment made by 'RJDemetra'. 'RJDemetra' is an 'R' interface around 'JDemetra+' (<https://github.com/jdemetra/jdemetra-app>), the seasonal adjustment software officially recommended to the members of the European Statistical System and the European System of Central Banks.

Depends R (>= 3.1.2), ggplot2 (>= 2.0.0), RJDemetra (>= 0.1.2),

Imports ggrepel, gridExtra

Suggests knitr, rmarkdown

SystemRequirements Java JRE 8 or higher.

License EUPL

URL https://github.com/AQLT/ggdemetra

BugReports https://github.com/AQLT/ggdemetra/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

VignetteBuilder knitr

NeedsCompilation no

Author Alain Quartier-la-Tente [aut, cre]

Maintainer Alain Quartier-la-Tente <alain.quartier@yahoo.fr>

Repository CRAN

Date/Publication 2022-11-11 18:10:05 UTC
Description

Plot 'RJDemetra' model

Usage

S3 method for class 'SA'
autoplot(
 object,
 components = c("y", "sa", trend = "t", seasonal = "s", irregular = "i"),
 forecast = FALSE,
 ...
)

Arguments

object a "SA" or "jSA" model.
components components to print, can be "y" (input time series), "sa" (seasonal adjusted), "t" (trend-cycle), "y_cal" (calendar adjusted), "s" (seasonal), "i" (irregular), "cal" (calendar). The vector can be named to change the label
forecast boolean indicating if the forecast series should be printed.
... unused arguments.

Examples

x = RJDemetra::jx13(ipi_c_eu[,"FR"])
ggplot2::autoplot(x)
components

Extract Component from ‘RJDemetra’ model

Description
Extract Component from ‘RJDemetra’ model

Usage
seasonal(x, forecast = FALSE)
trendcycle(x, forecast = FALSE)
irregular(x, forecast = FALSE)
seasonaladj(x, forecast = FALSE)
calendaradj(x, forecast = FALSE)
calendar(x, forecast = FALSE)
y_forecast(x)

Arguments
x a "SA" or "jSA" model.
forecast boolean indicating if the forecast series should be returned.

geom_arima ARIMA model

Description
Function to add directly to the plot the ARIMA model used in the pre-adjustment process of the seasonal adjustment.

Usage
geom_arima(
 mapping = NULL,
 data = NULL,
 stat = "arima",
 geom = c("text", "label"),
 position = "identity",
 ...,
method = c("x13", "tramoseats"),
spec = NULL,
frequency = NULL,
message = TRUE,
x_arima = NULL,
y_arima = NULL,
show.legend = NA,
inherit.aes = TRUE
)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_. If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data A data.frame that contains the data used for the seasonal adjustment.

stat The statistical transformation to use on the data for this layer, as a string.

geom character. The geometric to use to display the data: geom = "text", the default, see geom_text() or geom_label (geom = "label", see geom_label()).

position Position adjustment, either as a string, or the result of a call to a position adjustment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3.

method the method used for the seasonal adjustment. "x13" (by default) for the X-13ARIMA method and "tramoseats" for TRAMO-SEATS.

spec the specification used for the seasonal adjustment. See x13() or tramoseats().

frequency the frequency of the time series. By default (frequency = NULL), the frequency is computed automatically.

message a boolean indicating if a message is printed with the frequency used.

x_arima, y_arima position of the text of the ARIMA model. By default, the first position of the data is used.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

Details

With the parameter geom = "text", the ARIMA model used in the pre-adjustment process of the seasonal adjustment are directly added to the plot. With geom = "label" a rectangle is drawn behind the ARIMA model, making it easier to read.
Examples

```r
p_sa_ipi_fr <- ggplot(data = ipi_c_eu_df, mapping = aes(x = date, y = FR)) +
  geom_line() +
  labs(title = "Seasonal adjustment of the French industrial production index",
       x = "time", y = NULL) +
  geom_sa(color = "red", message = FALSE)
```

