Package ‘ggenealogy’

October 13, 2022

Version 1.0.1
Title Visualization Tools for Genealogical Data
Description Methods for searching through genealogical data and displaying the results. Plotting algorithms assist with data exploration and publication-quality image generation. Includes interactive genealogy visualization tools. Provides parsing and calculation methods for variables in descendant branches of interest. Uses the Grammar of Graphics.

Author Lindsay Rutter, Susan Vanderplas, Di Cook
Maintainer Lindsay Rutter <lindsayannerutter@gmail.com>
License GPL
Depends R (>= 3.6.0)
Imports ggplot2 (>= 2.2.0), igraph (>= 0.7.1), plyr (>= 1.8.1), reshape2 (>= 1.4), plotly (>= 4.5.6), tibble (>= 1.2)
VignetteBuilder knitr
Suggests stringr (>= 0.6.2), knitr (>= 1.13), roxygen2 (>= 3.0.0), dplyr (>= 0.5.0)
RoxygenNote 7.0.2
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2020-03-04 09:40:14 UTC

R topics documented:

 buildAncDesCoordDF .. 2
 buildAncDesTotalDF ... 3
 buildAncList ... 4
 buildDesList ... 4
 buildEdgeTotalDF .. 5
 buildMinusPathDF .. 6
 buildPathDF ... 6
 buildPlotTotalDF .. 7
buildAncDesCoordDF

Returns the coordinate positions of all ancestors and descendants of a variety.

Description

Calculates coordinates to plot each ancestors and descendant of a variety in a lineage. The x and y values describe the coordinates of the label, while the xstart, ystart, xend, and yend values describe the edges of the label.

Usage

```
buildAncDesCoordDF(df)
```

Arguments

- `df` the data frame of the ancestors and descendants of a variety (from function buildAncDesTotalDF)
buildAncDesTotalDF

References

CITATION

See Also

buildAncList for information on determining ancestors
buildDesList for information on determining descendants

buildAncDesTotalDF

Returns data frame with plot coordinates of all ancestors and descendants of a variety.

Description

Returns the data frame that includes labels and plot coordinates of all ancestors and descendants of a variety. Users can specify the maximum number of ancestors and descendants to display.

Usage

buildAncDesTotalDF(v1, geneal, mAnc = 3, mDes = 3)

Arguments

v1 the label of the vertex of interest (in character string format)
geneal the full genealogy (in data frame format)
mAnc the maximum number of generations of ancestors of v1 to be displayed (in numeric format)
mDes the maximum number of generations of descendants of v1 to be displayed (in numeric format)

References

See Also

buildAncList for information on determining ancestors
buildDesList for information on determining descendants

Examples

data(sbGeneal)
v1 <- "Essex"
buildAncDesTotalDF(v1, sbGeneal)
buildAncList

Returns the ancestors of a particular variety (if they exist).

Description

This function returns a nested list of the ancestors of the inputted variety.

Usage

buildAncList(v1, geneal, gen = 0)

Arguments

- **v1**: the label of the vertex of interest (in character string format)
- **geneal**: the full genealogy (in data frame format)
- **gen**: the generation (note: This should be left as default, as any other input will not affect results anyway)

References

See Also

getParent for information on determining parents

Examples

data(sbGeneal)
getParent("Essex", sbGeneal)
buildAncList("Essex", sbGeneal)

buildDesList

Returns the descendants of a particular variety (if they exist).

Description

This function returns a nested list of the descendants of the inputted variety.

Usage

buildDesList(v1, geneal, gen = 0)
buildEdgeTotalDF

Arguments

- `v1`: the label of the vertex of interest (in character string format)
- `geneal`: the full genealogy (in data frame format)
- `gen`: the generation (note: This should be left as default, as any other input will not affect results)

References

See Also

- `getChild` for information on determining children

Examples

```r
data(sbGeneal)
getParent("Essex", sbGeneal)
buildDesList("Essex", sbGeneal, 3)
```

Description

This function takes the graph object and creates a data frame object of the edges between all parent-child relationships in the graph.

