Package ‘ggseqplot’

March 15, 2023

Title Render Sequence Plots using 'ggplot2'

Version 0.8.2

Description A set of wrapper functions that mainly re-produces most of the sequence plots rendered with TraMineR::seqplot(). Whereas 'TraMineR' uses base R to produce the plots this library draws on 'ggplot2'. The plots are produced on the basis of a sequence object defined with TraMineR::seqdef(). The package automates the reshaping and plotting of sequence data. Resulting plots are of class 'ggplot', i.e. components can be added and tweaked using '+' and regular 'ggplot2' functions.

 https://github.com/maraab23/ggseqplot

BugReports https://github.com/maraab23/ggseqplot/issues

Depends R (>= 4.1.0)

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.3

RdMacros Rdpack

Imports colorspace, dplyr, forcats, ggh4x, ggplot2, ggrepel, ggtext, glue, patchwork, purrr, Rdpack, rlang, tidyR, TraMineR (>= 2.2-5), usethis

Suggests covr, ggthemes, hrbrthemes, knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Marcel Raab [aut, cre] (<https://orcid.org/0000-0002-3097-1591>)

Maintainer Marcel Raab <marcel.raab@gmail.com>

Repository CRAN

Date/Publication 2023-03-15 12:10:15 UTC
R topics documented:

- ggseqdplot 2
- ggseqeplot 5
- ggseqfplot 7
- ggseqgplot 9
- ggseqhplot 12
- ggseqiplot 14
- ggseqjplot 16
- ggseqkplot 19
- ggseqlplot 21

Index 24

ggseqdplot

Sequence Distribution Plot

Description

Function for rendering state distribution plots with *ggplot2* (Wickham 2016) instead of base R’s `plot` function that is used by *TraMineR::seqplot* (Gabadinho et al. 2011).

Usage

```r
ggseqdplot(
  seqdata,
  no.n = FALSE,
  group = NULL,
  dissect = NULL,
  weighted = TRUE,
  with.missing = FALSE,
  border = FALSE,
  with.entropy = FALSE,
  linetype = "dashed",
  linecolor = "black",
  linewidth = 1,
  facet_ncol = NULL,
  facet_nrow = NULL,
  ...
)
```

Arguments

- `seqdata` State sequence object (class `stslist`) created with the *TraMineR::seqdef* function.
- `no.n` specifies if number of (weighted) sequences is shown (default is `TRUE`)
- `group` A vector of the same length as the sequence data indicating group membership. When not `NULL`, a distinct plot is generated for each level of group.
ggseqdplot

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dissect</td>
<td>if "row" or "col" are specified separate distribution plots instead of a stacked plot are displayed; "row" and "col" display the distributions in one row or one column respectively; default is NULL</td>
</tr>
<tr>
<td>weighted</td>
<td>Controls if weights (specified in <code>TraMineR::seqdef</code>) should be used. Default is TRUE, i.e. if available weights are used</td>
</tr>
<tr>
<td>with.missing</td>
<td>Specifies if missing states should be considered when computing the state distributions (default is FALSE).</td>
</tr>
<tr>
<td>border</td>
<td>if TRUE bars are plotted with black outline; default is FALSE (also accepts NULL)</td>
</tr>
<tr>
<td>with.entropy</td>
<td>add line plot of cross-sectional entropies at each sequence position</td>
</tr>
<tr>
<td>linetype</td>
<td>The linetype for the entropy subplot (with.entropy==TRUE) can be specified with an integer (0-6) or name (0 = blank, 1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash); ; default is "dashed"</td>
</tr>
<tr>
<td>linecolor</td>
<td>Specifies the color of the entropy line if with.entropy==TRUE; default is "black"</td>
</tr>
<tr>
<td>linewidth</td>
<td>Specifies the width of the entropy line if with.entropy==TRUE; default is 1</td>
</tr>
<tr>
<td>facet_ncol</td>
<td>Number of columns in faceted (i.e. grouped) plot</td>
</tr>
<tr>
<td>facet_nrow</td>
<td>Number of rows in faceted (i.e. grouped) plot</td>
</tr>
<tr>
<td>...</td>
<td>if group is specified additional arguments of <code>ggplot2::facet_wrap</code> such as "labeller" or "strip.position" can be used to change the appearance of the plot. Does not work if dissect is used</td>
</tr>
</tbody>
</table>

Details

Sequence distribution plots visualize the distribution of all states by rendering a series of stacked bar charts at each position of the sequence. Although this type of plot has been used in the life course studies for several decades (see Blossfeld (1987) for an early application), it should be noted that the size of the different bars in stacked bar charts might be difficult to compare - particularly if the alphabet comprises many states (Wilke 2019). This issue can be addressed by breaking down the aggregated distribution specifying the dissect argument. Moreover, it is important to keep in mind that this plot type does not visualize individual trajectories; instead it displays aggregated distributional information (repeated cross-sections). For a more detailed discussion of this type of sequence visualization see, for example, Brzinsky-Fay (2014), Fasang and Liao (2014), and Raab and Struffolino (2022).

