Package ‘gglogo’

January 28, 2020

Title Geom for Logo Sequence Plots
Version 0.1.5
License GPL-3

URL https://github.com/heike/gglogo

BugReports https://github.com/heike/gglogo/issues

Depends R (>= 3.6)
Imports ggplot2 (>= 2.0.0), grid, jpeg, plyr, dplyr, tidyr, magrittr, purrr, reshape2, knitr, rlang

Suggests RColorBrewer

Description Visualize sequences in (modified) logo plots. The design choices used by these logo plots allow sequencing data to be more easily analyzed. Because it is integrated into the ‘ggplot2’ geom framework, these logo plots support native features such as faceting.

Collate 'logos.r' 'text.r' 'thin.r' 'data.r' 'alphabet.r' 'position.r'

RoxygenNote 7.0.2

Encoding UTF-8

VignetteBuilder knitr
LazyData true

NeedsCompilation no

Author Heike Hofmann [aut], Eric Hare [aut, cre], GGobi Foundation [aut]

Maintainer Eric Hare <eric@oaiti.org>
Repository CRAN
Date/Publication 2020-01-28 21:40:07 UTC
R topics documented:

- `aacids` .. 2
- `alphabet` .. 3
- `calcInformation` ... 3
- `createPolygons` .. 4
- `determineOrder` .. 5
- `fortify` .. 5
- `GeomLogo` .. 6
- `getOutline` .. 8
- `ggfortify` .. 9
- `identifyParts` .. 10
- `letterObject` ... 10
- `letterToPolygon` .. 11
- `logo` .. 12
- `mainPlusIslands` .. 12
- `point_line_dist` ... 13
- `position_logo` ... 13
- `sequences` ... 14
- `simplifyPolygon` .. 15
- `simplify_rec` ... 15
- `splitSequence` ... 16
- `StatLogo` .. 16

Index

<table>
<thead>
<tr>
<th>aacids</th>
<th>properties of amino acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Description

properties of amino acids: polarity and water affiliation

Usage

```r
data(aacids)
```
alphabet

alphabet polygon data

Description

polygons of upper and lower case letters and digits 0-9

Usage

- `data(alphabet)`
- `data(alphabet_comic)`
- `data(alphabet_xkcd)`
- `data(alphabet_braille)`

Details

The alphabet polygon data is based on the font Helvetica. Upper and lower case letters are included as well as digits. Other alphabet data are `alphabet_comic` (based on Comic Sans MS), `alphabet_xkcd` (based on the xkcd font), and `alphabet_braille` (based on Swell Braille)

calcInformation

Compute shannon information based on position and treatment

Description

Compute shannon information based on position and treatment

Usage

```r
calcInformation(
    dframe,  
    pos,    
    elems,  
    trt = NULL,  
    weight = NULL,  
    k = 4,  
    method = "shannon"  
)
```
createPolygons

Arguments

dframe data frame of peptide (or any other) sequences and some treatment factors
pos variable containing position
elems variable containing elements
trt (vector of) character string(s) of treatment information
weight variable containing number of times each sequence is observed, defaults to 1 in case no weight is given
k alphabet size: 4 for DNA/RNA sequences, 21 for standard amino acids
method either "shannon" or "frequency" for Shannon information or relative frequency of element by position.

Value

extended data frame with additional information of shannon info in bits and each elements contribution to the total information

Examples

data(sequences)
DM2 <- splitSequence(sequences, peptide)
DM3 <- calcInformation(DM2, pos = position, elems = element, trt = class, k = 21)
precursor to a logo plot:
library(ggplot2)
library(biovizBase)

createPolygons Create a data set of polygons for a set of letters from a specified font-family

Description

Create a data set of polygons for a set of letters from a specified font-family

Usage

createPolygons(letters, font, fontsize = 400, dim = c(720, 720), scale = FALSE)

Arguments

letters set of characters for which polygons are to be created
font character describing the name of a font - use fonts() from package extrafont to check on available fonts
fontsize size of letter to be created - larger means higher resolution, but also bigger result sets
dim dimensions of the box in which the created letter is supposed to fit
scale scale the values along the y axis to use result in geom_logo
determineOrder

Value

data set compatible to work with geom_logo

Examples

```r
# check that all letters and digits are nicely shaped:
new_alphabet <- createPolygons(c("f", "g", "W", "x"), font="Garamond")

library(ggplot2)
qplot(x, y, geom="polygon", data=new_alphabet, facets=~group)
```

determineOrder
Determine order in which to pass through a set of points

Description

Greedy algorithm to connect points, with the idea that a point is connected by a line with the two points closest to each, that haven’t yet been connected into the shape. Results depend on the starting point.

