Package ‘ggfacto’

March 8, 2024

Title Graphs for Correspondence Analysis
Version 0.3.0
Description Readable, complete and pretty graphs for correspondence analysis made with ‘FactoMineR’. They can be rendered as interactive 'HTML' plots, showing useful informations at mouse hover. The interest is not mainly visual but statistical: it helps the reader to keep in mind the data contained in the cross-table or Burt table while reading the correspondence analysis, thus preventing over-interpretation. Most graphs are made with 'ggplot2', which means that you can use the + syntax to manually add as many graphical pieces you want, or change theme elements. 3D graphs are made with 'plotly'.

URL https://github.com/BriceNocenti/ggfacto
BugReports https://github.com/BriceNocenti/ggfacto/issues
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.1
Imports FactoMineR (>= 2.0.0), ggiraph (>= 0.8.2), ggplot2 (>= 3.0.0), dplyr (>= 1.0.0), forcats (>= 0.5.0), purrr (>= 0.3.0), rlang (>= 0.4.0), stringr (>= 1.4.0), tibble (>= 3.0.0), tidyr (>= 1.0.0), tidyselect (>= 1.1.0), vctrs (>= 0.3.0), ggrepel (>= 0.9.0), gridExtra (>= 2.0), tabxplor (>= 1.0.3), withr (>= 2.0.0), magrittr (>= 1.5.0), data.table (>= 1.12.0), ggforce (>= 0.4.0)

Suggests widgetframe (>= 0.3.0), htmlwidgets (>= 1.4.0), finalfit (>= 1.0.0), kableExtra (>= 1.3.0), plotly (>= 4.1.0), stats (>= 4.0.0), grDevices (>= 4.0.0), stringi (>= 1.4.6), scales (>= 1.1.0)

NeedsCompilation no
Author Brice Nocenti [aut, cre]
Maintainer Brice Nocenti <brice.nocenti@gmail.com>
Repository CRAN
Date/Publication 2024-03-08 22:00:05 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzecri_mrv</td>
<td>2</td>
</tr>
<tr>
<td>ggca</td>
<td>3</td>
</tr>
<tr>
<td>ggi</td>
<td>5</td>
</tr>
<tr>
<td>ggmca</td>
<td>6</td>
</tr>
<tr>
<td>ggmca_3d</td>
<td>11</td>
</tr>
<tr>
<td>ggmca_initial_dims</td>
<td>13</td>
</tr>
<tr>
<td>ggmca_with_base_ref</td>
<td>14</td>
</tr>
<tr>
<td>ggpca_3d</td>
<td>15</td>
</tr>
<tr>
<td>ggpca_cor_circle</td>
<td>17</td>
</tr>
<tr>
<td>ggsave2</td>
<td>18</td>
</tr>
<tr>
<td>HCPC_tab</td>
<td>19</td>
</tr>
<tr>
<td>material_colors_dark</td>
<td>20</td>
</tr>
<tr>
<td>material_colors_light</td>
<td>20</td>
</tr>
<tr>
<td>MCA2</td>
<td>21</td>
</tr>
<tr>
<td>mca_interpret</td>
<td>22</td>
</tr>
<tr>
<td>mean_sd_tab</td>
<td>23</td>
</tr>
<tr>
<td>PCA2</td>
<td>23</td>
</tr>
<tr>
<td>pca_interpret</td>
<td>24</td>
</tr>
<tr>
<td>pers_or_plot</td>
<td>25</td>
</tr>
<tr>
<td>theme_facto</td>
<td>26</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzecri_mrv</td>
<td>2</td>
</tr>
</tbody>
</table>

benzecri_mrv

Benzecri’s modified rate of variance

Description

Benzecri’s modified rate of variance

Usage

```r
benzecri_mrv(res.mca, fmt = FALSE)
```

Arguments

- `res.mca`: The result of `MCA`
- `fmt`: By default, the result is given as a numeric vector. Set to ‘TRUE’ to have a `tabxplor link[tabxplor]{fmt}` vector instead.

Value

A numeric vector (or fmt vector with ‘fmt = TRUE’).
Examples

```r
data(tea, package = "FactoMineR")
res.mca <- MCA2(tea, active_vars = 1:18)
benzecri_mrv(res.mca)
```

Description

A readable, complete and beautiful graph for simple correspondence analysis made with `FactoMineR::CA`. Interactive tooltips, appearing when hovering on points with mouse, allow to keep in mind all the content of the table while reading the graph. Since it is made in the spirit of `ggplot2`, it is possible to change theme or add another plot elements with `+`. Then, interactive tooltips won’t appear until you pass the result through `ggi`.