The function uses `TraMineR::seqstatd` to obtain state distributions (and entropy values). This requires that the input data (seqdata) are stored as state sequence object (class stslist) created with the `TraMineR::seqdef` function. The state distributions are reshaped into a a long data format to enable plotting with `ggplot2`. The stacked bars are rendered by calling `geom_bar`; if entropy = TRUE entropy values are plotted with `geom_line`. If the group or the dissect argument are specified the sub-plots are produced by using `facet_wrap`. If both are specified the plots are rendered with `facet_grid`.

The data and specifications used for rendering the plot can be obtained by storing the plot as an object. The appearance of the plot can be adjusted just like with every other ggplot (e.g., by changing the theme or the scale using + and the respective functions).

Value

A sequence distribution plot created by using `ggplot2`. If stored as object the resulting list object (of class gg and ggplot) also contains the data used for rendering the plot.
Author(s)

Marcel Raab

References

Examples

Use examples from TraMineR & load ggplot for fine-tuning the plot
library(TraMineR)
library(ggplot2)

actcal data set
data(actcal)

We use only a sample of 300 cases
set.seed(1)
actcal <- actcal[sample(nrow(actcal), 300),]
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal, 13:24, labels = actcal.lab)

state distribution plots; grouped by sex
with TraMineR::seqplot
seqplot(actcal.seq, group = actcal$sex)
with ggseqplot
ggseqdplot(actcal.seq, group = actcal$sex)
with ggseqplot applying a few additional arguments, e.g. entropy line
ggseqdplot(actcal.seq, group = actcal$sex,
 no.n = TRUE, with.entropy = TRUE, border = TRUE)
break down the stacked plot to ease comparisons of distributions
ggseqdplot(actcal.seq, group = actcal$sex, dissect = "row")

make use of ggplot functions for modifying the plot
ggseqdplot(actcal.seq) +
 scale_x_discrete(labels = month.abb) +
 labs(title = "State distribution plot", x = "Month") +
 guides(fill = guide_legend(title = "Alphabet")) +
 theme_classic() +
 theme(plot.title = element_text(size = 30, margin = margin(0, 0, 20, 0)),
 plot.title.position = "plot")

ggseqeplot

Sequence Entropy Plot

Description

Function for plotting the development of cross-sectional entropies across sequence positions with **ggplot2** (Wickham 2016) instead of base R’s **plot** function that is used by **TraMineR::seqplot** (Gabadinho et al. 2011). Other than in **TraMineR::seqHtplot** group-specific entropy lines are displayed in a common plot.

Usage

```r
ggseqeplot(
  seqdata,
  group = NULL,
  weighted = TRUE,
  with.missing = FALSE,
  linewidth = 1,
  linecolor = "Okabe-Ito",
  gr.linetype = FALSE
)
```

Arguments

- **seqdata**: State sequence object (class **stslist**) created with the **TraMineR::seqdef** function.
- **group**: If grouping variable is specified plot shows one line for each group
- **weighted**: Controls if weights (specified in **TraMineR::seqdef**) should be used. Default is TRUE, i.e. if available weights are used
- **with.missing**: Specifies if missing states should be considered when computing the entropy index (default is FALSE).
- **linewidth**: Specifies the with of the entropy line; default is 1
linecolor Specifies color palette for line(s); default is "Okabe-Ito" which contains up to 9 colors (first is black). If more than 9 lines should be rendered, user has to specify an alternative color palette.

gr.linetype Specifies if line type should vary by group; hence only relevant if group argument is specified; default is FALSE.

Details

The function uses \texttt{TraMineR::seqstatd} to compute entropies. This requires that the input data (seqdata) are stored as state sequence object (class \texttt{stslist}) created with the \texttt{TraMineR::seqdef} function.

The entropy values are plotted with \texttt{geom_line}. The data and specifications used for rendering the plot can be obtained by storing the plot as an object. The appearance of the plot can be adjusted just like with every other ggplot (e.g., by changing the theme or the scale using + and the respective functions).

Value

A line plot of entropy values at each sequence position. If stored as object the resulting list object also contains the data (long format) used for rendering the plot.

Author(s)

Marcel Raab

References

Examples

```r
# Use examples from TraMineR
library('TraMineR')

# actcal data set
data(actcal)

# We use only a sample of 300 cases
set.seed(1)
actcal <- actcal[sample(nrow(actcal), 300), ]
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal, 13:24, labels = actcal.lab)

# sequences sorted by age in 2000 and grouped by sex
# with TraMineR::seqplot (entropies shown in two separate plots)
seqHtplot(actcal.seq, group = actcal$sex)
```
with ggseqplot (entropies shown in one plot)
ggseqplot(actcal_seq, group = actcal$sex)
ggseqplot(actcal_seq, group = actcal$sex, gr.linetype = TRUE)

manual color specification
ggseqplot(actcal_seq, linecolor = "darkgreen")
ggseqplot(actcal_seq, group = actcal$sex,
 linecolor = c("#3D98D3FF", "#FF363CFF"))

ggseqfplot
Sequence Frequency Plot

Description

Function for rendering sequence index plot of the most frequent sequences of a state sequence object using *ggplot2* (Wickham 2016) instead of base R's *plot* function that is used by *TraMineR::seqplot* / *TraMineR::plot.stslist.freq* (Gabadinho et al. 2011).

