Package ‘ggthemes’

April 9, 2019

Version 4.1.1

Title Extra Themes, Scales and Geoms for ‘ggplot2’

Depends R (>= 3.3.0)

Imports ggplot2 (>= 3.0.0),
 graphics,
 grid,
 methods,
 purrr,
 scales,
 stringr,
 tibble

Suggests dplyr,
 covr,
 extrafont,
 glue,
 knitr,
 lattice,
 lintr,
 maps,
 mapproj,
 pander,
 rlang,
 rmarkdown,
 spelling,
 testthat,
 tidyr,
 vdiffrr,
 withr

Description Some extra themes, geoms, and scales for 'ggplot2'.

Provides 'ggplot2' themes and scales that replicate the look of plots
by Edward Tufte, Stephen Few, 'Fivethirtyeight', 'The Economist', 'Stata',
'Excel', and 'The Wall Street Journal', among others.

Provides 'geoms' for Tufte's box plot and range frame.

License GPL-2

URL http://github.com/jrnold/ggthemes

BugReports http://github.com/jrnold/ggthemes

RoxygenNote 6.1.1
LazyData true
Language en-US
Encoding UTF-8

R topics documented:

bank_slopes .. 3
calc_pal ... 5
calc_shape_pal .. 6
canva_pal .. 6
canva_palettes .. 7
circlefill_shape_pal ... 8
cleveland_shape_pal ... 9
colorblind_pal .. 10
economist_pal .. 11
excel_new_pal .. 12
excel_pal ... 13
extended_range_breaks_ 13
few_pal .. 14
few_shape_pal .. 15
fivethirtyeight_pal .. 15
gdocs_pal ... 16
geom_rangeframe .. 16
geom_tufteboxplot .. 18
ggthemes ... 20
ggthemes_data .. 20
hc_pal .. 20
palette_pander ... 21
ptol_pal .. 22
scale_color_pander ... 22
scale_colour_canva .. 24
scale_colour_economist 24
scale_colour_excel_new 25
scale_colour_few .. 27
scale_colour_fivethirtyeight 28
scale_colour_gradient2_tableau 29
scale_colour_gradient_tableau 31
scale_colour_hc ... 32
scale_colour_ptol ... 34
scale_colour_stata ... 35
scale_colour_tableau 36
scale_colour_wsj ... 38
scale_fill_calc ... 39
scale_fill_excel ... 40
scale_fill_gdocs .. 42
scale_fill_solarized 43
scale_linetype_stata 45
scale_shape_calc .. 46
scale_shape_cleveland 48
scale_shape_few .. 49
Description

Calculate the optimal aspect ratio of a line graph by banking the slopes to 45 degrees as suggested by W.S. Cleveland. This maximizes the ability to visually differentiate differences in slope. This function will calculate the optimal aspect ratio for a line plot using any of the methods described in Herr and Argwala (2006). In their review of the methods they suggest using median absolute slope banking (‘ms’), which produces aspect ratios which are generally the median of the various methods provided here.
Usage

bank_slopes(x, y, cull = FALSE, weight = NULL, method = c("ms", "as"), ...)

Arguments

x x values
y y values
cull logical. Remove all slopes of 0 or Inf.
weight No longer used, but kept for backwards compatibility.
method One of 'ms' (Median Absolute Slope) or 'as' (Average Absolute Slope). Other options are no longer supported, and will use 'ms' instead with a warning.

Value

numeric The aspect ratio (x, y).

Methods

As written, all of these methods calculate the aspect ratio (x/y), but bank_slopes will return (y/x) to be compatible with link[ggplot2]{coord_fixed()}.

Median Absolute Slope Banking

Let the aspect ratio be \(\alpha = \frac{w}{h} \) then the median absolute slope banking is the \(\alpha \) such that,

\[
\text{median} \left| \frac{s_i}{\alpha} \right| = 1
\]

Let \(R_z = z_{\text{max}} - z_{\text{min}} \) for \(z = x, y \), and \(M = \text{median} ||s_i|| \). Then,

\[
\alpha = M \frac{R_x}{R_y}
\]

Average Absolute Slope Banking

Let the aspect ratio be \(\alpha = \frac{w}{h} \). then the mean absolute slope banking is the \(\alpha \) such that,

\[
\text{mean} \left| \frac{s_i}{\alpha} \right| = 1
\]

Heer and Agrawala (2006) and Cleveland discuss several other methods including average (weighted) orientation, and global and local orientation resolution. These are no longer implemented in this function. In general, either the median or average absolute slopes will produce reasonable results without requiring optimization.

References

calc_pal

See Also

`banking()`

Examples

```r
library("ggplot2")

# Use the classic sunspot data from Cleveland's original paper
x <- seq_along(sunspot.year)
y <- as.numeric(sunspot.year)
# Without banking
m <- ggplot(data.frame(x = x, y = y), aes(x = x, y = y)) + geom_line()
m

## Using the default method, Median Absolute Slope
ratio <- bank_slopes(x, y)
m + coord_fixed(ratio = ratio)

## Using culling
## Average Absolute Slope
bank_slopes(x, y, method = "as")
```

Description

Color palettes from LibreOffice Calc. This palette has 12 values.