Usage

```r
buildEdgeTotalDF(geneal, ig, colName, bin = 12)
```

Arguments

- `geneal`: the full genealogy (in data frame format)
- `ig`: the graph representation of the data genealogy (in igraph format)
- `colName`: the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
- `bin`: the number of bins to determine the vertical positions of nodes (default is 12). For more information on choosing bin size, please visit the ggenealogy vignette.

See Also

- `dfToIG` for information on producing ig from the genealogy
- https://www.r-project.org for iGraph information
buildMinusPathDF

Process the genealogy graph

Description

This function takes the spreadTotalDF object (from the buildSpreadTotalDF function) and the path object as inputs. From these objects, it creates a data frame object of the label, x, and y values of all nodes in the ful genealogy. However, the data frame object does not include the labels of the path varieties, as they will be treated differently.

Usage

buildMinusPathDF(path, geneal, ig, colName, colNameY, bin = 12)

Arguments

- **path**: path as returned from getPath() or a vector of two variety names which exist in the ig object
- **geneal**: the full genealogy (in data frame format)
- **ig**: the graph representation of the data genealogy (in igraph format)
- **colName**: the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
- **colNameY**: the name of the second optional column of the data frame that contains the second optional quantitative variable of interest (in character string format). This optional quantitative variable will be plotted on the vertical axis.
- **bin**: the number of bins to determine the vertical positions of nodes (default is 12). For more information on choosing bin size, please visit the ggenealogy vignette.

See Also

- https://www.r-project.org for iGraph information
- getPath for information on input path building

buildPathDF

Build data frame for path representation

Description

This function builds a dataframe of information about the path object that can later be used for visualization. The dataframe includes "label" (name of each variety) of each node, "x" (the date of the variety, the x-axis value for which the label and incoming/outgoing edges are centered), "y" (the y-axis value, which is the index of the path, incremented by unity), "xstart" (the x-axis position of the outgoing edge (leaving to connect to the node at the next largest y-value)), "xend" (the x-axis position of the outgoing edge (connected to the node at the next largest y-value)), "ystart" (the y-axis position of the outgoing edge (leaving to connect to the node at the next largest y-value), "yend" (the y-axis position of the outgoing edge (connected to the node at the next largest y-value))).
Usage

buildPlotTotalDF(path, geneal, colName, colNameY = "")

Arguments

path path object representing the path between two vertices
geneal the full genealogy (in data frame format)
colName the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
colNameY the name of the second optional column of the data frame that contains the second optional quantitative variable of interest (in character string format). This optional quantitative variable will be plotted on the vertical axis.

Description

This function takes the spreadTotalDF object (from the buildSpreadTotalDF function) and the path object as inputs. From these objects, it creates a data frame object of the text label positions for the varieties in the path, as well as the edges only in the varieties in the path.

Usage

buildPlotTotalDF(path, geneal, ig, colName, colNameY = "", bin = 12)

Arguments

path path as returned from getPath() or a vector of two variety names which exist in ig
geneal the full genealogy (in data frame format)
ig the graph representation of the data genealogy (in igraph format)
colName the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
colNameY the name of the second optional column of the data frame that contains the second optional quantitative variable of interest (in character string format). This optional quantitative variable will be plotted on the vertical axis.
bin the number of bins to determine the vertical positions of nodes (default is 12). For more information on choosing bin size, please visit the ggenealogy vignette

See Also

https://www.r-project.org for iGraph information
https://www.r-project.org for iGraph information
getPath for information on input path building
buildSpreadTotalDF
Build a data frame where the varieties are spread so they do not overlap

Description

Constructs a data frame object so that varieties are spread such that they do not overlap, even though the x-axis position will represent dates.