Usage

determineOrder(x, y)

Arguments

- `x` x coordinates
- `y` y coordinates

Value

vector of indices for ordered traversal along border

fortify
Convert image matrix to a data frame

Description

S3 method to create a data frame from a 3d array.
Usage

```
fortify(model, data, ...)
```

Default S3 method:
```
fortify(model, data, ...)
```

Arguments

- `model`: array as e.g. returned from readJPEG
- `data`: not used by this method
- `...`: not used by this method

Value

data frame

- x x coordinate in pixels
- y y coordinate in pixels (usually negative)
- red number vector in (0,1) describing the amount of red of the pixel in an RGB model
- green number vector in (0,1) describing the amount of green of the pixel in an RGB model
- blue number vector in (0,1) describing the amount of blue of the pixel in an RGB model

GeomLogo

Sequence logo plots.

Description

Sequence logo plots.

Usage

```
geom_logo(  
  mapping = NULL,  
  data = NULL,  
  stat = "logo",  
  position = "logo",  
  show.legend = NA,  
  inherit.aes = TRUE,  
  width = 0.9,  
  alpha = 0.6,  
  na.rm = TRUE,  
  alphabet = NULL,  
  ...  
)
```

GeomLogo

Arguments

- **mapping**: The aesthetic mapping, usually constructed with `aes` or `aes_string`. Only needs to be set at the layer level if you are overriding the plot defaults.
- **data**: A layer specific dataset - only needed if you want to override the plot defaults.
- **stat**: The statistical transformation to use on the data for this layer.
- **position**: The position adjustment to use for overlapping points on this layer.
- **show.legend**: Whether to show the legend or not.
- **inherit.aes**: Whether to inherit the aes or not.
- **width**: Maximum width of the letters, defaults to 0.9.
- **alpha**: Amount of alpha blending used for putting letters on top of rectangle, defaults to 0.25.
- **na.rm**: Whether to remove NAs or not.
- **alphabet**: Specifies which alphabet is used in rendering the logo. alphabet can be a dataframe (output from `createPolygons`), a character specifying a font or NULL. If NULL, the default alphabet set is used (based on Helvetica). Use output from 'createPolygons' to generate alphabet polygons for a different font.
- **...**: Other arguments passed on to layer. This can include aesthetics whose values you want to set, not map. See layer for more details.

Format

An object of class `GeomLogo` (inherits from `Geom`, `ggproto`, `gg`) of length 6.

Examples

```r
code_here
```
getOutline

Determine boundary between foreground and background in an image

description

Determine boundary between foreground and background in an image

Usage

getOutline(imdf, var = "red", threshold = 0.5)

Arguments

imdf dataframe describing a pixellated image in x and y. Has to have columns x, y, and var
var dimension along which foreground and background of a shape in the image are well separated. Usually one of 'red', 'green', or 'blue', but could be extended to any other numerical variable.
threshold value specifying the cutoff along variable var. Values of var higher than the threshold are considered to belong to the foreground.

Value

subset of data frame imdf consisting of just boundary points:

- x x coordinate in pixels
- y y coordinate in pixels (usually negative)
- red number vector in (0,1) describing the amount of red of the pixel in an RGB model
- green number vector in (0,1) describing the amount of green of the pixel in an RGB model
- blue number vector in (0,1) describing the amount of blue of the pixel in an RGB model
ggfortify

Convert sequence data to a format suitable for logo plots

Description

Convert sequence data to a format suitable for logo plots

Usage

```r
ggfortify(data, sequences, treatment = NULL, weight = NULL, method = "shannon")
```

Arguments

- `data` data frame with the sequences
- `sequences` variable containing the sequences
- `treatment` co-variate(s) used in collecting sequence data
- `weight` numeric variable of weights
- `method` either "shannon" or "frequency" for Shannon information or relative frequency of element by position.

