Package ‘gghdr’

February 3, 2022

Title Visualisation of Highest Density Regions in 'ggplot2'

Version 0.1.0

Description Provides 'ggplot2' framework for visualising Highest Density Regions (HDR) <doi:10.1080/00031305.1996.10474359>. This work is based on the package 'hdrcde'<https://pkg.robjhyndman.com/hdrcde/> and displays highest density regions in 'ggplot2' for one and two dimensions and univariate densities conditional on one covariate.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

URL https://github.com/Sayani07/gghdr

Imports hdrcde, ggplot2, grid, scales, farver, tibble, digest

Suggests spelling, knitr, testthat (>= 2.1.0), vdiffr, rmarkdown, covr

Depends R (>= 2.10)

VignetteBuilder knitr

BugReports https://github.com/Sayani07/gghdr/issues

Language en-GB

NeedsCompilation no

Author Mitchell O'Hara-Wild [aut] (<https://orcid.org/0000-0001-6729-7695>), Stephen Pearce [aut] (<https://orcid.org/0000-0002-9400-8091>), Ryo Nakagawara [aut], Sayani Gupta [aut, cre] (<https://orcid.org/0000-0003-0643-5358>), Darya Vanichkina [aut] (<https://orcid.org/0000-0002-0406-164X>), Emi Tanaka [aut] (<https://orcid.org/0000-0002-1455-259X>), Thomas Fung [aut] (<https://orcid.org/0000-0003-2601-0728>), Rob Hyndman [aut] (<https://orcid.org/0000-0002-2140-5352>)

Maintainer Sayani Gupta <gupta.sayani@gmail.com>

Repository CRAN

Date/Publication 2022-02-03 14:30:07 UTC
Description

Provides `ggplot2` framework for visualising Highest Density Regions (HDR) <doi:10.1080/00031305.1996.10474359>. This work is based on the package `hdrcde`<https://pkg.robjhyndman.com/hdrcde/> and displays highest density regions in `ggplot2` for one and two dimensions and univariate densities conditional on one covariate.

Author(s)

Maintainer: Sayani Gupta <gupta.sayani@gmail.com> (ORCID)
Authors:

- Mitchell O’Hara-Wild <mail@mitchelloharawild.com> (ORCID)
- Stephen Pearce (ORCID)
- Ryo Nakagawara <ryonakagawara@gmail.com>
- Darya Vanichkina <d.vanichkina@gmail.com> (ORCID)
- Emi Tanaka <dr.emi.tanaka@gmail.com> (ORCID)
- Thomas Fung <thomas.fung.dr@gmail.com> (ORCID)
- Rob Hyndman <Rob.Hyndman@monash.edu> (ORCID)

See Also

Useful links:

- https://github.com/Sayani07/gghdr
- Report bugs at https://github.com/Sayani07/gghdr/issues
Description

draw legend key for HDR box plot

Usage

draw_key_hdr_boxplot(data, params, size)

Arguments

data | data
params | parameters
size | size of legend key

faithful | Example dataframe for gghdr

Description

Example dataframe for gghdr

Usage

data(faithful)

Format

This contains the 'Old Faithful Geyser' data used in the examples in README and vignettes.

The variables are as follows:

- eruptions. Eruption time in mins
- waiting. Waiting time to next eruption in mins
Description

Box plot for the highest density region

Usage

```r
gem_hdr_boxplot(
  mapping = NULL,
  data = NULL,
  stat = "hdrcde",
  position = "dodge2",
  ...,
  varwidth = FALSE,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  prob = c(0.5, 0.95, 0.99)
)
```

Arguments

- **mapping**

 Set of aesthetic mappings created by `aes()` or `aes()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.

- **data**

 The data to be displayed in this layer. There are three options:

 - If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot()`.

 - A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify()` for which variables will be created.

 - A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data. A function can be created from a formula (e.g. `~ head(.x, 10)`).

- **stat**

 The statistical transformation to use on the data for this layer, as a string.

- **position**

 Position adjustment, either as a string, or the result of a call to a position adjustment function.

- **...**

 Other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `colour = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

- **varwidth**

 width, Default: FALSE

- **na.rm**

 If `FALSE`, the default, missing values are removed with a warning. If `TRUE`, missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().

prob Probability coverage required for HDRs, Default: c(0.5, 0.95, 0.99)

Details
Calculates and plots the box plot of highest density regions.