Usage

```r
buildSpreadTotalDF(geneal, ig, colName, bin = 12)
```

Arguments

- `geneal`: the full genealogy (in data frame format)
- `ig`: the graph representation of the data genealogy (in igraph format)
- `colName`: the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
- `bin`: the number of bins to determine the vertical positions of nodes (default is 12). For more information on choosing bin size, please visit the ggenealogy vignette

See Also

https://www.r-project.org for iGraph information

dfToIG
Process the genealogy graph

Description

Processes the genealogy into an igraph object with appropriate vertex information, graph type, and edge weights.

Usage

```r
dfToIG(geneal, vertexinfo = NULL, edgeweights = 1, isDirected = FALSE)
```

Arguments

- `geneal`: the full genealogy (in data frame format)
- `vertexinfo`: (default NULL) either names of columns in the genealogy which should be added to the database as vertex information or a data frame with information for all vertices such that the first column contains vertex names.
- `edgeweights`: (default 1) name of a column which contains edge weights
- `isDirected`: (default FALSE) should the graph be a directed graph?
getAncestors

See Also

https://www.r-project.org for iGraph information

getAncestors

Returns a list of the ancestors of a particular variety (if they exist)

Description

This function returns a list of the ancestors of the inputted variety within and including a given number of generations

Usage

getAncestors(v1, geneal, gen = 3)

Arguments

v1
the label of the vertex of interest (in character string format)
geneal
the full genealogy (in data frame format)
gen
the number of generations back to include as ancestors

References

Examples

data(sbGeneal)
getParent("Essex", sbGeneal)
getAncestors("Essex", sbGeneal, 1)
getAncestors("Essex", sbGeneal, 5)

getBasicStatistics

Determine basic statistics of the graph object

Description

Returns basic statistics of the graph object (number of nodes, number of edges, whether or not the whole graph is connected, number of components, average path length, graph diameter, etc.)

Usage

getBasicStatistics(ig)
getBranchQual

Arguments

ig
the graph representation of the data genealogy (in igraph format)

References

Examples

data(sbGeneal)
ig <- dfToIG(sbGeneal)
getBasicStatistics(ig)

getBranchQual(v1, geneal, colName, rExpr, gen = 3)

Usage

getBranchQual(v1, geneal, colName, rExpr, gen = 3)

Arguments

v1
the label of the vertex of interest (in character string format)
geneal
the full genealogy (in data frame format)
colName
the name of the column of the data frame that contains the qualitative variable of interest (in character string format)
rExpr
regular expression to be applied to the column that contains the qualitative variable of interest (in character string format). The regular expression syntax must work on a data frame column of type character. The term geneal$colName must be used in the regular expression.
gen
the number of generations back to include as ancestors

References

getBranchQuant

Descendant branch calculations for quantitative variable

Description

Returns a data frame containing the names of all children of an individual of interest ("Name"). The mean and standard deviation ("Mean" and "SD") of a quantitative variable across all descendents of each child is reported. In addition, for each child, the number of its descendants is reported ("Count"), the number of its descendents who do not have a value for the quantitative variable ("NACount") is reported, and the names of all of its descendants is reported ("DesNames").

Usage

getBranchQuant(v1, geneal, colName, gen = 3)

Arguments

v1 the label of the vertex of interest (in character string format)
geneal the full genealogy (in data frame format)
colName the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
gen the number of generations back to include as ancestors

References

Examples

data(statGeneal)
DC_Year <- getBranchQuant("David Cox", statGeneal, "gradYear", 15)
getChild

Returns the children of a particular variety (if they exist)

Description

This function returns zero or more values that indicate the children of the inputted variety.

Usage

```r
cgetChild(v1, geneal)
```

Arguments

- `v1`: the label of the vertex of interest (in character string format)
- `geneal`: the full genealogy (in data frame format)

References

Examples

```r
data(sbGeneal)
cgetChild("Tokyo", sbGeneal)
cgetChild("Essex", sbGeneal)
```

gDegree

Determine the degree between two varieties

Description

Returns the degree (distance between unweighted edges) between two varieties, where an edge represents a parent-child relationship.