Usage

```r
ggca(
  res.ca = res.ca,
  axes = c(1, 2),
  show_sup = FALSE,
  xlim,
  ylim,
  out_lims_move = FALSE,
  type = c("points", "text", "labels"),
  text_repel = FALSE,
  uppercase = "col",
  tooltips = c("row", "col"),
  rowtips_subtitle = "Row pct",
  coltips_subtitle = "Column pct",
  rowcolor_numbers = 0,
  colcolor_numbers = 0,
  cleannames = TRUE,
  filter = ",",
  title,
  text_size = 3.5,
  dist_labels = c("auto", 0.12),
  right_margin = 0,
  size_scale_max = 8,
  use_theme = TRUE
)
```

Arguments

- **res.ca**: An object created with `FactoMineR::CA`.
- **axes**: The axes to print, as a numeric vector of length 2.
show_sup

When TRUE show supplementary rows and cols.

xlim, ylim

Horizontal and vertical axes limits, as double vectors of length 2.

out_lims_move

When TRUE, the points out of xlim or ylim are not removed, but moved at the edges of the graph.

type

Determines the way the two variables of the table are printed.

- "points": colored points with text legends
- "text": colored text
- "labels": colored labels

text_repel

When TRUE the graph is not interactive anymore, but the resulting image is better to print because points and labels don’t overlaps. It uses ggrepel::geom_text_repel.

uppercase

Print "row" var or "col" var labels with uppercase.

tooltips

Choose the content of interactive tooltips at mouse hover: "col" for the table of columns percentages, "row" for line percentages, default to c("row", "col") for both.

tooltips_subtitle, coltooltips_subtitle

The subtitles used before the table in interactive tooltips.

rowcolor_numbers, colcolor_numbers

If row var or col var levels are prefixed with numbers(ex. : "1-"), the number of digits to use to create classes that will be used to add colors to points.

cleannames

Set to TRUE to clean levels names, by removing prefix numbers like "1-", and text in parentheses.

filter

Regex patterns to discard levels of row or col variables.

title

The title of the graph.

text_size

Size of text.

dist_labels

When type = "points", the distance of text and labels from points.

right_margin

A margin at the right, in cm. Useful to read tooltips over points placed at the right of the graph without formatting problems.

size_scale_max

Size of points.

use_theme

By default, a specific ggplot2 theme is used. Set to FALSE to customize your own theme.

Value

A ggplot object to be printed in the ‘RStudio’ Plots pane. Possibility to add other gg objects with +. Sending the result through ggi will draw the interactive graph in the Viewer pane using ggiraph.

Examples

Make the correspondence analysis :

tabs <- table(forcats::gss_cat$race, forcats::gss_cat$marital)[-4,]
tabs <- tabxplor::tab_plain(forcats::gss_cat, race, marital, df = TRUE)
res.ca <- FactoMineR::CA(tabs, graph = FALSE)
Interactive plot :
graph.ca <- ggca(res.ca,
 title = "Race by marital : correspondence analysis",
 tooltips = c("row", "col"))
ggi(graph.ca) # to make the plot interactive

Image plot :
ggca(res.ca,
 title = "Race by marital : correspondence analysis",
 text_repel = TRUE)

ggia
Pass a MCA plot into a html interactive plot

Description

Pass a MCA plot into a html interactive plot

Usage

```r
  ggi(  
    plot = ggplot2::last_plot(),  
    width = NULL,  
    height = NULL,  
    keep_ratio = TRUE,  
    savewidget = FALSE,  
    dir = NULL,  
    name = "Plot",  
    replace = FALSE,  
    open = rlang::is_interactive(),  
    iframe = NULL,  
    pixel_width,  
    ...  
  )
```

Arguments

- **plot**
 The plot, created with `ggmca` or `ggca`.

- **width**
 The width in centimeters. Default to printing device’s size.

- **height**
 The height in centimeters. Default to printing device’s size.

- **keep_ratio**
 By default, the height is forced based of the relative size of the MCA’s axes. Set to `FALSE` to avoid this behavior.

- **savewidget**
 Should the html widget be saved on disk?

- **dir**
 If saved as file, the directory in which to save the html widget. Default to temporary directory. Set global option `"ggfacto.export_dir"` with `options` to change default directory.
<table>
<thead>
<tr>
<th>name</th>
<th>The name of the file to save.</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace</td>
<td>Replace file ? By default, number added to find a new name.</td>
</tr>
<tr>
<td>open</td>
<td>Should the resulting file be opened at once ?</td>
</tr>
<tr>
<td>iframe</td>
<td>Create an html frame around the plot to ensure fixed dimensions. Useful when opening the plot in a web browser (but will produce a blank graph with rmarkdown). This is default behavior with savewidget = TRUE. Require package widgetframe.</td>
</tr>
<tr>
<td>pixel_width</td>
<td>The width in pixels for widgetframe.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments to pass to girafe and dsvg, fonts can be used to provide text fonts.</td>
</tr>
</tbody>
</table>

Value

An html plot.

ggmca

Readable and Interactive graph for multiple correspondence analysis

Description

A readable, complete and beautiful graph for multiple correspondence analysis made with FactoMineR::MCA. Interactive tooltips, appearing when hovering near points with mouse, allow to keep in mind many important data (tables of active variables, and additional chosen variables) while reading the graph. Profiles of answers (from the graph of "individuals") are drawn in the back, and can be linked to FactoMineR::HCPC classes. Since it is made in the spirit of ggplot2, it is possible to change theme or add another plot elements with +. Then, interactive tooltips won’t appear until you pass the result through ggl. Step-by-step functions : use ggmca_data to get the data frames with every parameter in a MCA printing, then modify, and pass to ggmca_plot to draw the graph.

