Package ‘ggheatmap’
July 25, 2021

Title Plot Heatmap
Version 2.1
Maintainer Baiwei Luo <2734782653@qq.com>

Description The flexibility and excellence of 'ggplot2' is unquestionable, so many drawing tools basically need 'ggplot2' as the operating object. In order to develop a heatmap drawing system based on ggplot2, we developed this tool, mainly to solve the heatmap puzzle problem and the flexible connection between the heatmap and the 'ggplot2' object.

The advantages of this tool are as follows:
1. More flexible label settings;
2. Realize the linkage of heatmap and 'ggplot2' drawing system, which is helpful for operations such as puzzles;
3. Simple and easy to operate;

License GPL-3
Encoding UTF-8
LazyData false
RoxygenNote 7.1.1
Depends ggplot2
Imports aplot, factoextra, tibble, ggpubr, tidyr, patchwork
Suggests grDevices, stats, testthat

Author Baiwei Luo [aut, cre]
Repository CRAN

Date/Publication 2021-07-25 13:20:02 UTC

R topics documented:

ggheatmap ... 2
ggheatmap_plotlist .. 6
ggheatmap_theme .. 6

Index 7
Description

The flexibility and excellence of `ggplot2` is unquestionable, so many drawing tools basically need `ggplot2` as the operating object. In order to develop a heatmap drawing system based on `ggplot2`, we developed this tool, mainly to solve the heatmap puzzle problem and the flexible connection between the heatmap and the `ggplot2` object. The advantages of this tool are as follows: 1. More flexible label settings; 2. Realize the linkage of heatmap and `ggplot2` drawing system, which is helpful for operations such as puzzles; 3. Simple and easy to operate; 4. Optimization of clustering tree visualization.

Usage

```r
ggheatmap(data,
color=colorRampPalette(c("#0073c2","white","efc000"))(100),
legendName="Express",
scale="none",
shape=NULL,
border=NA,
cluster_rows = F,
cluster_cols = F,
dist_method="euclidean",
hclust_method="complete",
text_show_rows=waiver(),
text_show_cols=waiver(),
text_position_rows="right",
text_position_cols="bottom",
annotation_cols=NULL,
annotation_rows=NULL,
annotation_color,
annotation_width=0.03,
annotation_position_rows="left",
annotation_position_cols="top",
show_cluster_cols=T,
show_cluster_rows=T,
cluster_num=NULL,
tree_height_rows=0.1,
tree_height_cols=0.1,
tree_color_rows=NULL,
tree_color_cols=NULL,
tree_position_rows="left",
tree_position_cols="top",
levels_rows=NULL,
levels_cols=NULL)
```
Arguments

- **data**
 - Input data (matrix or data.frame)

- **color**
 - The color of heatmap

- **legendName**
 - Character, the title of heatmap legend

- **scale**
 - Character, the way of scale data ("none", "row" or "column")

- **border**
 - Character, the colour of border

- **shape**
 - Character, the shape of cell ("square", "circle" and "triangle"). Default is NULL

- **cluster_rows**
 - Whether rows should be clustered (TRUE or FALSE)

- **cluster_cols**
 - Whether column should be clustered (TRUE or FALSE)

- **dist_method**
 - Character, the method parameter of dist function. See \texttt{dist}

- **hclust_method**
 - Character, the method parameter of hclust function, see \texttt{hclust}

- **text_show_rows**
 - A character you want to show for y-axis

- **text_show_cols**
 - A character you want to show for x-axis

- **text_position_rows**
 - A character, the position of y-axis label ("right" or "left")

- **text_position_cols**
 - A character, the position of x-axis label ("bottom" or "top")

- **annotation_cols**
 - A data.frame for column annotation

- **annotation_rows**
 - A data.frame for row annotation

- **annotation_color**
 - A list for annotation color

- **annotation_width**
 - A numeric for annotation width

- **annotation_position_rows**
 - A numeric for annotation position ("right" or "left")

- **annotation_position_cols**
 - A numeric for annotation position ("bottom" or "top")

- **show_cluster_cols**
 - Whether show column cluster tree (TRUE or FALSE)

- **show_cluster_rows**
 - Whether show row cluster tree (TRUE or FALSE)