Usage

```r
ggseqfplot(
  seqdata,
  group = NULL,
  ranks = 1:10,
  weighted = TRUE,
  border = FALSE,
  proportional = TRUE,
  ylabs = "total",
  no.coverage = FALSE,
  facet_ncol = NULL,
  facet_nrow = NULL
)
```

Arguments

- **seqdata**: State sequence object (class *stslist*) created with the *TraMineR::seqdef* function.
- **group**: A vector of the same length as the sequence data indicating group membership. When not NULL, a distinct plot is generated for each level of group.
- **ranks**: specifies which of the most frequent sequences should be plotted; default is the first ten (1:10); if set to 0 all sequences are displayed.
- **weighted**: Controls if weights (specified in *TraMineR::seqdef*) should be used. Default is TRUE, i.e. if available weights are used.
- **border**: if TRUE bars are plotted with black outline; default is FALSE (also accepts NULL).
- **proportional**: if TRUE (default), the sequence heights are displayed proportional to their frequencies.
ylabs defines appearance of y-axis labels; default ("total") only labels min and max (i.e. cumulative relative frequency); if "share" labels indicate relative frequency of each displayed sequence (note: overlapping labels are removed)
	no.coverage specifies if information on total coverage is shown as caption or as part of the group/facet label if ylabs == "share" (default is TRUE)

facet_ncol Number of columns in faceted (i.e. grouped) plot

facet_nrow Number of rows in faceted (i.e. grouped) plot

Details

The subset of displayed sequences is obtained by an internal call of TraMineR::seqtab. The extracted sequences are plotted by a call of ggseqiplot which uses ggplot2::geom_rect to render the sequences. The data and specifications used for rendering the plot can be obtained by storing the plot as an object. The appearance of the plot can be adjusted just like with every other ggplot (e.g., by changing the theme or the scale using + and the respective functions).

Experienced ggplot2 users might notice the customized labeling of the y-axes in the faceted plots (i.e. plots with specified group argument). This has been achieved by utilizing the very helpful ggh4x library.

Value

A sequence frequency plot created by using ggplot2. If stored as object the resulting list object (of class gg and ggplot) also contains the data used for rendering the plot.

Author(s)

Marcel Raab

References

See Also

ggseqiplot

Examples

Use examples from TraMineR & load ggplot for fine-tuning the plot
library(TraMineR)
library(ggplot2)

actcal data set
data(actcal)
We use only a sample of 300 cases
set.seed(1)
actcal <- actcal[sample(nrow(actcal), 300),]
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal, 13:24, labels = actcal.lab)

sequence frequency plot
with TraMineR::seqplot
seqfplot(actcal.seq)
with ggseqplot
ggseqfplot(actcal.seq)
with ggseqplot applying additional arguments and some layout changes
ggseqfplot(actcal.seq,
group = actcal$sex,
ranks = 1:5,
ylabs = "share") +
 scale_x_discrete(breaks = 1:12,
 labels = month.abb,
 expand = expansion(add = c(0.2, 0)))

ggseqiplot

Sequence Index Plot

Description

Function for rendering sequence index plots with *ggplot2* (Wickham 2016) instead of base R’s *plot* function that is used by *TraMineR::seqplot* (Gabadinho et al. 2011).

Usage

```r
ggseqiplot(
  seqdata,
  no.n = FALSE,
  group = NULL,
  sortv = NULL,
  weighted = TRUE,
  border = FALSE,
  facet_scale = "free_y",
  facet_ncol = NULL,
  facet_nrow = NULL,
  ...
)
```

Arguments

- `seqdata` State sequence object (class *stslist*) created with the *TraMineR::seqdef* function.
- `no.n` specifies if number of (weighted) sequences is shown as part of the y-axis title or group/facet title (default is TRUE)
ggseqiplot

- **group**: A vector of the same length as the sequence data indicating group membership. When not NULL, a distinct plot is generated for each level of group.
- **sortv**: Vector of numerical values sorting the sequences or a sorting method (either "from.start" or "from.end"). See details.
- **weighted**: Controls if weights (specified in `TraMineR::seqdef`) should be used. Default is TRUE, i.e. if available weights are used
- **border**: if TRUE bars are plotted with black outline; default is FALSE (also accepts NULL)
- **facet_scale**: Specifies if y-scale in faceted plot should be free ("free_y" is default) or "fixed"
- **facet_ncol**: Number of columns in faceted (i.e. grouped) plot
- **facet_nrow**: Number of rows in faceted (i.e. grouped) plot
- **...**: if group is specified additional arguments of `ggplot2::facet_wrap` such as "labeller" or "strip.position" can be used to change the appearance of the plot

Details

Sequence index plots have been introduced by Scherer (2001) and display each sequence as horizontally stacked bar or line. For a more detailed discussion of this type of sequence visualization see, for example, Brzinsky-Fay (2014), Fasang and Liao (2014), and Raab and Struffolino (2022).

The function uses `TraMineR::seqformat` to reshape seqdata stored in wide format into a spell/episode format. Then the data are further reshaped into the long format, i.e. for every sequence each row in the data represents one specific sequence position. For example, if we have 5 sequences of length 10, the long file will have 50 rows. In the case of sequences of unequal length not every sequence will contribute the same number of rows to the long data.