Usage

```r
ggmca(
  res.mca,
  dat,
  sup_vars,
  active_tables,
  tooltip_vars_1lv,
  tooltip_vars,
  axes = c(1, 2),
  axes_names = NULL,
  axes_reverse = NULL,
  type = c("text", "labels", "points", "numbers", "facets"),
  color_groups = "^.(0)",
  cah_color_groups = "^.*$",
  keep_levels,
  discard_levels,
)```
ggmca_data(
  res.mca,
  dat,
  sup_vars,
  active_tables,
  tooltip_vars_1lv,
  tooltip_vars,
  color_groups = "^\(0\)",
  cah_color_groups = "^\+$",
  keep_levels,
  discard_levels,
  cleannames = TRUE,
  profiles = FALSE,
  profiles_tooltip_discard = "^Pas |^Non |^Not |^No ",
  cah,
  max_profiles = 5000
)

ggmca_plot(
  data,
axes = c(1, 2),
axes_names = NULL,
axes_reverse = NULL,
type = c("text", "points", "labels", "active_vars_only", "numbers", "facets"),
text_repel = FALSE,
title,
ellipses = NULL,
actives_in_bold = NULL,
sup_in_italic = FALSE,
xlim,
ylim,
out_lims_move = FALSE,
color_profiles = TRUE,
base_profiles_color = "#aaaaaa",
alpha_profiles = 0.7,
shift_colors = 0,
colornames_recode,

Arguments

res.mca         An object created with FactoMineR::MCA.
dat            The data in which to find the supplementary variables, etc.
sup_vars        A character vectors of supplementary qualitative variables to print (they don’t need to be passed in MCA before).
active_tables   Should colored crosstables be added in interactive tooltips ? ‘active_tables = "sup"’ crosses each ‘sup_vars’ with active variables. ‘active_tables = "active"’ crosses each active variables with the other ones, giving results closely related with the burt table used to calculate multiple correspondance analysis. It may take time to calculate with many variables. ‘active_tables = c("active", "sup")’ do both. In tooltips, percentages are colored in blue when spread from mean is positive (over-representations), and in red when spread from mean is negative (under-representations), like in tab with ‘color = "diff"’.
tooltip_vars_1lv A character vectors of variables, whose first level (if character/factor) or weighted_mean (if numeric) will be added at the top of interactive tooltips.
tooltip_vars    A character vector of variables (character/factors), whose complete levels will be added at the bottom of interactive tooltips.
axes            The axes to print, as a numeric vector of length 2.
**axes_names**
Names of all the axes (not just the two selected ones), as a character vector.

**axes_reverse**
Possibility to reserve the coordinates of the axes by providing a numeric vector: ‘1’ to invert left and right; ‘2’ to invert up and down; ‘1:2’ to invert both.

**type**
Determines the way `sup_vars` are printed.
- "text": colored text
- "points": colored points with text legends
- "labels": colored labels
- "active_vars_only": no `sup_vars`
- "numbers": colored labels of prefix numbers, with small names
- "facets": one graph of profiles of answer for each levels of the first `sup_vars`. A different color is used for each.

**color_groups**
By default, there is one color group for all the levels of each `sup_vars`. It is possible to color `sup_vars` with groups created upon their levels with `str_extract` and regexes. For example, `color_groups = "^."` makes the groups upon the first character of each levels (useful when their begin by numbers). `color_groups = "^.*(3)"` upon the first three characters. `color_groups = "NB.+"` takes anything between the "NB" and the end of levels names, etc.

**cah_color_groups**
Color groups for the ‘cah’ variable (HCPC clusters).

**keep_levels**
A character vector of variables levels to keep: others will be discarded.

**discard_levels**
A character vector of variables levels to discard.

**cleannames**
Set to TRUE to clean levels names, by removing prefix numbers like "1-", and text in parentheses.

**profiles**
When set to TRUE, profiles of answers are drawn in the back of the graph with light-grey points. When hovering with mouse in the interactive version (passed in `ggplot2`), the answers of individuals to active variables will appear. If `cah` is provided, to hover near one point will color all the points of the same HCPC class.

**profiles_tooltip_discard**
A regex pattern to remove useless levels among interactive tooltips for profiles of answers (ex.: levels expressing "no" answers).

**cah**
A HCPC clusters variable made with `HCPC` on `res.mca`, to link the answers-profiles points who share the same HCPC class (will be colored the same color and linked at mouse hover).

**max_profiles**
The maximum number of profiles points to print. Default to 5000.

**alpha_profiles**
The alpha (transparency, between 0 and 1) for profiles of answer.

**color_profiles**
By default, if `cah` is provided, profiles are colored based on cah levels (HCPC clusters). Set do FALSE to avoid this behaviour. You can also give a character vector with only some of the levels of the ‘cah’ variable.

**base_profiles_color**
The base color for answers profiles. Default to gray. Set to ‘NULL’ to discard profiles. With ‘color_profiles’, set to ‘NULL’ to discard the non-colored profiles.
When TRUE the graph is not interactive anymore, but the resulting image is better to print because points and labels don’t overlaps. It uses `ggrepel::geom_text_repel`.