- **cluster_num**
 - A numeric for cut cluster tree

- **tree_height_rows**
 - Row cluster tree height

- **tree_height_cols**
 - Column cluster tree height

- **tree_color_rows**
 - A character for row cluster tree color

- **tree_color_cols**
 - A character for column cluster tree color
tree_position_rows
 character, the position of row cluster tree("right" or "left")

tree_position_cols
 character, the position of column cluster tree("bottom" or "top")

levels_rows
 a character for y-axis label levels

levels_cols
 a character for x-axis label levels

Value

p

Author(s)
Baiwei Luo

Examples

Create data
library(ggheatmap)
library(tidyr)
library(aplot)
set.seed(123)
df <- matrix(runif(600,0,10),ncol = 12)
colnames(df) <- paste("sample",1:12,sep = "")
rownames(df) <- sapply(1:50, function(x)paste(sample(LETTERS,3,replace = FALSE),collapse = ""))

head(df)
Example 1

Create data
library(ggheatmap)
library(tidyr)
library(aplot)
set.seed(123)
df <- matrix(runif(600,0,10),ncol = 12)
colnames(df) <- paste("sample",1:12,sep = "")
rownames(df) <- sapply(1:50, function(x)paste(sample(LETTERS,3,replace = FALSE),collapse = ""))

head(df)

Example 1

text_rows <- sample(rownames(df),3)
p <- ggheatmap(df,scale = "row",cluster_rows = TRUE,cluster_cols = TRUE,
text_show_rows = text_rows)%>%
ggheatmap_theme(1,theme = list(
 theme(axis.text.x = element_text(angle = 90,face = "bold"),
 axis.text.y = element_text(colour = "red",face = "bold")))
)

Example 2

ggheatmap(df,cluster_rows = TRUE,cluster_cols = TRUE,
 border = "grey",
 shape = "circle",
 cluster_num = c(5,4),
 tree_color_rows = c("#3B4992FF","#EEE000FF","#008B45FF","#631879FF","#008280FF"),
 tree_color_cols = c("#0073C2FF", "#EFC000FF","#868686FF","#CD534CFF")
)

Example 3

col_metaData <- data.frame(tissue=sample(c("Normal","Tumor"),12,replace = TRUE),
colnames(df))

row_metaData <- data.frame(exprtype=sample(c("Up","Down"),50,replace = TRUE),
genetype=sample(c("Metabolism","Immune","None"),50,replace = TRUE),
rownames(row_metaData) <- rownames(df)
rownames(col_metaData) <- colnames(df)
ggheatmap

```
risklevel = sample(c("High","Low"),12,replace = TRUE)
rownames(col_metaData) <- colnames(df)
exprcol <- c("#EE0000FF","#008B45FF")
names(exprcol) <- c("Up","Down")
genecol <- c("#EE7E30","#5D9AD3","#D0DFE6FF")
names(genecol) <- c("Metabolism","Immune","None")
tissuecol <- c("#98D352","#FF7F0E")
names(tissuecol) <- c("Normal","Tumor")
riskcol <- c("#EEA236FF","#46B8DAFF")
names(riskcol) <- c("High","Low")
col <- list(exprtype=exprcol,genetype=genecol,tissue=tissuecol,risklevel=riskcol)
p<- ggheatmap(df,cluster_rows = TRUE,cluster_cols = TRUE,scale = "row",
cluster_num = c(5,3),
tree_color_rows = c("#3B4992FF","#EE0000FF","#008B45FF","#631879FF","#008280FF"),
tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
anotation_rows = row_metaData,
anotation_cols = col_metaData,
anotation_color = col
)
P
pggheatmap_theme(p,2:5,theme = list(
theme(legend.text = element_text(face = "bold")),
theme(legend.text = element_text(face = "bold")),
theme(legend.text = element_text(face = "bold")),
theme(legend.text = element_text(face = "bold"))
))

#sample 4

```
ggheatmap_plotlist

Show ggheatmap Plot List

Description
Display the basic elements of the ggheatmap

Usage
ggheatmap_plotlist(ggheatmap)

Arguments
ggheatmap

heatmap, the result of ggheatmap

Value
plotlist

ggheatmap_theme
The Theme of ggheatmap

Description
Set the styles of the drawing elements of each component of the ggheatmap except cluster tree.

Usage
ggheatmap_theme(ggheatmap, plotlist, theme)

Arguments

ggheatmap

the result of ggheatmap

plotlist

integer, the plotlist in ggheatmap. Use ggheatmap_plotlist

theme

list, the theme of plotlist. More detail can see theme

Value

ggheatmap
Index

dist, 3

ggheatmap, 2
ggheatmap_plotlist, 6, 6
ggheatmap_theme, 6

hclust, 3

theme, 6