Usage

```r
cgetDegree(v1, v2, ig, geneal)
```

Arguments

- `v1`: the label of the first vertex of interest (in character string format)
- `v2`: the label of the second vertex of interest (in character string format)
- `ig`: the graph representation of the data genealogy (in igraph format)
- `geneal`: the full genealogy (in data frame format)
getDescendants

References

Examples

data(sbGeneal)
ig <- dfToIG(sbGeneal)
getDegree("Brim", "Bedford", ig, sbGeneal)

getDescendants

Returns a list of the descendants of a particular variety (if they exist)

Description

This function returns a list of the descendants of the inputted variety within and including a given number of generations

Usage

getDescendants(v1, geneal, gen = 3)

Arguments

v1 the label of the vertex of interest (in character string format)
geneal the full genealogy (in data frame format)
gen the number of generations back to include as descendants

References

Examples

data(sbGeneal)
getChild("Essex", sbGeneal)
getDescendants("Essex", sbGeneal, 1)
getDescendants("Essex", sbGeneal, 3)
getNodes

Returns the nodes for a full genealogy

Description

Returns a character list, where rows contains names of the unique nodes in the full genealogy.

Usage

getNodes(geneal)

Arguments

geneal the full genealogy (in data frame format)

References

getEdges

Returns edges (vertex names and edge weights) for the full genealogy

Description

Returns a matrix, where each row contains information about an edge (two vertex names and edge weight, if present) of the full genealogy.

Usage

getEdges(ig, geneal)

Arguments

ig the graph representation of the data genealogy (in igraph format)
geneal the full genealogy (in data frame format)

References

Examples

data(sbGeneal)
ig <- dfToIG(sbGeneal)
getEdges(ig, sbGeneal)
getParent

Examples

```r
data(sbGeneal)
getNodes(sbGeneal)
```

getParent
Returns the parents of a particular variety (if they exist)

Description

This function returns up to two values that indicate the parents of the inputted variety.

Usage

```r
getParent(v1, geneal)
```

Arguments

- `v1`
 the label of the vertex of interest (in character string format)

- `geneal`
 the full genealogy (in data frame format)

References

Examples

```r
data(sbGeneal)
getParent("Tokyo", sbGeneal)
getParent("Essex", sbGeneal)
```

getPath

Determine the path between two varieties

Description

Determines the shortest path between the two inputted vertices, and takes into account whether or not the graph is directed. If there is a path, the list of vertices of the path will be returned. If there is not a path, a list of character(0) will be returned. Note: For a directed graph, the direction matters. However, this function will check both directions and return the path if it exists.

Usage

```r
getPath(v1, v2, ig, geneal, colName, silent = FALSE, isDirected = FALSE)
```
Arguments

v1 the label of the first vertex of interest (in character string format)
v2 the label of the second vertex of interest (in character string format)
ig the graph representation of the data genealogy (in igraph format)
geneal the full genealogy (in data frame format)
colName the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
silent whether or not to print output (defaults to false)
isDirected whether or not the graph is directed (defaults to false)

References

Examples

data(sbGeneal)
ig <- dfToIG(sbGeneal)
getPath("Brim", "Bedford", ig, sbGeneal, "devYear")
getPath("Tokyo", "Volstate", ig, sbGeneal, "yield")

getPathOnly(v1, v2, ig, geneal, silent = FALSE, isDirected = FALSE)

Description

Determines the shortest path between the two inputted vertices, and takes into account whether or not the graph is directed. If there is a path, the list of vertices of the path will be returned. If there is not a path, a list of character(0) will be returned. Note: For a directed graph, the direction matters. However, this function will check both directions and return the path if it exists.