The title of the graph.

Set to ‘TRUE’ to set active variables in bold font (and sup variables in plain).

Set to ‘TRUE’ to set sup variables in italics.

Set to a number between 0 and 1 to draw a concentration ellipse for each level of the first sup_vars. 0.95 draw ellipses containing 95 individuals of each category. 0.5 draw median-ellipses, containing half the individuals of each category. Note that, if ‘max_profiles’ is provided, ellipses won’t be made with all individuals.

Horizontal and vertical axes limits, as double vectors of length 2.

When TRUE, the points out of xlim or ylim are not removed, but moved at the edges of the graph.

Change colors of the sup_vars points.

A named character vector with `fct_recode` style to rename the levels of the color variable if needed (levels used for colors are printed in console message whenever the function is used).

A scale color for sup vars points

A scale color for sup vars texts

Size of text.

Size of points.

When type = points, the distance of labels from points.

A margin at the right, in cm. Useful to read tooltips over points placed at the right of the graph without formatting problems.

By default, a specific `ggplot2` theme is used. Set to FALSE to customize your own theme.

Returns the data frame to create the plot instead of the plot itself.

A list of data frames made with `ggmca_data`.

A ggplot object to be printed in the ‘RStudio’ Plots pane. Possibility to add other gg objects with +. Sending the result through `ggi` will draw the interactive graph in the Viewer pane using `ggiraph`.

A list containing the data frames to pass to `ggmca_plot`.

A ggplot object.

• `ggmca_data()`: get the data frames with all parameters to print a MCA graph
• `ggmca_plot()`: print MCA graph from data frames with parameters
Examples

data(tea, package = "FactoMineR")
res.mca <- MCA2(tea, active_vars = 1:18)

# Interactive graph for multiple correspondence analysis :
res.mca |> 
ggmca(tea, sup_vars = c("SPC"), ylim = c(NA, 1.2), text_repel = TRUE) |
ggi() #to make the graph interactive

# Interactive graph with access to all crosstables between active variables (burt table).
# Spread from mean are colored and, usually, points near the middle will have less
# colors, and points at the edges will have plenty. It may takes time to print, but
# helps to interpret the MCA in close proximity with the underlying data.
res.mca |> 
ggmca(tea, ylim = c(NA, 1.2), active_tables = "active", text_repel = TRUE) |
ggi()

# Graph with colored HCPC clusters
cah <- FactoMineR::HCPC(res.mca, nb.clust = 6, graph = FALSE)
tea$clust <- cah$data.clust$clust
ggmca(res.mca, tea, cah = "clust", profiles = TRUE, text_repel = TRUE)

# Concentration ellipses for each levels of a supplementary variable :
ggmca(res.mca, tea, sup_vars = "SPC", ylim = c(NA, 1.2),
ellipses = 0.5, text_repel = TRUE, profiles = TRUE)

# Graph of profiles of answer for each levels of a supplementary variable :
ggmca(res.mca, tea, sup_vars = "SPC", ylim = c(NA, 1.2),
type = "facets", ellipses = 0.5, profiles = TRUE)

---

### Description

Interactive 3D Plot for Multiple Correspondence Analyses (plotly::)

### Usage

ggmca_3d(
  res.mca,
  dat,
  cah,
  axes = 1:3,
  base_zoom = 1,
  remove_buttons = FALSE,
  cone_size = 0.15,
)
view = "All",
camera_view,
aspectratio_from_eig = FALSE,
title,
ind_name.size = 10,
max_point_size = 30,
...
)

Arguments

res.mca An object created with FactoMineR::MCA.
dat The data in which to find the cah variable, etc.
cah A variable made with HCPC, to link the answers-profiles points who share the same HCPC class (will be colored the same color and linked at mouse hover).
axes The axes to print, as a numeric vector of length 3.
base_zoom The base level of zoom.
remove_buttons Set to TRUE to remove buttons to change view.
cone_size The size of the conic arrow at the end of each axe.
view The starting point of view (in 3D):
  • "Plane 1-2": Axes 1 and 2.
  • "Plane 1-3": Axes 1 and 3.
  • "Plane 2-3": Axes 2 and 3.
  • "All": A 3D perspective with Axes 1, 2, 3.
camera_view Possibility to add a (replace ‘view’)
aspectratio_from_eig Set to ‘TRUE’ to modify axes length based on eigenvalues.
title The title of the graph.
ind_name.size The size of the names of individuals.
max_point_size The size of the biggest point.
... Additional arguments to pass to ggmca.

Value

A plotly html interactive 3d (or 2d) graph.

Examples

data(tea, package = "FactoMineR")
res.mca <- MCA2(tea, active_vars = 1:18)
ggmca_3d(res.mca)

# 3D graph with colored HCPC clusters (cah)
res.mca_3axes <- MCA2(tea, active_vars = 1:18, ncp = 3)
ggmca_initial_dims

cah <- FactoMineR::HCPC(res.mca_3axes, nb.clust = 6, graph = FALSE)
tea$clust <- cah$data.clust$clust
ggmca_3d(res.mca, dat = tea, cah = "clust")

---

**ggmca_initial_dims**  
*Plot Initial Dimensions (Active Variables) of Multiple Correspondence Analysis*

**Description**

This function mostly have an educational value: it shows the initial dimensions of the Multiple Correspondence Analysis (active variables) in their initial reference frame. It shows the n dimensional space before the analysis is done. To see initial dimensions axes in the space built by the analysis (principal axes), use `ggmca_with_base_ref`.

**Usage**