To add the ARIMA model
```r
p_sa_ipi_fr +
  geom_arima(geom = "label",
             x_arima = -Inf, y_arima = -Inf,
             vjust = -1, hjust = -0.1,
             message = FALSE)
```

geom_diagnostics

Table of diagnostics

Description

Adds a table of diagnostics to the plot

Usage

```r
geom_diagnostics(
  mapping = NULL,
  data = NULL,
  position = "identity",
  ..., 
  method = c("x13", "tramoseats"),
  spec = NULL,
  frequency = NULL,
  message = TRUE,
  diagnostics = NULL,
  digits = 2,
  xmin = -Inf,
  xmax = Inf,
  ymin = -Inf,
  ymax = Inf,
  table_theme = ttheme_default(),
  inherit.aes = TRUE
)
```

Arguments

- **mapping**
 Set of aesthetic mappings created by `aes()` or `aes_()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
data A data.frame that contains the data used for the seasonal adjustment.
position Position adjustment, either as a string, or the result of a call to a position adjustment function.
... Other arguments passed on to \texttt{layer()}. These are often aesthetics, used to set an aesthetic to a fixed value, like \texttt{colour = "red"} or \texttt{size = 3}.
method the method used for the seasonal adjustment. "x13" (by default) for the X-13ARIMA method and "tramoseats" for TRAMO-SEATS.
spec the specification used for the seasonal adjustment. See \texttt{x13()} or \texttt{tramoseats()}.
frequency the frequency of the time series. By default (\texttt{frequency = NULL}), the frequency is computed automatically.
message a boolean indicating if a message is printed with the frequency used.
diagnostics vector of character containing the name of the diagnostics to plot. See \texttt{user_defined_variables()} for the available parameters.
digits integer indicating the number of decimal places to be used for numeric diagnostics. By default \texttt{digits = 2}.
xmin, xmax x location (in data coordinates) giving horizontal location of raster.
ymin, ymax y location (in data coordinates) giving vertical location of raster.
table_theme list of theme parameters for the table of diagnostics (see \texttt{ttheme_default()}).
inherit.aes If \texttt{FALSE}, overrides the default aesthetics, rather than combining with them.

Examples

\begin{verbatim}
p_sa_ipi_fr <- ggplot(data = ipi_c_eu_df, mapping = aes(x = date, y = FR)) +
 geom_line() +
 labs(title = "Seasonal adjustment of the French industrial production index",
 x = "time", y = NULL) +
 geom_sa(color = "red", message = FALSE)

To add of diagnostics with result of the X-11 combined test and the p-values
of the residual seasonality qs and f tests:
diagnostics <- c("diagnostics.combined.all.summary", "diagnostics.qs", "diagnostics.ftest")
p_sa_ipi_fr +
 geom_diagnostics(diagnostics = diagnostics,
 ymin = 58, ymax = 72, xmin = 2010,
 table_theme = gridExtra::ttheme_default(base_size = 8),
 message = FALSE)

To customize the names of the diagnostics in the plot:
diagnostics <- c("Combined test" = "diagnostics.combined.all.summary",
 'Residual qs-test (p-value)' = "diagnostics.qs",
 'Residual f-test (p-value)' = "diagnostics.ftest")
p_sa_ipi_fr +
 geom_diagnostics(diagnostics = diagnostics,
 ymin = 58, ymax = 72, xmin = 2010,
 table_theme = gridExtra::ttheme_default(base_size = 8),
 message = FALSE)
\end{verbatim}
To add the table below the plot:

```r
p_diag <- ggplot(data = ipi_c_eu_df, mapping = aes(x = date, y = FR)) +
  geom_diagnostics(diagnostics = diagnostics,
  table_theme = gridExtra::ttheme_default(base_size = 8),
  message = FALSE) +
  theme_void()
gridExtra::grid.arrange(p_sa_ipi_fr, p_diag,
  nrow = 2, heights = c(4, 1))
```

geom_outlier

Outliers texts

Description

Function to add directly to the plot the outliers used in the pre-adjustment process of the seasonal adjustment.