Usage

gPathOnly(v1, v2, ig, geneal, silent = FALSE, isDirected = FALSE)

Arguments

v1 the label of the first vertex of interest (in character string format)
v2 the label of the second vertex of interest (in character string format)
ig the graph representation of the data genealogy (in igraph format)
geneal the full genealogy (in data frame format)
silent whether or not to print output (defaults to false)
isDirected whether or not the graph is directed (defaults to false)
getVariable

Determine the date of a variety

Description

Returns the documented date of the inputted variety

Usage

```r
getVariable(v1, geneal, colName)
```

Arguments

- `v1`: the label of the vertex of interest (in character string format)
- `geneal`: the full genealogy (in data frame format)
- `colName`: the name of the column of the data frame that contains the quantitative variable of interest (in character string format)

References

Examples

```r
data(sbGeneal)
getVariable("Essex", sbGeneal, "devYear")
getVariable("Tokyo", sbGeneal, "yield")
```

isChild

Determine if a variety is a child of another

Description

Returns a boolean variable for whether the first variety is a child of the second variety

Usage

```r
isChild(child, parent, geneal)
```

Arguments

- `child`: possible child variety
- `parent`: possible parent variety
- `geneal`: the full genealogy (in data frame format)
isParent

Determine if a variety is a parent of another

Description

Returns a boolean variable for whether the second variety is a parent of the first variety

Usage

isParent(child, parent, geneal)

Arguments

child possible child variety
parent possible parent variety
geneal the full genealogy (in data frame format)

References

Examples

data(sbGeneal)
isParent("Essex", "Young", sbGeneal)
isParent("Young", "Essex", sbGeneal)

nodeToDF

Returns the data frame representation of all ancestors and descendants of a variety

Description

Converts the list-style-genealogy to a data frame, where each variety has an id value and references its' parent’s id value. ID value ranges correspond to generation. It is possible that with more complex genealogical structures the range of id values may need to expand to reduce the probability of two varieties being assigned the same id value.

Usage

nodeToDF(tlist, branch = 0, par.id = NA, id = 1)

Arguments

tlist list of varieties
branch of particular variety in the genealogy
par.id the id of the parent
id id offset

plotAncDes

Returns the image object to show the ancestors and descendants of a variety

Description

Returns the image object to show the ancestors and descendants of a variety, with the variety highlighted, if desired

Usage

plotAncDes(v1, geneal, mAnc = 3, mDes = 3, vColor = "#D35C79")

Arguments

v1 the label of the vertex of interest (in character string format)
geneal the full genealogy (in data frame format)
mAnc the maximum number of generations of ancestors of v1 to be displayed (in numeric format)
mDes the maximum number of generations of descendants of v1 to be displayed (in numeric format)
vColor the color of the text of the main variety
References

Examples

data(sbGeneal)
plotAncDes("Tokyo", sbGeneal, vColor = "red")
plotAncDes("Essex", sbGeneal, 2, 3, "blue") + ggplot2::labs(x = "Generation index", y = "")

plotDegMatrix

Returns the image object to show the heat map of degrees between the inputted set of vertices

Description

Returns the image object to show the heat map of degrees between the inputted set of vertices

Usage

plotDegMatrix(varieties, ig, geneal)

Arguments

- **varieties** — subset of varieties used to generate the heat map
- **ig** — the graph representation of the data genealogy (in igraph format)
- **geneal** — the full genealogy (in data frame format)

References

See Also

https://www.r-project.org for iGraph information

Examples

data(sbGeneal)
ig <- dfToIG(sbGeneal)
varieties <- c("Bedford", "Calland", "Narow", "Pella", "Tokyo", "Young", "Zane")
p <- plotDegMatrix(varieties, ig, sbGeneal)
p + ggplot2::scale_fill_continuous(low = "white", high = "darkgreen")
plotPath Construct the graphic object of the path

Description
This function takes the path as input and outputs an ggplot2 object. The image will correctly position the node labels with x-axis representing the node date, and y-axis representing the node path index. Edges between two nodes represent parent-child relationships between those nodes. For visual appeal, there is a grey box that outlines the node label, as well as an underline and overline for each label.