The reshaped data are used as input for rendering the index plot using ggplot2’s `geom_rect`. ggseqiplot uses `geom_rect` instead of `geom_tile` because this allows for a straight forward implementation of weights. If weights are specified for seqdata and weighted=TRUE the sequence height corresponds to its weight.

If weights and a grouping variable are used, and facet_scale="fixed" the values of the y-axis are not labeled, because ggplot2 reasonably does not allow for varying scales when the facet scale is fixed.

When a sortv is specified, the sequences are arranged in the order of its values. With sortv="from.start" sequence data are sorted according to the states of the alphabet in ascending order starting with the first sequence position, drawing on succeeding positions in the case of ties. Likewise, sortv="from.end" sorts a reversed version of the sequence data, starting with the final sequence position turning to preceding positions in case of ties.

Note that the default aspect ratio of ggseqiplot is different from `TraMineR::seqIplot`. This is most obvious when border=TRUE. You can change the ratio either by adding code to ggseqiplot or by specifying the ratio when saving the code with `ggsave`.

Value

A sequence index plot. If stored as object the resulting list object also contains the data (spell format) used for rendering the plot.
Author(s)
Marcel Raab

References

Examples

```r
# Use examples from TraMineR
library(TraMineR)

# actcal data set
data(actcal)

# We use only a sample of 300 cases
set.seed(1)
actcal <- actcal[sample(nrow(actcal), 300), ]
actcal.lab <- c(“> 37 hours”, “19-36 hours”, “1-18 hours”, “no work”)
actcal.seq <- seqdef(actcal, 13:24, labels = actcal.lab)

# ex1 using weights
data(ex1)
ex1.seq <- seqdef(ex1, 1:13, weights = ex1$weights)

# sequences sorted by age in 2000 and grouped by sex
# with TraMineR::seqplot
seqplot(actcal.seq, group = actcal$sex, sortv = actcal$age00)
# with ggseqplot
ggseqplot(actcal.seq, group = actcal$sex, sortv = actcal$age00)

# sequences of unequal length with missing state, and weights
seqplot(ex1.seq)
```
ggseqiplot(ex1.seq)

... turn weights off and add border
seqIplot(ex1.seq, weighted = FALSE, border = TRUE)
ggseqiplot(ex1.seq, weighted = FALSE, border = TRUE)

ggseqmsplot

Modal State Sequence Plot

Description

Function for rendering modal state sequence plot with ggplot2 (Wickham 2016) instead of base R’s plot function that is used by TraMineR::seqplot (Gabadinho et al. 2011).

Usage

ggseqmsplot(
 seqdata,
 no.n = FALSE,
 barwidth = NULL,
 group = NULL,
 weighted = TRUE,
 with.missing = FALSE,
 border = FALSE,
 facet_ncol = NULL,
 facet_nrow = NULL
)

Arguments

seqdata State sequence object (class stslist) created with the TraMineR::seqdef function.
no.n specifies if number of (weighted) sequences is shown (default is TRUE)
barwidth specifies width of bars (default is NULL); valid range: (0, 1]
group A vector of the same length as the sequence data indicating group membership. When not NULL, a distinct plot is generated for each level of group.
weighted Controls if weights (specified in TraMineR::seqdef) should be used. Default is TRUE, i.e. if available weights are used
with.missing Specifies if missing states should be considered when computing the state distributions (default is FALSE).
border if TRUE bars are plotted with black outline; default is FALSE (also accepts NULL)
facet_ncol Number of columns in faceted (i.e. grouped) plot
facet_nrow Number of rows in faceted (i.e. grouped) plot
Details

The function uses `TraMineR::seqmodst` to obtain the modal states and their prevalence. This requires that the input data (`seqdata`) are stored as state sequence object (class `stslist`) created with the `TraMineR::seqdef` function.

The data on the modal states and their prevalences are reshaped to be plotted with `ggplot2::geom_bar`. The data and specifications used for rendering the plot can be obtained by storing the plot as an object. The appearance of the plot can be adjusted just like with every other ggplot (e.g., by changing the theme or the scale using + and the respective functions).

Value

A modal state sequence plot. If stored as object the resulting list object also contains the data (long format) used for rendering the plot

Author(s)

Marcel Raab

References

Examples

```r
# Use examples from TraMineR
library(TraMineR)

# actcal data set
data(actcal)

# We use only a sample of 300 cases
set.seed(1)
actcal <- actcal[sample(nrow(actcal), 300), ]
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal, 13:24, labels = actcal.lab)

# modal state sequence plot; grouped by sex
# with TraMineR::seqplot
seqmsplot(actcal.seq, group = actcal$sex)
# with ggseqplot
ggseqmsplot(actcal.seq, group = actcal$sex)
# with ggseqplot and some layout changes
ggseqmsplot(actcal.seq, group = actcal$sex, no.n = TRUE, border = FALSE, facet_nrow = 2)
```
ggseqmtplot

Mean time plot

Description

Function for rendering plot displaying the mean time spent in each state of a state sequence object using **ggplot2** (Wickham 2016) instead of base R’s `plot` function that is used by `TraMineR::seqplot` (Gabadinho et al. 2011).