Value
A [ggplot2::Geom] representing a highest density region box plot geometry which can be added to a [ggplot()] object.

Examples
library(ggplot2)

ggplot(faithful, aes(y = eruptions)) +
 geom_hdr_boxplot()

ggplot(faithful, aes(y = eruptions, x= waiting)) +
 geom_hdr_boxplot(fill="steelblue")

description
rug visualization for HDR plot

Usage
geom_hdr_rug(
 mapping = NULL,
 data = NULL,
 stat = "hdr",
 position = "identity",
 ...,
 na.rm = FALSE,
 show.legend = NA,
 inherit.aes = TRUE,
 sides = "bl",
 rug.width = unit(0.03, "npc"),
 prob = c(0.5, 0.95, 0.99)
)
Arguments

- `mapping`: Default: NULL
- `data`: data
- `stat`: stat
- `position`: Default: "identity"
- `na.rm`: Default: FALSE
- `show.legend`: Default: NA
- `inherit.aes`: Default: TRUE
- `sides`: position to put rugs
- `rug_width`: width of rugs, Default: unit(0.03, "npc")
- `prob`: PARAM_DESCRIPTION, Default: c(0.5, 0.95, 0.99)

Value

Calculates and plots the rug plot of highest density regions.

Examples

```r
library(ggplot2)

ggplot(faithful, aes(x = waiting, y = eruptions)) +
  geom_point() +
  geom_hdr_rug()
```

Description

The guide shows the colour scales mapped to different probability coverage required for HDRs.

Usage

```r
guide_prob(title = waiver(), ...)
```

Arguments

- `title`: A character string or expression indicating a title of guide. If NULL, the title is not shown. By default (`waiver()`), the name of the scale object or the name specified in `labs()` is used for the title.
- `...`: Further arguments passed onto either `guide_colourbar` or `guide_legend`

Value

A guide object
hdr_bin

| hdr_bin | Binning highest density regions in one or two dimensions |

Description

Binning highest density regions in one or two dimensions

Usage

hdr_bin(x, y = NULL, prob = c(0.5, 0.9, 0.99), ...)

Arguments

- x: Numeric vector
- y: Numeric vector of same length as x.
- prob: Probability coverage required for HDRs
- ...: ...

Value

probability coverage for each element of the numeric vectors.

Examples

library(ggplot2)

ggplot(data = faithful, aes(x = waiting, y = eruptions)) +
geom_point(aes(colour = hdr_bin(x = waiting, y = eruptions)))

lane2

| lane2 | Example dataframe for gghdr |

Description

Example dataframe for gghdr

Usage

data(lane2)
Format
This contains the 'lane2' data from the 'hdrcde' package and is used in the examples in README and vignettes.
The variables are as follows:

- flow. a numeric vector giving the traffic flow in vehicles per lane per hour
- speed. a numeric vector giving the speed in miles per hour

scale_prob
Probability colour scales

Description
This set of scales defines new scales for prob geometries equivalent to the ones already defined by ggplot2. This allows the shade of confidence intervals to work with the legend output.

Usage

scale_prob_identity(..., guide = "prob")

Arguments

... Arguments passed on to continuous_scale

scale_name The name of the scale that should be used for error messages associated with this scale.

palette A palette function that when called with a numeric vector with values between 0 and 1 returns the corresponding output values (e.g., scales::area_pal()).

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

breaks One of:
 - NULL for no breaks
 - waiver() for the default breaks computed by the transformation object
 - A numeric vector of positions
 - A function that takes the limits as input and returns breaks as output (e.g., a function returned by scales::extended_breaks()). Also accepts rlang lambda function notation.

minor_breaks One of:
 - NULL for no minor breaks
 - waiver() for the default breaks (one minor break between each major break)
 - A numeric vector of positions
 - A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation.
n.breaks An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if `breaks = waiver()`. Use `NULL` to use the default number of breaks given by the transformation.

labels One of:
- `NULL` for no labels
- `waiver()` for the default labels computed by the transformation object
- A character vector giving labels (must be same length as `breaks`)
- A function that takes the breaks as input and returns labels as output. Also accepts rlang `lambda` function notation.