Usage
plotPath(path, geneal, colName, colNameY = "", fontFace = 1)

Arguments
- **path**: object created from function getPath
- **geneal**: the full genealogy (in data frame format)
- **colName**: the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
- **colNameY**: the name of the second optional column of the data frame that contains the second optional quantitative variable of interest (in character string format). This optional quantitative variable will be plotted on the vertical axis.
- **fontFace**: fontface for the two nodes of interest (1=plain, 2=bold, 3=italic, 4=bold-italic), DEFAULT is 1

References

See Also
- getPath for information on input path building

Examples
data(sbGeneal)
ig <- dfToIG(sbGeneal)
pathTN <- getPath("Tokyo", "Narow", sbIG, sbGeneal, "devYear")
plotPath(pathTN, sbGeneal, "devYear")

sbFilt <- sbGeneal[complete.cases(sbGeneal[1:3]),]
 sbFiltIG <- dfToIG(sbFilt)
pathCL <- getPath("Clark", "Lawrence", sbFiltIG, sbFilt, "yield")
plotPath(pathCL, sbFilt, "devYear", "yield") + ggplot2::xlab("Dev Year") + ggplot2::ylab("Yield")
plotPathOnAll

Plot a path between two vertices over the full genealogy

Description

This function requires a path and the ig object, and plots the full genealogy with the path highlighted. The image will correctly position the node labels with x-axis representing the node date, and y-axis representing the node path index. Light grey edges between two nodes represent parent-child relationships between those nodes. To enhance the visual understanding of how the path-of-interest fits into the entire graph structure, the nodes within the path are labelled in boldface, and connected with light-green boldfaced edges.

Usage

plotPathOnAll(
 path,
 geneal,
 ig,
 colName,
 colNameY = "",
 bin = 12,
 edgeCol = "gray84",
 pathEdgeCol = "seagreen",
 nodeSize = 3,
 pathNodeSize = 3,
 pathNodeFont = "bold",
 nodeCol = "black",
 animate = FALSE
)

Arguments

path path as returned from getPath() or a vector of two variety names which exist in ig
geneal the full genealogy (in data frame format)
ig the graph representation of the data genealogy (in igraph format)
colName the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
colNameY the name of the second optional column of the data frame that contains the second optional quantitative variable of interest (in character string format). This optional quantitative variable will be plotted on the vertical axis.
bin the number of bins to determine the vertical positions of nodes (default is 12). For more information on choosing bin size, please visit the ggenealogy vignette
edgeCol color of the non-path edges, default is "gray84"
pathEdgeCol color of the path edges, default is "seagreen"
nodeSize text size of the non-path node labels, default is 3
pathNodeSize text size of the path node labels, default is 3
pathNodeFont font face of text of the path node labels ("plain", "italic", "bold", "bold.italic"), default is "bold"
nodeCol color of the non-path node labels, default is black
animate if the plot will have interactive capabilities, default is FALSE

References

See Also
https://www.r-project.org for igraph information
getPath for information on input path building

Examples
```r
data(sbGeneal)
sb <- sbGeneal[complete.cases(sbGeneal[1:3]),]
ig <- dfToIG(sb)
pathCL <- getPath("Clark", "Lawrence", ig, sb, "yield")
plotPathOnAll(pathCL, sb, ig, "yield", bin = 3, pathEdgeCol = "red") + ggplot2::xlab("Yield")
plotPathOnAll(pathCL, sb, ig, "yield", "devYear") + ggplot2::xlab("Yield") + ggplot2::ylab("Year")
```

`plotVariableMatrix`
Returns the image object to show the heat map of dates between the inputted set of vertices

Description
Returns the image object to show the heat map of dates between the inputted set of vertices

Usage
```r
plotVariableMatrix(
  varieties, 
  geneal, 
  colName, 
  xLab = "Variety", 
  yLab = "Variety", 
  legendLab = "Difference in variable"
)
```
Arguments