Usage

```r
geom_outlier(
  mapping = NULL,
  data = NULL,
  stat = "outlier",
  geom = c("text", "label", "text_repel", "label_repel"),
  position = "identity",
  ...,
  method = c("x13", "tramoseats"),
  spec = NULL,
  frequency = NULL,
  message = TRUE,
  first_date = NULL,
  last_date = NULL,
  coefficients = FALSE,
  digits = 1,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

- **mapping**: Set of aesthetic mappings created by `aes()` or `aes_()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
- **data**: A `data.frame` that contains the data used for the seasonal adjustment.
stat The statistical transformation to use on the data for this layer, as a string.
geom character. The geometric to use to display the data: GeomText (geom = "text", the default, see geom_text()); GeomLabel (geom = "label", see geom_label()); GeomTextRepel (geom = "text_repel", the default, see geom_text_repel()); GeomLabelRepel (geom = "label_repel", the default, see geom_label_repel()).
position Position adjustment, either as a string, or the result of a call to a position adjustment function.

... Other arguments passed on to layer(). They may be parameters of geom_text() (if geom = "text"), geom_label() (if geom = "label"), geom_text_repel() (if geom = "text_repel") or geom_label_repel() (if geom = "label_repel").
method the method used for the seasonal adjustment. "x13" (by default) for the X-13ARIMA method and "tramoseats" for TRAMO-SEATS.
spec the specification used for the seasonal adjustment. See x13() or tramoseats().
frequency the frequency of the time series. By default (frequency = NULL), the frequency is computed automatically.
message a boolean indicating if a message is printed with the frequency used.
first_date A numeric specifying the first date from which the outliers are plotted. By default (first_date = NULL) the outliers are plotted from the beginning of the time series.
last_date A numeric specifying the first date from which the outliers are plotted. By default (first_date = NULL) the outliers are plotted until the end of the time series.
coefficients boolean indicating if the estimates coefficients are printed. By default coefficients = FALSE.
digits integer indicating the number of decimal places to be used for numeric diagnostics. By default digits = 1.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

Details
With the parameter geom = "text", the outliers used in the pre-adjustment process of the seasonal adjustment are directly added to the plot. With geom = "label" a rectangle is drawn behind the names of the outliers, making them easier to read. The same with geom = "text_repel" or geom = "label_repel" but text labels are also repeled away from each other and away from the data points (see geom_label_repel()).

Examples
```r
p_sa_ipi_fr <- ggplot(data = ipi_c_eu_df, mapping = aes(x = date, y = FR)) + geom_line() + labs(title = "Seasonal adjustment of the French industrial production index", x = "time", y = NULL) +
```

geom_outlier
geom_sa

```r
geom_sa(color = "red", message = FALSE)
# To add the outliers:
p_sa_ipi_fr + geom_outlier(geom = "label",
message = FALSE)
# To have a more readable plot with outliers names that repealed away from each other
# and from the data points:
p_sa_ipi_fr +
  geom_outlier(geom = "label_repel",
message = FALSE,
vjust = 4,
ylim = c(NA, 65), force = 10,
arrow = arrow(length = unit(0.03, "npc"),
type = "closed", ends = "last"))
# To only plot the outliers from a specific date (2009):
p_sa_ipi_fr +
  geom_outlier(geom = "label_repel",
message = FALSE,
first_date = 2009,
vjust = 4,
ylim = c(NA, 65), force = 10,
arrow = arrow(length = unit(0.03, "npc"),
type = "closed", ends = "last"))
```

geom_sa
Seasonal adjustment time series

Description

Performs a seasonal adjustment and plots a time series. Aids the eye in seeing patterns in the presence of overplotting. `geom_sa()` and `stat_sa()` are aliases: they both use the same arguments. Use `stat_sa()` if you want to display the results with a non-standard geom.

Usage

```r
geom_sa(
  mapping = NULL,
data = NULL,
stat = "sa",
position = "identity",
...,
method = c("x13", "tramoseats"),
spec = NULL,
frequency = NULL,
message = TRUE,
component = "sa",
```
show.legend = NA,
inherit.aes = TRUE
)

stat_sa(
 mapping = NULL,
 data = NULL,
 geom = "line",
 position = "identity",
 ...
 method = c("x13", "tramoseats"),
 spec = NULL,
 frequency = NULL,
 message = TRUE,
 component = "sa",
 show.legend = NA,
 inherit.aes = TRUE
)

Arguments

mapping: Set of aesthetic mappings created by aes() or aes_. If specified and
 inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of
 the plot. You must supply mapping if there is no plot mapping.

data: A data.frame that contains the data used for the seasonal adjustment.

stat: The statistical transformation to use on the data for this layer, as a string.

position: Position adjustment, either as a string, or the result of a call to a position adjust-
 ment function.

...: Other arguments passed on to layer(). These are often aesthetics, used to set an
 aesthetic to a fixed value, like colour = "red" or size = 3.

method: the method used for the seasonal adjustment. "x13" (by default) for the X-
 13ARIMA method and "tramoseats" for TRAMO-SEATS.

spec: the specification used for the seasonal adjustment. See x13() or tramoseats().

frequency: the frequency of the time series. By default (frequency = NULL), the frequency
 is computed automatically.

message: a boolean indicating if a message is printed with the frequency used.

component: a character equals to the component to plot. The result must be a time se-
 ries. See user_defined_variables() for the available parameters. By default
 (component = 'sa') the seasonal adjusted component is plotted.

show.legend: logical. Should this layer be included in the legends? NA, the default, includes if
 any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
 can also be a named logical vector to finely select the aesthetics to display.

inherit.aes: If FALSE, overrides the default aesthetics, rather than combining with them.

geom: The geometric object to use to display the data
Examples