Value

data frame with position, element and information value

Examples

```r
library(ggplot2)
data(sequences)

ggplot(data = ggfortify(sequences, peptide, treatment = class)) +
  geom_logo(aes(x = class, y = bits, fill = Water, label = element)) +
  facet_wrap(~position)

ggplot(data = ggfortify(sequences, peptide, treatment = class)) +
  geom_logo(aes(x = class, y = bits, fill = Polarity, label = element)) +
  facet_wrap(~position, ncol = 18) +
  theme(legend.position = "bottom")
```
identifyParts

Identify different parts of a polygon

Description

Identify different parts of a polygon

Usage

```r
identifyParts(data, tol = NULL)
```

Arguments

- **data**: is a data frame with coordinates x, y, and order.
- **tol**: numerical tolerance for minimal distance between groups. If this value is not specified, a tolerance is derived from the marginal frequency break down of observed (squared) distances between consecutive points.

Value

Data frame group variable is added to the input data.

letterObject

Convert a text element into an R object

Description

Convert a text element into an R object

Usage

```r
letterObject(ch, fontfamily = "Helvetica", fontsize = 576, dim = c(480, 480))
```

Arguments

- **ch**: text to be converted, usually just a single letter
- **fontfamily**: R has a few default fonts that are always available, such as e.g. Helvetica, Arial, Courier New, and Garamond. Other fonts might be available depending on the platform used.
- **fontsize**: by default 576. If the resulting string exceeds the boundary of the matrix returned, reduced font size
- **dim**: vector of length two specifying width and height (in pixels) of the temporary jpg file created for the letter. Defaults to 480 x 480 pixels.
Value

three dimensional matrix of dimension 480 x 480 x 3 of the pixel values, black background and white letter

Examples

```r
plot(letterObject("g", fontfamily="Garamond", fontsize=400))
plot(letterObject("q", fontsize=400))
plot(letterObject("B"))
```

```
letterToPolygon ch
          fontfamily = "Helvetica",
          fontsize = 576,
          tol = 1,
          dim = c(480, 480),
          threshold = 0.5,
          var = "red"
        )
```

Arguments

ch: letter

fontfamily: R has a few default fonts that are always available, such as e.g. Helvetica, Arial, Courier New, and Garamond. Other fonts might be available depending on the platform used.

fontsize: by default 576. If the resulting string exceeds the boundary of the matrix returned, reduced font size

tol: tolerance

dim: vector of length two specifying width and height (in pixels) of the temporary jpg file created for the letter. Defaults to 480 x 480 pixels.

threshold: numerical cutoff between 0 and 1

var: one of "red", "green", "blue".
Examples

```r
library(ggplot2)
letter <- letterToPolygon("R", fontfamily="Helvetica")
qplot(x, y, geom="polygon", data = letter, fill="black", alpha=0.8)+
  coord_equal()
```

logo
Logo plot

Description

Simple logo plot of sequences. For more complicated sequence logos, such as with treatment comparisons or subsets see `geom_logo`.

Usage

```r
logo(sequences)
```

Arguments

`sequences`
vector of text sequences, for which consensus logo is to be shown

Value

ggplot2 object for simple sequence

Examples

```r
data(sequences)
library(ggplot2)
library(RColorBrewer)
cols <- rep(brewer.pal(12, name="Paired"),22)
logo(sequences$peptide) + aes(fill=element) + scale_fill_manual(values=cols)
```

mainPlusIslands
Set the orientation of a polygon

Description

Set the orientation of a polygon

Usage

```r
mainPlusIslands(imdf)
```
point_line_dist

Arguments

imdf dataframe describing a pixellated image in x and y. Has to have columns x, y, and group

Value

reordered version of data frame imdf consistent with an assumption of group 1 being the main outline and any other groups being cutouts

point_line_dist Distance between point and line

Description

Compute distance between point given as (px, py) and line spanned by points (lx1, ly1) and (lx2, ly2). From http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

Usage

point_line_dist(px, py, lx_1, ly_1, lx_2, ly_2)

Arguments

px x coordinate of point outside the
py y coordinate of point
lx_1, x coordinate of 1st point spanning a line
ly_1, y coordinate of 1st point spanning a line
lx_2, x coordinate of 2nd point spanning a line
ly_2, y coordinate of 2nd point spanning a line

position_logo Logo positioning for overlapping objects on top of one another.

Description

position_classic is stacking objects in an ordered fashion from largest to smallest element, position_logo reverses the classic order and additionally shifts stacks downward to align the largest objects along their vertical minimum, position_fill additionally standardises each stack to have unit height.