Usage

```r
ggseqmtplot(
  seqdata,
  no.n = FALSE,
  group = NULL,
  weighted = TRUE,
  with.missing = FALSE,
  border = FALSE,
  error.bar = NULL,
  error.caption = TRUE,
  facet_scale = "fixed",
  facet_ncol = NULL,
  facet_nrow = NULL
)
```

Arguments

- `seqdata`: State sequence object (class `stslist`) created with the `TraMineR::seqdef` function.
- `no.n`: specifies if number of (weighted) sequences is shown (default is TRUE).
- `group`: A vector of the same length as the sequence data indicating group membership. When not NULL, a distinct plot is generated for each level of group.
- `weighted`: Controls if weights (specified in `TraMineR::seqdef`) should be used. Default is TRUE, i.e. if available weights are used.
- `with.missing`: Specifies if missing states should be considered when computing the state distributions (default is FALSE).
- `border`: if TRUE bars are plotted with black outline; default is FALSE (also accepts NULL).
- `error.bar`: allows to add error bars either using the standard deviation “SD” or the standard error “SE”; default plot is without error bars.
- `error.caption`: a caption is added if error bars are displayed; this default behavior can be turned off by setting the argument to “FALSE”.
- `facet_scale`: Specifies if y-scale in faceted plot should be “fixed” (default) or “free_y”.
- `facet_ncol`: Number of columns in faceted (i.e. grouped) plot.
- `facet_nrow`: Number of rows in faceted (i.e. grouped) plot.
Details

The information on time spent in different states is obtained by an internal call of \texttt{TraMineR::seqmeant}. This requires that the input data (seqdata) are stored as state sequence object (class \texttt{stslist}) created with the \texttt{TraMineR::seqdef} function. The resulting output then is prepared to be plotted with \texttt{ggplot2::geom_bar}. The data and specifications used for rendering the plot can be obtained by storing the plot as an object. The appearance of the plot can be adjusted just like with every other \texttt{ggplot} (e.g., by changing the theme or the scale using + and the respective functions).

Value

A mean time plot created by using \texttt{ggplot2}. If stored as object the resulting list object (of class gg and ggplot) also contains the data used for rendering the plot.

Author(s)

Marcel Raab

References

Examples

Use examples from TraMineR & load ggplot for fine-tuning the plot
library(TraMineR)
library(ggplot2)

actcal data set
data(actcal)

We use only a sample of 300 cases
set.seed(1)
actcal <- actcal[sample(nrow(actcal), 300),]
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal, 13:24, labels = actcal.lab)

modal state sequence plot; grouped by sex
with \texttt{TraMineR::seqplot}
seqmtplot(actcal.seq, group = actcal$sex)
with \texttt{ggseqplot}
ggseqmtplot(actcal.seq, group = actcal$sex)
with \texttt{ggseqplot} using additional arguments and some adjustments
ggseqmtplot(actcal.seq, no.n = TRUE, error.bar = "SE") +
 coord_flip() +
 theme(axis.text.y=element_blank(),
 axis.ticks.y = element_blank(),
 panel.grid.major.y = element_blank(),
 panel.grid.minor.y = element_blank(),
 panel.grid.major.x = element_blank(),
 panel.grid.minor.x = element_blank(),
 panel.grid.backed = element_blank(),
 panel.grid.backed = element_blank(),
 panel.grid.backed = element_blank(),
 panel.grid.backed = element_blank())
Function for rendering sequence index plots with \texttt{ggplot2} instead of base R’s \texttt{plot} function that is used by \texttt{TraMineR::seqrfplot}. Note that \texttt{ggseqrfplot} uses \texttt{patchwork} to combine the different components of the plot. The function and the documentation draw heavily from \texttt{TraMineR::seqrf}.

\textbf{Arguments}

- \texttt{seqdata} State sequence object (class \texttt{stslist}) created with the \texttt{TraMineR::seqdef} function. \texttt{seqdata} is ignored if \texttt{seqrfobject} is specified.
- \texttt{diss} pairwise dissimilarities between sequences in \texttt{seqdata} (see \texttt{TraMineR::seqdist}). \texttt{diss} is ignored if \texttt{seqrfobject} is specified.
integer specifying the number of frequency groups. When NULL, k is set as
the minimum between 100 and the sum of weights over 10. k is ignored if
seqrfobject is specified.

optional sorting vector of length nrow(diss) that may be used to compute the
frequency groups. If NULL (default), the first MDS factor of diss (diss^2 when
squared=TRUE) is used. Ties are randomly ordered. Also allows for the usage
of the string inputs: "from.start" or "from.end" (see ggseqiplot). sortv is
ignored if seqrfobject is specified.

Controls if weights (specified in TraMineR::seqdef) should be used. Default
is TRUE, i.e. if available weights are used.

Character string. One of "prop", "first", and "random". Grouping method.
See details. grp.meth is ignored if seqrfobject is specified.

Logical. Should medoids (and computation of sortv when applicable) be based
on squared dissimilarities? (default is FALSE). squared is ignored if seqrfobject
is specified.