```r
ggmca_initial_dims(
 res.mca = res.mca,
data,
 proj_just = c(1.5, 2),
 cleannames = TRUE,
 keep = NULL
)
```

**Arguments**

- `res.mca`: An object created with `FactoMineR::MCA`.
- `data`: The data in which to find the supplementary variables, etc.
- `proj_just`: Horizontal justification of text of the coordinates on axes, as a character vector of length 2 (x and y).
- `cleannames`: Set to TRUE to clean levels names, by removing prefix numbers like "1-", and text in parentheses.
- `keep`: A character vector of the name of active variables to keep.

**Value**

A `ggplot` object to be printed in the ‘RStudio’ Plots pane. Possibility to add other gg objects with +. Sending the result through ggi will draw the interactive graph in the Viewer pane using ggiraph.

**Examples**

```r
data(tea, package = "FactoMineR")
res.mca <- MCA2(tea, active_vars = 1:18)
ggmca_initial_dims(res.mca, data = tea)
```
**Description**

This function mostly have an educational value: it shows the initial dimensions of the Multiple Correspondence Analysis (active variables) in the space built by the analysis (principal axes). To see initial dimensions in their initial reference frame, use `ggmca_initial_dims`.

**Usage**

```r
ggmca_with_base_ref(res.mca = res.mca, axes = c(1, 2), keep = NULL)
```

**Arguments**

- `res.mca`: An object created with `FactoMineR::MCA`.
- `axes`: The axes to print, as a numeric vector of length 2.
- `keep`: A character vector of the name of active variables to keep.

**Value**

A `ggplot` object to be printed in the ‘RStudio’ Plots pane. Possibility to add other gg objects with +. Sending the result through `ggi` will draw the interactive graph in the Viewer pane using `ggiraph`.

**Examples**

```r
data(tea, package = "FactoMineR")
res.mca <- MCA2(tea, active_vars = 1:18)
ggmca_with_base_ref(res.mca)

It is more readable to select just a few active variables
lv2_vars <- dplyr::select(tea[1:18], where(~ nlevels(.) == 2)) |> names()
ggmca_with_base_ref(res.mca, keep = lv2_vars)

lv3_vars <- dplyr::select(tea[1:18], where(~ nlevels(.) == 3)) |> names()
ggmca_with_base_ref(res.mca, keep = lv3_vars)

lv4_vars <- dplyr::select(tea[1:18], where(~ nlevels(.) == 4)) |> names()
ggmca_with_base_ref(res.mca, keep = lv4_vars)

lv6_vars <- dplyr::select(tea[1:18], where(~ nlevels(.) == 6)) |> names()
ggmca_with_base_ref(res.mca, keep = lv6_vars)
```
Interactive 3D Plot for Principal Component Analyses (plotly::)

Usage