Usage

position_logo()

position_classic()
sequences

See Also

See `geom_logo` for more examples.

Examples

```r
library(ggplot2)
data(sequences)

# to make the most of comparisons, largest letters are aligned along their minimum to
# work out the main sequence.
ggplot(data = ggfortify(sequences, peptide, treatment = class)) +
  geom_logo(aes(x = class, y = bits, fill = Water, label = element), position="logo") +
  facet_wrap(~position)

# in the classic logo plots letters are stacked in an ordered fashion on top of each other
ggplot(data = ggfortify(sequences, peptide, treatment = class)) +
  geom_logo(aes(x = class, y = bits, fill = Water, label = element), position="classic") +
  facet_wrap(~position)
```

<table>
<thead>
<tr>
<th>sequences</th>
<th>peptide sequence data</th>
</tr>
</thead>
</table>

Description

sequences showing the amino acid usage in the adenylate kinase lid available through biovis redesign contest 2013, see http://biovis.net/year/2013/info/redesign-contest published in Wong, B. Nat Methods 7, 889 (2011)

Usage

```r
data(sequences)
```

Details

Sequence data
simplifyPolygon

Douglas-Peucker algorithm for polygons

Description

Usage

```r
simplifyPolygon(points, tol = 1)
```

Arguments

- **points**: matrix of x and y points
- **tol**: tolerance

simplify_rec

Douglas Pecker algorithm for line thinning

Description

Usage

```r
simplify_rec(points, tol = 0.01)
```

Arguments

- **points**: matrix of x and y points
- **tol**: tolerance
splitSequence

Reshape data set according to elements in sequences

Description
prepare data set for plotting in a logo

Usage
splitSequence(dframe, sequences)

Arguments
dframe data frame of peptide (or any other) sequences and some treatment factors
sequences column containing the character vector of (peptide) sequence

Examples
data(sequences)
dm2 <- splitSequence(sequences, peptide)

StatLogo
Calculation of all pieces necessary to plot a logo sequence plot

Description
Calculation of all pieces necessary to plot a logo sequence plot

Usage
StatLogo

stat_logo(
 mapping = NULL,
 data = NULL,
 geom = "logo",
 position = "logo",
 show.legend = NA,
 inherit.aes = TRUE,
 width = 0.9,
 na.rm = TRUE,
 ...
)
Arguments

- **mapping**: The aesthetic mapping, usually constructed with aes or aes_string. Only needs to be set at the layer level if you are overriding the plot defaults.
- **data**: A layer specific dataset - only needed if you want to override the plot defaults.
- **geom**: The geometric object to use display the data.
- **position**: The position adjustment to use for overlapping points on this layer.
- **show.legend**: Whether to show the legend or not.
- **inherit.aes**: Whether to inherit the aes or not.
- **width**: maximum width of the letters, defaults to 0.9,
- **na.rm**: Whether to remove NAs or not.
- **...**: other arguments passed on to layer. This can include aesthetics whose values you want to set, not map. See layer for more details.

Format

An object of class `StatLogo` (inherits from `Stat`, `ggproto`, `gg`) of length 4.

Value

- proto object

- A proto object

Examples

```r
# Generate data
data(sequences)
library(ggplot2)

ggplot(data = ggfortify(sequences, peptide)) +
  geom_logo(aes(x=position, y=bits, label=element, group=interaction(position, element)),
  alpha=0.5)
```
Index

*Topic **datasets**
 - GeomLogo, 6
 - position_logo, 13
 - StatLogo, 16

aacids, 2
alphabet, 3
alphabet_braille (alphabet), 3
alphabet_comic (alphabet), 3
alphabet_xkcd (alphabet), 3
calcInformation, 3
createPolygons, 4
determineOrder, 5
fortify, 5
geom_logo, 14
geom_logo (GeomLogo), 6
GeomLogo, 6
getOutline, 8
ggfortify, 9
identifyParts, 10
letterObject, 10
letterToPolygon, 11
logo, 12
mainPlusIslands, 12
point_line_dist, 13
position_classic (position_logo), 13
position_logo, 13
PositionClassic (position_logo), 13
PositionLogo (position_logo), 13
sequences, 14
simplify_rec, 15
simplifyPolygon, 15
splitSequence, 16
stat_logo (StatLogo), 16
StatLogo, 16