Package ‘gge’
August 21, 2023

Title Genotype Plus Genotype-by-Environment Biplots
Version 1.8

Description Create biplots for GGE (genotype plus genotype-by-environment) and GGB (genotype plus genotype-by-block-of-environments) models. See Laffont et al. (2013) <doi:10.2135/cropsci2013.03.0178>.

Type Package
Imports nipals, reshape2
Suggests agridat, knitr, lattice, rgl, rmarkdown, testthat

License MIT + file LICENSE
URL https://kwstat.github.io/gge/

BugReports https://github.com/kwstat/gge/issues
VignetteBuilder knitr
RoxygenNote 7.2.3
Encoding UTF-8

NeedsCompilation no

Author Kevin Wright [aut, cre] (<https://orcid.org/0000-0002-0617-8673>), Jean-Louis Laffont [aut]
Maintainer Kevin Wright <kw.stat@gmail.com>
Repository CRAN
Date/Publication 2023-08-21 08:42:36 UTC

R topics documented:

gge ... 2
RedGrayBlue ... 6

Index 7
Description

Fit a GGE (genotype + genotype * environment) model and display the results.

Usage

gge(x, ...)

S3 method for class 'data.frame'
gge(x, formula, gen.group = NULL, env.group = NULL, ggb = FALSE, ...)

S3 method for class 'formula'
gge(formula, data, gen.group = NULL, env.group = NULL, ggb = FALSE, ...)

S3 method for class 'matrix'
gge(
 x,
 center = TRUE,
 scale = TRUE,
 gen.group = NULL,
 env.group = NULL,
 ggb = FALSE,
 comps = c(1, 2),
 method = "svd",
 ...
)

S3 method for class 'gge'
plot(x, main = substitute(x), ...)

S3 method for class 'gge'
biplot(
 x,
 main = substitute(x),
 subtitle = "",
 xlab = "auto",
 ylab = "auto",
 cex.gen = 0.6,
 cex.env = 0.5,
 col.gen = "darkgreen",
 col.env = "orange3",
 pch.gen = 1,
 lab.env = TRUE,
 comps = 1:2,
biplot3d(x, ...)

S3 method for class 'gge'
biplot3d(
 x,
 cex.gen = 0.6,
 cex.env = 0.5,
 col.gen = "darkgreen",
 col.env = "orange3",
 comps = 1:3,
 lab.env = TRUE,
 res.vec = TRUE,
 zoom.gen = 1,
 ...
)

Arguments

x A matrix or data.frame.
... Other arguments (e.g. maxiter, granschmidt)
formula A formula
gen.group genotype group
env.group env group
ggb If TRUE, fit a GGB biplot model.
data Data frame
center If TRUE, center values for each environment
scale If TRUE, scale values for each environment
comps Principal components to use for the biplot. Default c(1,2).
method method used to find principal component directions. Either "svd" or "nipals".
main Title, by default the name of the data. Use NULL to suppress the title.
subtitle Subtitle to put in front of options. Use NULL to suppress the subtitle.
xlab Label along axis. Default "auto" shows percent of variation explained. Use NULL to suppress.
ylab Label along axis. Default "auto" shows percent of variation explained. Use NULL to suppress.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cex.gen</td>
<td>Character expansion for genotype labels, default 0.6. Use 0 to omit genotype labels.</td>
</tr>
<tr>
<td>cex.env</td>
<td>Character expansion for environment labels/symbols. Use lab.env=FALSE to omit labels.</td>
</tr>
<tr>
<td>col.gen</td>
<td>Color for genotype labels. May be a single color for all genotypes, or a vector of colors for each genotype.</td>
</tr>
<tr>
<td>col.env</td>
<td>Color for environments. May be a single color for all environments, or a vector of colors for each environment.</td>
</tr>
<tr>
<td>pch.gen</td>
<td>Plot character for genotypes</td>
</tr>
<tr>
<td>lab.env</td>
<td>Label environments if TRUE.</td>
</tr>
<tr>
<td>flip</td>
<td>If "auto" then each axis is flipped so that the genotype ordinate is positively correlated with genotype means. Can also be a vector like c(TRUE,FALSE) for manual control.</td>
</tr>
<tr>
<td>origin</td>
<td>If "auto", the plotting window is centered on genotypes, otherwise the origin is at the middle of the window.</td>
</tr>
<tr>
<td>res.vec</td>
<td>If TRUE, for each group, draw residual vectors from the mean of the locs to the individual locs.</td>
</tr>
<tr>
<td>hull</td>
<td>If TRUE, show a which-won-where polygon.</td>
</tr>
<tr>
<td>zoom.gen</td>
<td>Zoom factor for manual control of genotype xlim,ylim. The default is 1. Values less than 1 may be useful if genotype names are long.</td>
</tr>
<tr>
<td>zoom.env</td>
<td>Zoom factor for manual control of environment xlim,ylim. The default is 1. Values less than 1 may be useful if environment names are long. Not used for 3D biplots.</td>
</tr>
</tbody>
</table>