```r
ggpca_3d(
 res.pca,
 axes = c(1, 2, 3),
 princ_axes_print = -3:3,
 base_axe_n_breaks = 10,
 ind.size = 4,
 ind_name.size = 3,
 title,
 center = TRUE,
 var_names_on = "var",
 base_zoom = 1,
 remove_buttons = FALSE,
 cone_size = 0.33,
 view = "All",
 type = c("var", "ind", "main_plan", "projections"),
 camera_view,
 aspectratio_from_eig = FALSE,
 always_make_ind_tooltips = FALSE,
 var_color = "#4D4D4D",
 max_ind = 500,
 max_ind_seed
)
```

Arguments

- `res.pca`  The result of `FactoMineR::PCA`.
- `axes`  The axes to print, as a numeric vector of length 3 (or 2).
- `princ_axes_print`  The breaks of the principal axes.
- `base_axe_n_breaks`  The number of breaks in initial variables axes.
- `ind.size`  The size of the points of individuals.
- `ind_name.size`  The size of the names of individuals.
- `title`  Plot title.
- `center`  By default the plot is centered on the central point. Set to ‘FALSE’ to center on the origin of all variables (zero coordinates).
by default, the names of variables are drawn upon the initial axes. Set to "cor" to draw them upon correlation vectors instead.

**base_zoom**

The base level of zoom.

**remove_buttons**

Set to TRUE to remove buttons to change view.

**cone_size**

The size of the conic arrow at the end of each axe.

**view**

The starting point of view (in 3D):
- "Plane 1-2": Axes 1 and 2.
- "Plane 1-3": Axes 1 and 3.
- "Plane 2-3": Axes 2 and 3.
- "All": A 3D perspective with Axes 1, 2, 3.

**type**

Which elements of the graph to print, among:
- "var": initial variables axes, with breaks
- "cor": normalized correlation vectors (length = 1)
- "cor_sphere": a 3D sphere of standard deviation 1
- "ind": points of individuals
- "ind_name": names of individuals
- "main_plan": the plan 1-2.
- "projections": projections of mean point on initial variables
- "V": vectors of the V transition matrix
- "vs": vectors of the matrix of singular values

**camera_view**

Possibility to add a (replace 'view')

**aspece_ratio_from_eig**

Set to 'TRUE' to modify axes length based on eigenvalues.

**always_make_ind_tooltips**

Set to 'TRUE' to add interactive tooltips for individuals.

**var_color**

The color of the initial variables/dimensions

**max_ind**

The maximum number of individuals to print.

**max_ind_seed**

The random seed used to sample individuals.

**Value**

A **plotly** html interactive 2d or 3d graph.

**Examples**

```r
data(mtcars, package = "datasets")
mtcars <- mtcars[1:7] |> dplyr::rename(weight = wt)
res.pca <- FactoMineR::PCA(mtcars, graph = FALSE)

Variables and individuals
ggpca_3d(res.pca)

Circle of correlation 3D
```
### ggpca_cor_circle

Correlation Circle Plot for Principal Component Analysis

#### Usage

```r
ggpca_cor_circle(
 res.pca,
 axes = c(1, 2),
 proj = FALSE,
 interactive = TRUE,
 text_size = 3
)
```

#### Arguments

- `res.pca` The result of `FactoMineR::PCA`.
- `axes` The axes to print, as a numeric vector of length 2.
- `proj` Set to `TRUE` to print projections of vectors over the two axes.
- `interactive` By default an html interactive plot is done. Set to `FALSE` to get a normal `ggplot` graph.
- `text_size` Size of the texte.

#### Value

A `ggplot`.

#### Examples

```r
data(mtcars, package = "datasets")
mtcars <- mtcars[,1:7] |> dplyr::rename(weight = wt)
res.pca <- FactoMineR::PCA(mtcars, graph = FALSE)
ggpca_cor_circle(res.pca, interactive = FALSE)
```


**ggsave2**  
*Save a plot as image*

**Description**  
Save a plot as image

**Usage**

```r
ggsave2(
 plot = ggplot2::last_plot(),
 dir = NULL,
 name = "Plot",
 xt = "png",
 dpi = 600,
 width = 21,
 height,
 scale = 1,
 replace = FALSE,
 open = rlang::is_interactive()
)
```

**Arguments**

- **plot**  
The plot, created with `ggplot2`.

- **dir**  
If saved as file, the directory in which to save the html widget. Default to temporary directory. Set global option "ggfacto.export_dir" with `link[base::options]{options}` to change default directory.

- **name**  
The name of the file to save.

- **xt**  
The extension name, when saving as image (interactive graph will always be .html).

- **dpi**  
The resolution.

- **width**  
The width in centimeters.

- **height**  
The height in centimeters. By default, `width/1.41`.

- **scale**  
Fixed ratio between horizontal and vertical axes.

- **replace**  
Replace file ? By default, number added to find a new name.

- **open**  
Should the resulting file be opened at once ?

**Value**

Creates a file, and opens it in ‘RStudio’ viewer, as a side effect.
HCPC_tab  Multiple Tables for Hierarchical Clusters

Description

Multiple Tables for Hierarchical Clusters

Usage

HCPC_tab(
  data,
  row_vars = character(),
  clust,
  wt,
  excl = character(),
  color = "diff",
  pct = "col",
  row_tot = "% of population",
  ...
)

Arguments

data  A data frame.
row_vars <tidy-select> The row variables of the table, to cross with the clusters. Typically, actives variables of the MCA.
clust In columns, the variable with the clusters, typically made with hierarchical clustering functions like HCPC (object `res$data.clust$clust`). Can be either a symbol or a character vector of length 1 (for vars in `data`), or an external variable (not in `data`) provided its length is equal to the number of rows of `data`.
w The name of the weight variable. Leave empty for unweighted results.
excl The name of the levels to exclude, as a character vector.
color The type of colors to print, see tab.
pct The type of percentages to print, see tab. Default to column percentages
row_tot The name of the total line (frequencies of each cluster)
... Additional arguments to pass to tab_many.

Value

A tibble of class tab, possibly with colored reading helpers.
Examples