- **varieties**: subset of varieties used to generate the heat map
- **geneal**: the full genealogy (in data frame format)
- **colName**: the name of the column of the data frame that contains the quantitative variable of interest (in character string format)
- **xLab**: string label on the x axis (default is "Variety")
- **yLab**: string label on the y axis (default is "Variety")
- **legendLab**: string label on the legend (default is "Degree")

References

Examples

data(sbGeneal)
varieties <- c("Bedford", "Calland", "Narow", "Pella", "Tokyo", "Young", "Zane")
p <- plotVariableMatrix(varieties, sbGeneal, "devYear", "Variety", "Variety", "Difference")
p + ggplot2::scale_fill_continuous(low = "white", high = "darkgreen")

Soybean data

Description

This data set contains soybean genealogical information maintained by the United States Department of Agriculture to be used by plant breeders, geneticists, bioinformaticians, pathologists, and many other research workers.

Usage

data(sbGeneal)

Format

- A `RData` instance, 1 row per each child-parent relationship between soybean varieties

Details

Soybean genealogical data

This data contains information on copy number variants, single nucleotide polymorphisms, protein content, and yield, of soybeans. The available data consists of a data frame structure that contains 412 direct child-parent relationships between pairs of soybean varieties. These data were collected from field trials, genetic studies, and United States Department of Agriculture (USDA) bulletins, and date as early as the first decade of the 1900s.
• child name of child soybean variety
• devYear year child variety was introduced
• yield protein yield
• yearImputed whether or not the introduced year of the child variety was imputed
• parent name of parent soybean variety

References

Description
This data set contains academic genealogical information from the Mathematics Genealogy Project, a web-based database serviced by the North Dakota State University Department of Mathematics and the American Mathematical Society. Specifically, this data set represents a subset of the Mathematical Genealogy Project that contains all the parent-child relationships where both parent and child received an advanced degree of statistics as of June 6, 2015.

Usage
data(statGeneal)

Format
A RData instance, 1 row per each individual in the Mathematics Genealogy Project with an advanced degree in statistics. If the child had a parent who was also listed as having received an advanced degree in statistics in the Mathematics Genealogy project, then the row also contains the parental information.

Details
Academic statistics genealogical data
This data contains information on copy number variants, single nucleotide polymorphisms, protein content, and yield, of soybeans. The available data consists of a data frame structure that contains 412 direct child-parent relationships between pairs of soybean varieties. These data were collected from field trials, genetic studies, and United States Department of Agriculture (USDA) bulletins, and date as early as the first decade of the 1900s.

• child name of the individual who received an advanced degree in statistics
• parent name of the individual who mentored the child and also received an advanced degree in statistics. If the child has no such parent, then this field is an empty string
• gradYear year the child received their advanced degree in statistics
• country country from which the child received their advanced degree in statistics
• school school from which the child received their advanced degree in statistics
• thesis title of the thesis the child submitted to receive their advanced degree in statistics. If this information is not available, then this field is an empty string

References

Index

* datasets
 sbGeneal, 24
 statGeneal, 25
 buildAncDesCoordDF, 2
 buildAncDesTotalDF, 3
 buildAncList, 3, 4
 buildDesList, 3, 4
 buildEdgeTotalDF, 5
 buildMinusPathDF, 6
 buildPathDF, 6
 buildPlotTotalDF, 7
 buildSpreadTotalDF, 8
 CITATION, 3
 dfToIG, 5, 8
 getAncestors, 9
 getBasicStatistics, 9
 getBranchQual, 10
 getBranchQuant, 11
 getChild, 5, 12
 getDegree, 12
 getDescendants, 13
 getEdges, 14
 getNodes, 14
 getParent, 4, 15
 getPath, 6, 7, 15, 21, 23
 getPathOnly, 16
 getVariable, 17
 isChild, 17
 isParent, 18
 nodeToDF, 19

 plotAncDes, 19
 plotDegMatrix, 20
 plotPath, 21
 plotPathOnAll, 22

 plotVariableMatrix, 23
 sbGeneal, 24
 statGeneal, 25