Dissimilarity power exponent (typically 1 or 2) for computation of pseudo R2
and F. When NULL, pow is set as 1 when squared = FALSE, and as 2 otherwise.
pow is ignored if seqrfobject is specified.

object of class seqrf generated with TraMineR::seqrf. Default is NULL; either
seqrfobject or seqdata and diss have to specified

if TRUE bars of index plot are plotted with black outline; default is FALSE (also
accepts NULL)

character string specifying title of y-axis. If NULL axis title is "Frequency group"
yaxis Controls if a y-axis is plotted. When set as TRUE, index of frequency groups is
displayed.

character string specifying which components of relative frequency sequence
plot should be displayed. Default is "both". If set to "medoids" only the index
plot of medoids is shown. If "diss.to.med" only the box plots of the group-
specific distances to the medoids are shown.

specifies if representation quality is shown as figure caption; default is TRUE

specifies color of boxplot borders; default is "black

specifies fill color of boxplots; default is "white"

specifies alpha value of boxplot fill color; default is 1

if greater than 0 outliers are jittered vertically. If greater than .375 height is
automatically adjusted to be aligned with the box width.

parameters to change the appearance of the outliers. Uses defaults of ggplot2::geom_boxplot

This function renders relative frequency sequence plots using either an internal call of TraMineR::seqrf
or by using an object of class "seqrf" generated with TraMineR::seqrf.
For further details on the technicalities we refer to the excellent documentation of \texttt{TraMineR::seqrf}. A detailed account of relative frequency index plot can be found in the original contribution by Fasang and Liao (2014).

\texttt{ggseqrfplot} renders the medoid sequences extracted by \texttt{TraMineR::seqrf} with an internal call of \texttt{ggseqiplot}. For the box plot depicting the distances to the medoids \texttt{ggseqrfplot} uses \texttt{geom_boxplot} and \texttt{geom_jitter}. The latter is used for plotting the outliers.

Note that \texttt{ggseqrfplot} renders in the box plots analogous to the those produced by \texttt{TraMineR::seqrfplot}. Actually, the box plots produced with \texttt{TraMineR::seqrfplot} and \texttt{ggplot2::geom_boxplot} might slightly differ due to differences in the underlying computations of \texttt{grDevices::boxplot.stats} and \texttt{ggplot2::stat_boxplot}.

Note that \texttt{ggseqrfplot} uses \texttt{patchwork} to combine the different components of the plot. If you want to adjust the appearance of the composed plot, for instance by changing the plot theme, you should consult the documentation material of \texttt{patchwork}.

At this point \texttt{ggseqrfplot} does not support a grouping option. For plotting multiple groups, I recommend to produce group specific seqrfobjects or plots and to arrange them in a common plot using \texttt{patchwork}. See Example 6 in the vignette for further details: \texttt{vignette("ggseqplot", package = "ggseqplot")}

Value

A relative frequency sequence plot using \texttt{ggplot}.

Author(s)

Marcel Raab

References

Examples

```r
# Use examples from TraMineR & load additional libraries for fine-tuning the plots
library(TraMineR)
library(patchwork)
library(ggplot2)

# From TraMineR::seqprf
# Defining a sequence object with the data in columns 10 to 25
# (family status from age 15 to 30) in the biofam data set
data(biofam)

biofam.seq <- seqdef(biofam[501:600, 10:25], labels=biofam.lab)
```

For further details on the technicalities we refer to the excellent documentation of \texttt{TraMineR::seqrf}. A detailed account of relative frequency index plot can be found in the original contribution by Fasang and Liao (2014).

\texttt{ggseqrfplot} renders the medoid sequences extracted by \texttt{TraMineR::seqrf} with an internal call of \texttt{ggseqiplot}. For the box plot depicting the distances to the medoids \texttt{ggseqrfplot} uses \texttt{geom_boxplot} and \texttt{geom_jitter}. The latter is used for plotting the outliers.

Note that \texttt{ggseqrfplot} renders in the box plots analogous to the those produced by \texttt{TraMineR::seqrfplot}. Actually, the box plots produced with \texttt{TraMineR::seqrfplot} and \texttt{ggplot2::geom_boxplot} might slightly differ due to differences in the underlying computations of \texttt{grDevices::boxplot.stats} and \texttt{ggplot2::stat_boxplot}.

Note that \texttt{ggseqrfplot} uses \texttt{patchwork} to combine the different components of the plot. If you want to adjust the appearance of the composed plot, for instance by changing the plot theme, you should consult the documentation material of \texttt{patchwork}.

At this point \texttt{ggseqrfplot} does not support a grouping option. For plotting multiple groups, I recommend to produce group specific seqrfobjects or plots and to arrange them in a common plot using \texttt{patchwork}. See Example 6 in the vignette for further details: \texttt{vignette("ggseqplot", package = "ggseqplot")}

Value

A relative frequency sequence plot using \texttt{ggplot}.

