Package ‘gggibbous’

October 13, 2022

Title Moon Charts, a Pie Chart Alternative
Version 0.1.1
URL https://github.com/mnbram/gggibbous
BugReports https://github.com/mnbram/gggibbous/issues
Description Moon charts are like pie charts except that the proportions are shown as crescent or gibbous portions of a circle, like the lit and unlit portions of the moon. As such, they work best with only one or two groups. 'gggibbous' extends 'ggplot2' to allow for plotting multiple moon charts in a single panel and does not require a square coordinate system.
Depends ggplot2 (>= 3.2.1), R (>= 3.6.0)
Imports grid, scales (>= 1.0.0)
Suggests knitr, mapproj, maps, rmarkdown, testthat (>= 2.1.0), vdiffr (>= 0.3.1)
License GPL-3
LazyData true
RoxygenNote 7.1.1
Encoding UTF-8
VignetteBuilder knitr
NeedsCompilation no
Author Michael Bramson [aut, cre]
Maintainer Michael Bramson <mnbramson@gmail.com>
Repository CRAN
Date/Publication 2021-01-06 17:40:10 UTC

R topics documented:

dmeladh ... 2
draw_key_moon ... 2
geom_moon ... 3
dmeladh Adh allele frequencies in Australasian Drosophila melanogaster

Description

Usage

dmeladh

Format

A data frame with 34 rows and 6 variables:

- **Locality** location of population sample
- **Latitude** latitude of population sample
- **Longitude** longitude of population sample
- **N** number of samples
- **AdhF** percent of samples with Adh^F allele, as an integer
- **AdhS** percent of samples with Adh^S allele, as an integer

draw_key_moon Moon key glyph for legends

Description

Draws the legend key glyphs used in geom_moon.

Usage

draw_key_moon(data, params, size)
draw_key_moon_left(data, params, size)
draw_key_full_moon(data, params, size)
Arguments

- **data**: A single row data frame containing the scaled aesthetics to display in this key.
- **params**: A list of additional parameters supplied to the geom.
- **size**: Width and height of key in mm.

Details

draw_key_moon (the default in geom_moon) draws a gibbous moon filled from the right. draw_key_moon_left draws a crescent moon from the right. draw_key_full_moon draws a circle, which is very similar to draw_key_point in ggplot2, but the size is calculated slightly differently and the default aesthetics differ.

Value

A grid grob.

geom_moon

Moon charts

Description

The moon geom is used to create moon charts, which are like pie charts except that the proportions are shown as crescent or gibbous portions of a circle, like the lit and unlit portions of the moon. As such, they work best with only one or two groups.

Usage

```r
geom_moon(
  mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)
```

Arguments

- **mapping**: Set of aesthetic mappings created by `aes()` or `aes()`. If specified and `inherit.aes` = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the call to `ggplot()`.
A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify()` for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjustment function.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders()`.

... Other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `colour = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

Details

`geom_moon` acts like `geom_point` in that multiple moons can be plotted on the same panel with x and y in the plot’s coordinate system, but size determined independently of the coordinate system. This behavior also means that the moons will always be circular even if the coordinate system is not square.

In order to get a full circle with two complementary sections (a crescent and a gibbous moon), you need to plot two shapes: one with `right = TRUE` and one with `right = FALSE`, with `ratio` on the second one equal to `1 - ratio` on the first.

Aesthetics

x and y are required aesthetics. size, fill, color, alpha, stroke, and group aesthetics are understood as in other geoms. Two new aesthetics are also introduced: `ratio` and `right`. `ratio` controls the proportion of the moon to be plotted, from 0 to 1. `right` takes a boolean value to indicate whether the moon should be filled from the right or the left.

Examples

```r
ggplot(
  data.frame(x = 1:5, y = 1, size = 1:5, ratio = 1:5 * 0.2),
  aes(x = x, y = y, size = size, ratio = ratio)
) +
```
To make full moon charts, you need two calls to `geom_moon()`, one with
`right = TRUE` and one with `right = FALSE` and ratio equal to `1 - ratio`
from the first one:
```
ggplot(dmeladh) +
  geom_moon(x = 0.5, y = 0.5, fill = "forestgreen", color = "forestgreen",
             aes(ratio = AdhF / 100)) +
  geom_moon(x = 0.5, y = 0.5, fill = "gold", color = "gold",
             aes(ratio = AdhS / 100), right = FALSE) +
  facet_wrap(~Locality, ncol = 7)
```