Details

If there is replication in GxE, then the replications are averaged together before constructing the biplot.

The singular value decomposition of x is used to calculate the principal components for the biplot. Missing values are NOT allowed.

The argument method can be either 'svd' for complete-data or 'nipals' for missing-data.

Value

A list of class gge containing:

- x: The filled-in data
- x.orig: The original data
- genCoord: genotype coordinates
- locCoord: loc coordinates
- blockCoord: block coordinates
- gen.group: If not NULL, use this to specify a column of the data.frame to classify genotypes into groups.
env.group If not NULL, use this to specify a column of the data.frame to classify environments into groups.
ggb If TRUE, create a GGB biplot
genMeans genotype means
mosdat mosaic plot data
R2 variation explained by each PC
center Data centered?
scale Data scaled?
method Method used to calculate principal components.
pctMiss Percent of x that is missing values
maxPCs Maximum number of PCs

Author(s)
Kevin Wright, Jean-Louis Laffont
Jean-Louis Laffont, Kevin Wright

References

Examples

```r
# Example 1. Data is a data.frame in 'matrix' format
B <- matrix(c(50, 67, 90, 98, 120,
             55, 71, 93, 102, 129,
             65, 76, 95, 105, 134,
             50, 80, 102, 130, 138,
             60, 82, 97, 135, 151,
             65, 89, 106, 137, 153,
             75, 95, 117, 133, 155), ncol=5, byrow=TRUE)
rownames(B) <- c("G1","G2","G3","G4","G5","G6","G7")
colnames(B) <- c("E1","E2","E3","E4","E5")

library(gge)
m1 = gge(B)
plot(m1)
biplot(m1, main="Example biplot")
# biplot3d(m1)
if(require(agridat)){
  # crossa.wheat biplot
```
Specify env.group as column in data frame
data(crossa.wheat)
dat2 <- crossa.wheat
m2 <- gge(dat2, yield~gen*loc, env.group=locgroup, scale=FALSE)
plot(m2)
biplot(m2, lab.env=TRUE, main="crossa.wheat")
biplot3d(m2)
}

RedGrayBlue

Function to create a Red-Gray-Blue palette

Description

A function to create a Red-Gray-Blue palette.

Usage

```r
RedGrayBlue(n)
```

Arguments

- `n` Number of colors to create

Details

Using gray instead of white allows missing values to appear as white (actually, transparent).

Value

A vector of `n` colors.

Author(s)

Kevin Wright

Examples

```r
pie(rep(1,11), col=RedGrayBlue(11))
title("RedGrayBlue(11)")
```
Index

biplot.gge (gge), 2
biplot3d (gge), 2

gge, 2
gge-package (gge), 2
gge.data.frame (gge), 2
gge.formula (gge), 2
gge.matrix (gge), 2

plot.gge (gge), 2

RedGrayBlue, 6