Author(s)

Marcel Raab

References

Examples

```r
# Use examples from TraMineR & load additional libraries for fine-tuning the plots
library(TraMineR)
library(patchwork)
library(ggplot2)

# From TraMineR::seqprf
# Defining a sequence object with the data in columns 10 to 25
# (family status from age 15 to 30) in the biofam data set
data(biofam)

biofam.seq <- seqdef(biofam[501:600, 10:25], labels=biofam.lab,
```
weights = biofam[501:600, "wp00tbgs"]

diss <- seqdist(biofam.seq, method = "LCS")

Using 12 groups and default MDS sorting
and original method by Fasang and Liao (2014)

... with TraMineR::seqrfplot (weights have to be turned off)
seqrfplot(biofam.seq, weighted = FALSE, diss = diss, k = 12,
 grp.meth = "first", which.plot = "both")

... with ggseqrfplot
ggseqrfplot(biofam.seq, weighted = FALSE, diss = diss, k = 12, grp.meth = "first")

Arrange sequences by a user specified sorting variable:
time spent in parental home; has ties
parentTime <- seqistatd(biofam.seq)[, 1]
b.srf <- seqrf(biofam.seq, diss = diss, k = 12, sortv = parentTime)
... with ggseqrfplot (and some extra annotation using patchwork)
ggseqrfplot(seqrfobject = b.srf) +
 plot_annotation(title = "Sorted by time spent in parental home",
 theme = theme(plot.title = element_text(hjust = 0.5, size = 18)))

ggseqrplot

Representative Sequence plot

Description

Function for rendering representative sequence plots with **ggplot2** (Wickham 2016) instead of base R’s **plot** function that is used by **TraMineR::seqplot** (Gabadinho et al. 2011).

Usage

```r
ggseqrplot(
  seqdata,
  diss,
  group = NULL,
  criterion = "density",
  coverage = 0.25,
  nrep = NULL,
  pradius = 0.1,
  dmax = NULL,
  border = FALSE,
  proportional = TRUE,
  weighted = TRUE,
  stats = TRUE,
  colored.stats = NULL,
  facet_ncol = NULL
)
```
Arguments

- `seqdata` State sequence object (class `stslist`) created with the `TraMineR::seqdef` function.
- `diss` pairwise dissimilarities between sequences in `seqdata` (see `TraMineR::seqdist`).
- `group` A vector of the same length as the sequence data indicating group membership. When not NULL, a distinct plot is generated for each level of group.
- `criterion` the representativeness criterion for sorting the candidate list. One of "freq" (sequence frequency), "density" (neighborhood density), "mscore" (mean state frequency), "dist" (centrality) and "prob" (sequence likelihood). See details.
- `coverage` coverage threshold, i.e., minimum proportion of sequences that should have a representative in their neighborhood (neighborhood radius is defined by `pradius`).
- `nrep` number of representative sequences. If NULL (default), the size of the representative set is controlled by `coverage`.
- `pradius` neighborhood radius as a percentage of the maximum (theoretical) distance `dmax`. Defaults to 0.1 (10%). Sequence `y` is redundant to sequence `x` when it is in the neighborhood of `x`, i.e., within a distance `pradius*dmax` from `x`.
- `dmax` maximum theoretical distance. The `dmax` value is used to derive the neighborhood radius as `pradius*dmax`. If NULL, the value of `dmax` is derived from the dissimilarity matrix.
- `border` if TRUE bars are plotted with black outline; default is FALSE (also accepts NULL)
- `proportional` if TRUE (default), the sequence heights are displayed proportional to the number of represented sequences.
- `weighted` Controls if weights (specified in `TraMineR::seqdef`) should be used. Default is TRUE, i.e. if available weights are used.
- `stats` if TRUE (default), mean discrepancy in each subset defined by all sequences attributed to one representative sequence and the mean distance to this representative sequence are displayed.
- `colored.stats` specifies if representatives in stats plot should be color coded; only recommended if number of representatives is small; if set to NULL (default) colors are used if n rep. <= 10; use TRUE or FALSE to change manually.
- `facet_ncol` specifies the number of columns in the plot (relevant if !is.null(group))

Details

The representative sequence plot displays a set of distinct sequences as sequence index plot. The set of representative sequences is extracted from the sequence data by an internal call of `TraMineR::seqrep` according to the criteria listed in the arguments section above.

The extracted sequences are plotted by a call of `ggseqiplot` which uses `ggplot2::geom_rect` to render the sequences. If `stats = TRUE` the index plots are complemented by information on the "quality" of the representative sequences. For further details on representative sequence plots see Gabadinho et al. (2011) and the documentation of `TraMineR::plot.stslist.rep`, `TraMineR::seqplot`, and `TraMineR::seqrep`.

Note that `ggseqrplot` uses `patchwork` to combine the different components of the plot. If you want to adjust the appearance of the composed plot, for instance by changing the plot theme, you should consult the documentation material of `patchwork`.
A representative sequence plot using `ggplot`.