limits One of:
- `NULL` to use the default scale range
- A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum
- A function that accepts the existing (automatic) limits and returns new limits. Also accepts rlang `lambda` function notation. Note that setting limits on positional scales will remove data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see `coord_cartesian()`).

rescaler A function used to scale the input values to the range [0, 1]. This is always `scales::rescale()`, except for diverging and n colour gradients (i.e., `scale_colour_gradient2()`, `scale_colour_gradientn()`). The rescaler is ignored by position scales, which always use `scales::rescale()`. Also accepts rlang `lambda` function notation.

oob One of:
- Function that handles limits outside of the scale limits (out of bounds). Also accepts rlang `lambda` function notation.
- The default (`scales::censor()`) replaces out of bounds values with NA.
- `scales::squish()` for squishing out of bounds values into range.
- `scales::squish_infinite()` for squishing infinite values into range.

trans For continuous scales, the name of a transformation object or the object itself. Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".

A transformation object bundles together a transform, its inverse, and methods for generating breaks and labels. Transformation objects are defined in the scales package, and are called `<name>_trans` (e.g., `scales::boxcox_trans()`). You can create your own transformation with `scales::trans_new()`.

expand For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function `expansion()` to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.
position
For position scales, The position of the axis. left or right for y axes, top or bottom for x axes.

guide
The super class to use for the constructed scale

Value

A ggproto object inheriting from `ggplot2::Scale`

stat_hdr

Stat for hdr box and rug plot

Description

calculate components of hdr box and rug plot

Usage

```r
stat_hdr(
  mapping = NULL,
  data = NULL,
  geom = "hdr_rug",
  position = "dodge2",
  ...,
  coef = 1.5,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

- **mapping**
 Default: NULL
- **data**
 Default: NULL
- **geom**
 PARAM_DESCRIPTION, Default: 'hdr_boxplot'
- **position**
 PARAM_DESCRIPTION, Default: 'dodge2'
- **coef**
 Default: 1.5
- **na.rm**
 Default: FALSE
- **show.legend**
 Default: NA
- **inherit.aes**
 Default: TRUE

Value

A ggproto2::Stat representing the data transformations with required mappings for plotting HDRs using [geom_hdr_boxplot()] and [geom_hdr_rug()].
Description
compute highest density regions continuously over some conditioned variable

Usage
```r
stat_hdrcde(
mapping = NULL,
data = NULL,
geom = "hdr_boxplot",
position = "dodge2",
...,
coef = 1.5,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
```

Arguments
- mapping Default: NULL
- data Default: NULL
- geom PARAM_DESCRIPTION, Default: 'hdr_boxplot'
- position PARAM_DESCRIPTION, Default: 'dodge2'
-
- coef Default: 1.5
- na.rm Default: FALSE
- show.legend Default: NA
- inherit.aes Default: TRUE

Value
A [ggplot2::Stat] representing the data transformations with required mappings for plotting conditional HDRs using [geom_hdr_boxplot].
Index

* datasets
 faithful, 3
 lane2, 7
* package
 gghdr-package, 2
* scale_prob
 scale_prob, 8
 scale_prob_identity (scale_prob), 8
 scales::area_pal(), 8
 scales::boxcox_trans(), 9
 scales::censor(), 9
 scales::extended_breaks(), 8
 scales::rescale(), 9
 scales::squish(), 9
 scales::squish_infinite(), 9
 scales::trans_new(), 9
 stat_hdr, 10
 stat_hdrcde, 11
 transformation object, 8
 waiver(), 6

aes(), 4
aes_(), 4
borders(), 5
continuous_scale, 8
coord_cartesian(), 9
draw_key_hdr_boxplot, 3
draw_key_hdr_boxplot, 3
expansion(), 9
faithful, 3
fortify(), 4
geom_hdr_boxplot, 4
geom_hdr_rug, 5
gghdr (gghdr-package), 2
gghdr-package, 2
ggplot(), 4
guide_colourbar, 6
guide_legend, 6
guide_prob, 6

hdr_bin, 7

labs(), 6
lambda, 8, 9
lane2, 7
layer(), 4

scale_colour_gradient2(), 9
scale_colour_gradientn(), 9