```r
p_ipi_fr <- ggplot(data = ipi_c_eu_df, mapping = aes(x = date, y = FR)) +
  geom_line() +
  labs(title = "Seasonal adjustment of the French industrial production index",
       x = "time", y = NULL)

# To add the seasonal adjusted series:
  p_ipi_fr +
    geom_sa(color = "red")

# To add the forecasts of the input data and the seasonal adjusted series:
  p_sa <- p_ipi_fr +
    geom_sa(component = "y_f", linetype = 2, message = FALSE) +
    geom_sa(component = "sa", color = "red", message = FALSE) +
    geom_sa(component = "sa_f", color = "red", linetype = 2, message = FALSE)
  p_sa
```

\[\text{ipi_c_eu} \quad \text{Industrial Production Indices in manufacturing in the European Union}\]

Description

A dataset containing monthly industrial production indices in manufacturing in the European Union (from sts_inpr_m dataset of Eurostat). Data are based 100 in 2015 and are unadjusted, i.e. neither seasonally adjusted nor calendar adjusted.

Usage

- ipi_c_eu
- ipi_c_eu_df

Format

A monthly ts object from January 1990 to December 2017 with 34 variables for ipi_c_eu and a data.frame for ipi_c_eu_df.

An object of class data.frame with 360 rows and 35 columns.

Details

The dataset contains 34 time series corresponding to the following geographical area:

- BE Belgium
- BG Bulgaria
- CZ Czechia
- DK Denmark
- DE Germany (until 1990 former territory of the FRG)
- EE Estonia
IE Ireland
EL Greece
ES Spain
FR France
HR Croatia
IT Italy
CY Cyprus
LV Latvia
LT Lithuania
LU Luxembourg
HU Hungary
MT Malta
NL Netherlands
AT Austria
PL Poland
PT Portugal
RO Romania
SI Slovenia
SK Slovakia
FI Finland
SE Sweden
UK United Kingdom
NO Norway
CH Switzerland
ME Montenegro
MK Former Yugoslav Republic of Macedonia, the
RS Serbia
TR Turkey
BA Bosnia and Herzegovina

Source

ts2df | Convert 'ts' object to 'data.frame'

Description

Function to a ts or mts object to a data.frame that can be directly used in the plot functions.

Usage

ts2df(x)
Arguments

x a ts or mts object.

Value

a data.frame object.

Examples

To get the ipi_c_eu_df object:
ts2df(ipi_c_eu)
Index

* datasets
 ipi_c_eu, 11

aes(), 4, 5, 7, 10
aes_(), 4, 5, 7, 10
autoplot.SA, 2

calendar (components), 3
calendaradj (components), 3
components, 3
gem_arima, 3
gem_diagnostics, 5
gem_label(), 4, 8
gem_label_repel(), 8
gem_outlier, 7
gem_sa, 9
gem_text(), 4, 8
gem_text_repel(), 8

ipi_c_eu, 11
ipi_c_eu_df (ipi_c_eu), 11
irregular (components), 3

layer(), 4, 6, 8, 10

seasonal (components), 3
seasonaladj (components), 3
stat_sa (geom_sa), 9

tramoseats(), 4, 6, 8, 10
trendcycle (components), 3
ts2df, 12
ttheme_default(), 6

user_defined_variables(), 6, 10

x13(), 4, 6, 8, 10

y_forecast (components), 3