Marcel Raab


```r
# Use examples from TraMineR
library(TraMineR)
# Defining a sequence object with the data in columns 10 to 25
# (family status from age 15 to 30) in the biofam data set
data(biofam)
# Use sample of 300 cases
set.seed(123)
biofam <- biofam[sample(nrow(biofam),150),]
biofam.seq <- seqdef(biofam, 10:25, labels=biofam.lab)

# Computing the distance matrix
biofam.dhd <- seqdist(biofam.seq, method="DHD")

# Representative sequence plot (using defaults)
# ... with TraMineR::seqplot
seqrplot(biofam.seq, diss = biofam.dhd)

# ... with ggseqrplot
ggseqrplot(biofam.seq, diss = biofam.dhd)
```

ggseqtrplot

Sequence Transition Rate Plot
Description

Function for plotting transition rate matrix of sequence states internally computed by `TraMineR::seqtrate` (Gabadinho et al. 2011). Plot is generated using `ggplot2` (Wickham 2016).

Usage

```r
ggseqtrplot(
  seqdata, 
  dss = TRUE, 
  group = NULL, 
  no.n = FALSE, 
  weighted = TRUE, 
  with.missing = FALSE, 
  labsize = NULL, 
  axislabs = "labels", 
  x_n.dodge = 1, 
  facet_ncol = NULL, 
  facet_nrow = NULL 
)
```

Arguments

- `seqdata`: State sequence object (class `stslist`) created with the `TraMineR::seqdef` function.
- `dss`: specifies if transition rates are computed for STS or DSS (default) sequences.
- `group`: A vector of the same length as the sequence data indicating group membership. When not NULL, a distinct plot is generated for each level of group.
- `no.n`: specifies if number of (weighted) sequences is shown in grouped (faceted) graph.
- `weighted`: Controls if weights (specified in `TraMineR::seqdef`) should be used. Default is TRUE, i.e. if available weights are used.
- `with.missing`: Specifies if missing state should be considered when computing the transition rates (default is FALSE).
- `labsize`: Specifies the font size of the labels within the tiles (if not specified `ggplot2`'s default is used).
- `axislabs`: specifies if sequence object's long "labels" (default) or the state names from its "alphabet" attribute should be used.
- `x_n.dodge`: allows to print the labels of the x-axis in multiple rows to avoid overlapping.
- `facet_ncol`: Number of columns in faceted (i.e. grouped) plot.
- `facet_nrow`: Number of rows in faceted (i.e. grouped) plot.

Details

The transition rates are obtained by an internal call of `TraMineR::seqtrate`. This requires that the input data (seqdata) are stored as state sequence object (class `stslist`) created with the
TraMineR::seqdef function. As STS based transition rates tend to be dominated by high values on the diagonal, it might be worthwhile to examine DSS sequences instead (dss = TRUE)). In this case the resulting plot shows the transition rates between episodes of distinct states.

In any case (DSS or STS) the transitions rates are reshaped into a a long data format to enable plotting with ggplot2. The resulting output then is prepared to be plotted with ggplot2::geom_tile. The data and specifications used for rendering the plot can be obtained by storing the plot as an object. The appearance of the plot can be adjusted just like with every other ggplot (e.g., by changing the theme or the scale using + and the respective functions).

Value
A tile plot of transition rates.

Author(s)
Marcel Raab

References

Examples

~~
Use example data from TraMineR
library(TraMineR)

biofam data set
data(biofam)
We use only a sample of 300 cases
set.seed(10)
biofam <- biofam[sample(nrow(biofam),300),]
biofam.lab <- c("Parent", "Left", "Married", "Left+Marr",
 "Child", "Left+Child", "Left+Marr+Child", "Divorced")
biofam.seq <- seqdef(biofam, 10:25, labels=biofam.lab, weights = biofam$wp00tbgs)

Basic transition rate plot (with adjusted x-axis labels)
ggseqtrplot(biofam.seq, x_n.dodge = 2)

Transition rate with group variable (with and without weights)
ggseqtrplot(biofam.seq, group=biofam$sex, x_n.dodge = 2)
ggseqtrplot(biofam.seq, group=biofam$sex, x_n.dodge = 2, weighted = FALSE)
Index

facet_grid, 3
facet_wrap, 3

gem_bar, 3
gem_boxplot, 18
gem_jitter, 18
gem_line, 3, 6
gem_rect, 10
gem_tile, 10
ggh4x, 8
ggplot, 18, 21
ggplot2, 2, 3, 5, 7–10, 12, 14–16, 19, 22, 23
ggplot2::facet_wrap, 3, 10
ggplot2::geom_bar, 13, 15
ggplot2::geom_boxplot, 17, 18
ggplot2::geom_rect, 8, 20
ggplot2::geom_tile, 23
ggplot2::stat_boxplot, 18
ggsave, 10
ggseqdplot, 2
ggseqeplot, 5
ggseqfplot, 7
ggseqiplot, 8, 9, 17, 20
ggseqmsplot, 12
ggseqmtplot, 14
ggseqrfplot, 16
ggseqrplot, 19
ggseqtrplot, 21
grDevices::boxplot.stats, 18

patchwork, 16, 18, 20
plot, 2, 5, 7, 9, 12, 14, 16, 19

TraMineR::plot.stslist.freq, 7
TraMineR::plot.stslist.rep, 20
TraMineR::seqdef, 2, 3, 5–7, 9, 10, 12–17, 20, 22, 23
TraMineR::seqdist, 16
TraMineR::seqformat, 10
TraMineR::seqHtplot, 5