```r
data(tea, package = "FactoMineR")
res.mca_3axes <- MCA2(tea, active_vars = 1:18, ncp = 3)
cah <- FactoMineR::HCPC(res.mca_3axes, nb.clust = 6, graph = FALSE)
 tea$clust <- cah$data.clust$clust
HCPC_tab(tea, row_vars = all_of(names(tea)[1:18]), clust = "clust") #|>
#tabxplor::tab_kable()
```

---

**material_colors_dark**  
*Title Scale color dark for MCA.*

**Description**
Title Scale color dark for MCA.

**Usage**

```r
material_colors_dark()
```

**Value**
A character vector of color codes, with color names.

**Examples**

```r
material_colors_dark()
```

---

**material_colors_light**  
*Title Scale color light for MCA.*

**Description**
Title Scale color light for MCA.

**Usage**

```r
material_colors_light()
```

**Value**
A character vector of color codes, with color names.

**Examples**

```r
material_colors_light()
```
**MCA2**

Multiple Correspondence Analysis

**Description**

A user-friendly wrapper around MCA, made to work better with `ggfacto` functions like `ggmca`. All variables can be selected by many different expressions, in the way of the ‘tidyverse’. No supplementary vars are to be provided here, since they can be added afterward in `ggmca`.

**Usage**

```r
MCA2(data, active_vars, wt, excl, ncp = 5, graph = FALSE, ...)
```

**Arguments**

- `data`: The data frame.
- `active_vars`: `<tidy-select>`
- `wt`: `<tidy-select>`
- `excl`: A character vector of regular expressions to exclude "junk" categories. Any level of an active variable with any of the detected patterns is not taken into account in the calculation of axes (which is called specific multiple correspondence analysis).
- `ncp`: The number of axes to keep. Default to 5.
- `graph`: By default no graph is made, since the result can be plotted with `ggmca`.
- `...`: Additional arguments to pass to `MCA`.

**Value**

A ‘res.mca’ object, with all the data necessary to draw the MCA.

**Examples**

```r
data(tea, package = "FactoMineR")
res.mca <- MCA2(tea, active_vars = 1:18)

res.mca %>%
ggmca(tea, sup_vars = c("SPC"), ylim = c(NA, 1.2), text_repel = TRUE) %>%
ggi() #to make the graph interactive
```
mca_interpret  

Helper table to interpret multiple correspondence analysis

Description

A table to help to interpret the meaning of axes in multiple correspondence analysis (MCA), based on Brigitte Le Roux, Analyse geometrique des donnees multidimensionnelles, Dunod, Paris, 2014 / Brigitte Le Roux and Henri Rouanet, Geometric data analysis : from correspondence analysis to structured data analysis, Kluwer, Boston, 2004. Only levels whose relative contribution to the variance of axis is superior to the mean contribution are kept. The spread between positive levels and negative levels of the same variable is calculated in percentages of the variance of the question/variable.

Usage

mca_interpret(
  res.mca = res.mca,
  axes = 1:min(res.mca$ncp, 5),
  type = c("html", "console")
)

Arguments

res.mca  An object created with FactoMineR::MCA,
axes  The axes to interpret, as an integer vector. Default to the first five axes.
type  By default, a html table is printed. Set to "console" to print in console or axes the numbers as a data.frame.

Value

An html table (or a tibble).

Examples

data(tea, package = "FactoMineR")
res.mca <- MCA2(tea, active_vars = 1:18)
mca_interpret(res.mca)
**mean_sd_tab**

*Simple Mean and SD Summary*

**Description**

Simple Mean and SD Summary

**Usage**

```r
mean_sd_tab(data, vars, wt)
```

**Arguments**

- `data`  
  A data.frame.
- `vars`  
  `<tidy-select>` The names of the numeric variables to compute means and sd's with.
- `wt`  
  The name of the weight variable, if needed.

**Value**

A data.frame.

**Examples**

```r
mean_sd_tab(mtcars, 1:7)
```

---

**PCA2**

*Principal Component Analysis*

**Description**

A user-friendly wrapper around `PCA`, made to work better with `ggfacto` functions like `ggpca_cor_circle`. All variables can be selected by many different expressions, in the way of the ‘tidyverse’. No supplementary vars are to be provided here, since they can be added afterward.

**Usage**