The same thing can be accomplished with a single call to `geom_moon()`
using a "long" data frame with both frequencies if you set a grouping
variable and set the `right` variable to a boolean column:
```
dmeladh_long <- reshape(dmeladh, v.names = "freq",
                        varying = c("AdhF", "AdhS"),
                        timevar = "allele",
                        times = c("AdhF", "AdhS"),
                        idvar = c("Locality", "Latitude", "Longitude", "N"),
                        direction = "long")
dmeladh_long$right <- rep(c(TRUE, FALSE), each = nrow(dmeladh))
ggplot(dmeladh_long) +
  geom_moon(x = 0.5, y = 0.5, key_glyph = draw_key_rect,
            aes(ratio = freq / 100, fill = allele, color = allele, right = right),
                ) +
  facet_wrap(~Locality, ncol = 7)
```

Moon charts (and pie charts) are sometimes useful on maps when x and y
cannot be used as aesthetic dimensions because they are already spatial
dimensions. Overplotting needs to be considered carefully, however:
```
ggplot(subset(dmeladh, N > 200), aes(Longitude, Latitude)) +
  geom_moon(aes(ratio = AdhF / 100), fill = "black") +
  geom_moon(aes(ratio = AdhS / 100), right = FALSE) +
  coord_fixed()
```
Description

Moon charts are like pie charts except that the proportions are shown as crescent or gibbous portions of a circle, like the lit and unlit portions of the moon. As such, they work best with only one or two groups. *gggibbous* extends *ggplot2* to allow for plotting multiple moon charts in a single panel and does not require a square coordinate system.

Details

The workhorse function is `geom_moon`, which adds a moon chart layer to a `ggplot2` plot. The `draw_key_moon`, `draw_key_moon_left`, and `draw_key_full_moon` functions provide legend key glyphs for plots that use `geom_moon`. There are also functions for the raw `grid` grobs: `grid.moon` and `moonGrob`.

For more information, see the *gggibbous* vignette.

lunardist
Lunar distances and principal phases for 2019

Description

This data set contains the distance from the Earth to the Moon for each day in 2019, as well as the dates (in UTC) of each occurrence of the four principal phases of the moon. The data are adapted from NASA.

Usage

```r
lunardist
```

Format

A data frame with 365 rows and 3 variables:

- **date** Date
- **distance** Distance from the Earth to the Moon in kilometers
- **phase** Principal phase of the moon (full, new, first quarter, third quarter) or NA if no principal phase on that date

Source

https://svs.gsfc.nasa.gov/4442
Description

Functions to create and draw crescent or gibbous moon shapes.

Usage

moonGrob(
 x,
 y,
 ratio = 0.25,
 right = TRUE,
 r = 10,
 angle = 0,
 default.units = "npc",
 size.units = "mm",
 ...
)

grid.moon(..., draw = TRUE)

Arguments

x A numeric vector or unit object specifying x-locations.
y A numeric vector or unit object specifying y-locations.
ratio A numeric vector with values from 0 to 1 specifying the proportion of the moons to draw.
right A boolean vector specifying whether the moon should be filled from the right (TRUE) or left (FALSE).
r A numeric vector specifying the radii of the circles describing the moons.
angle Not used.
default.units A string indicating the default units to use if x, y, width, or height are only given as numeric vectors.
size.units A string indicating the units to use for the radii of the moons.
... Arguments passed on to grid::polygonGrob.
draw A logical value indicating whether graphics output should be produced.

Details

Both functions create a moon grob (a graphical object describing a crescent or gibbous moon), but only grid.moon draws the moon (and then only if draw is TRUE).

These functions calculate a set of points describing the perimeters of the moons and pass these points on to grid::polygonGrob.
The units in `default.units` and `size.units` can be different; `grid` will add them together appropriately before drawing.

Value

A grob object.

Examples

```r
grid::grid.newpage()
grid.moon(x = 1:3 * 0.25, y = rep(0.5, 3), ratio = 1:3 * 0.25, r = 10)
```
Index

* datasets
 dmeladh, 2
 lunardist, 6

aes(), 3
aes_(), 3

borders(), 4

dmeladh, 2
draw_key_full_moon (draw_key_moon), 2
draw_key_moon, 2
draw_key_moon_left (draw_key_moon), 2

fortify(), 4

geom_moon, 3
gggibbous, 5

ggplot(), 4
grid.moon (moonGrob), 7

layer(), 4
lunardist, 6

moonGrob, 7