```r
PCA2(
 data,
 active_vars,
 wt,
 col.w = NULL,
 ind_name,
 scale.unit = TRUE,
 ind.sup = NULL,
```
ncp = 5,
graph = FALSE,
...
)

Arguments

data             The data frame.
active_vars      <tidy-select> The names of the active variables.
wt               The name of the row weight variable
col.w            The weights of the columns, as a numeric vector of the same length than ‘active_vars.’
ind_name         Possibly, a variable with the names of the individuals.
scale.unit       A boolean, if ‘TRUE’ (value set by default) then data are scaled to unit variance.
ind.sup          A vector indicating the indexes of the supplementary individuals.
ncp              Number of dimensions kept in the results (by default 5).
graph            A boolean, set to ‘TRUE’ to display the base graph.
...              Additional arguments to pass to PCA.

Value

A ‘res.pca’ object, with all the data necessary to draw the PCA.

Examples

active_vars <- c("mpg", "cyl", "hp", "drat", "qsec")
res.pca <- PCA2(mtcars, tidyselect::all_of(active_vars) )

# pca_interpret

<table>
<thead>
<tr>
<th>pca_interpret</th>
<th>Colored Table to Help Interpretation of Principal Component Analysis</th>
</tr>
</thead>
</table>

Description

Colored Table to Help Interpretation of Principal Component Analysis

Usage

pca_interpret(res.pca, axes = 1:3)

Arguments

res.pca          The result of FactoMineR::PCA.
axes             The axes to print, as a numeric vector.
Value

A tibble of class tabxplor

Examples

data(mtcars, package = "datasets")
mtcars <- mtcars[1:7] |> dplyr::rename(weight = wt)
res.pca <- FactoMineR::PCA(mtcars, graph = FALSE)
pca_interpret(res.pca)

Arguments

.data Data frame.
dependent Character vector of length 1: name of dependent variable (must have 2 levels).
explanatory Character vector of any length: name(s) of explanatory variables.
random_effect Character vector of length 1, name of random effect variable.
factorlist Option to provide output directly from summary_factorlist().
glmfit Option to provide output directly from glmmulti() and glmmixed().
confint_type One of c("profile", "default") for GLM models or c("default", "Wald", "profile", "boot") for glmer models. Note "default" == "Wald".
remove_ref Logical. Remove reference level for factors.
break_scale Manually specify x-axis breaks in format c(0.1, 1, 10).
column_space Adjust table column spacing.
dependent_label Main label for plot.
prefix Plots are titled by default with the dependent variable. This adds text before that label.
suffix Plots are titled with the dependent variable. This adds text after that label.
table_text_size Alter font size of table text.
title_text_size Alter font size of title text.
plot_opts A list of arguments to be appended to the ggplot call by "+".
table_opts A list of arguments to be appended to the ggplot table call by "+".
return_df To return the dataframe.
... Other parameters.

Value

The odd ratios plot as a ggplot2 object.

---

**theme_facto**

A ggplot2 Theme for Geometrical Data Analysis

---

Description

A ggplot2 Theme for Geometrical Data Analysis

Usage

```
theme_facto(
 res,
 axes = c(1, 2),
 legend.position = c("none", "left", "right", "bottom", "top"),
 no_color_scale = FALSE,
 size_scale_max = 8,
 xlim,
 ylim
)
```
Arguments

- `res` An object created with `FactoMineR::MCA, CA`, etc.
- `axes` The axes to print, as a numeric vector of length 2.
- `legend.position` One of c("none", "left", "right", "bottom", "top").
- `no_color_scale` When TRUE, you can provide `color_scale` next without warning.
- `size_scale_max` Maximum size of the points.
- `xlim` Horizontal axe limits.
- `ylim` Vertical axe limits.

Value

A list of `ggplot2` objects.
Index

benzecri_mrv, 2
CA, 3, 27
dsvg, 6
FactoMineR::PCA, 15, 17, 24
fct_recode, 10
gem_text_repel, 4, 10
ggca, 3, 5
ggi, 3, 4, 5, 6, 9, 10, 13, 14
ggiraph, 4, 10, 13, 14
ggmca, 5, 6, 12, 21
ggmca_3d, 11
ggmca_data, 6, 10
ggmca_data (ggmca), 6
ggmca_initial_dims, 13, 14
ggmca_plot, 6, 10
ggmca_plot (ggmca), 6
ggmca_with_base_ref, 13, 14
ggpc3a_3d, 15
ggppcor_circle, 17, 23
ggplot, 4, 10, 13, 14, 17
ggplot2, 3, 6
ggsave2, 18
girafe, 6
HCPC, 6, 9, 12, 19
HCPC_tab, 19
material_colors_dark, 20
material_colors_light, 20
MCA, 2, 6, 8, 12–14, 21, 22, 27
MCA2, 21
mca_interpret, 22
mean_sd_tab, 23
PCA, 23, 24
PCA2, 23
pca_interpret, 24
pers_or_plot, 25
plotly, 12, 16
str_extract, 9
tab, 8, 19
tab_many, 19
theme, 4, 10
theme_facto, 26
tidy-select, 19, 21, 23, 24
widgetframe, 6