Usage

```r
calc_pal()
```

See Also

Other colour calc: `scale_fill_calc`

Examples

```r
library("scales")

show_col(calc_pal()(12))
```
calc_shape_pal
Calc shape palette (discrete)

Description

Shape palette based on the shapes used in LibreOffice Calc.

Usage

```r
calc_shape_pal()
```

See Also

Other shapes calc: `scale_shape_calc`

Examples

```r
library("ggplot2")

## Not run:
show_shapes(calc_shape_pal()(13))

## End(Not run)
```

canva_pal
Canva.com color palettes

Description

150+ color palettes from canva.com. See `canva_palettes()`.

Usage

```r
canva_pal(palette = "Fresh and bright")
```

Arguments

- `palette`
 Palette name. See the names of `canva_palettes()` for valid names.

Value

A function that takes a single value, the number of colors to use.
Examples

```r
require("ggplot2")
require("purrr")
require("tibble")
require("scales")
require("dplyr")

canva_df <- map2_df(canva_palettes, names(canva_palettes),
                      ~ tibble(colors = .x, .id = seq_along(colors),
                               palette = .y))

ggplot(canva_df, aes(y = palette, x = .id, fill = colors)) +
geom_raster() +
scale_fill_identity(guide = FALSE) +
theme_minimal() +
theme(panel.grid = element_blank(),
      axis.text.x = element_blank()) +
labs(x = "", y = "")

show_col(canva_pal("Fresh and bright")(4))
show_col(canva_pal("Cool blues")(4))
show_col(canva_pal("Modern and crisp")(4))
```

canva_palettes 150 Color Palettes from Canva

Description

150 four-color palettes by the canva.com design school. These palettes were derived from photos and "impactful websites".

Usage

```r
canva_palettes
```

Format

A named list of character vector. The names are the palette names. The values of the character vectors are hex colors, e.g. "#f98866".

Source

References

- Janie Kliever, 100 Brilliant Color Combinations and How to Apply Them to Your Designs, Canva.com, June 20, 2015.
circlefill_shape_pal

Filled Circle Shape palette (discrete)

Description

Shape palette with circles varying by amount of fill. This uses the set of 3 circle fill values in Lewandowsky and Spence (1989): solid, hollow, half-filled, with two additional fill amounts: three-quarters, and one-quarter.

Usage

circlefill_shape_pal()

Details

This palette supports up to five values.

References

See Also

Other shapes: cleveland_shape_pal, scale_shape_circlefill, scale_shape_cleveland, scale_shape_tremmel, tremmel_shape_pal
Examples

library("ggplot2")

p <- ggplot(mtcars, aes(x = mpg, y = hp, shape = factor(cyl))) +
 geom_point()

p + scale_shape_tremmel()
p + scale_shape_circlefill()
p + scale_shape_cleveland()
p + scale_shape_cleveland(overlap = TRUE)

cleveland_shape_pal Shape palette from Cleveland "Elements of Graphing Data" (discrete).

Description

Shape palettes for overlapping and non-overlapping points.

Usage

cleveland_shape_pal(overlap = TRUE)

Arguments

overlap logical Use the scale for overlapping points?

Note

In the Elements of Graphing Data, W.S. Cleveland suggests two shape palettes for scatter plots: one for overlapping data and another for non-overlapping data. The symbols for overlapping data relies on pattern discrimination, while the symbols for non-overlapping data vary the amount of fill. This palette attempts to create these palettes. However, I found that these were hard to replicate. Using the R shapes and unicode fonts: the symbols can vary in size, they are dependent of the fonts used, and there does not exist a unicode symbol for a circle with a vertical line. If someone can improve this palette, please let me know.

Following Tremmel (1995), I replace the circle with a vertical line with an encircled plus sign. The palette cleveland_shape_pal() supports up to five values.

References

See Also

Other shapes: circlefill_shape_pal, scale_shape_circlefill, scale_shape_cleveland, scale_shape_tremmel, tremmel_shape_pal
colorblind_pal

Examples

```r
### (discrete).
library("ggplot2")
p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
  facet_wrap(~am) +
  theme_bw()
# overlapping symbol palette
p + scale_shape_cleveland()
# non-overlapping symbol palette
p + scale_shape_cleveland(overlap = FALSE)
```

colorblind_pal

Colorblind Color Palette (Discrete) and Scales

Description

An eight-color colorblind safe qualitative discrete palette.

Usage

```r
colorblind_pal()

scale_colour_colorblind(...)

scale_color_colorblind(...)

scale_fill_colorblind(...)
```

Arguments

... Arguments passed on to discrete_scale

`palette` A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

`breaks` One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

`limits` A character vector that defines possible values of the scale and their order.

`drop` Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

`na.translate` Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify `na.translate = FALSE`.

`na.value` If `na.translate = TRUE`, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.
scale_name The name of the scale
name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.
labels One of:
 • NULL for no labels
 • waiver() for the default labels computed by the transformation object
 • A character vector giving labels (must be same length as breaks)
 • A function that takes the breaks as input and returns labels as output
expand Vector of range expansion constants used to add some padding around
the data, to ensure that they are placed some distance away from the axes.
Use the convenience function expand_scale() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each
side for continuous variables, and by 0.6 units on each side for discrete
variables.
guide A function used to create a guide or its name. See guides() for more
info.
position The position of the axis. "left" or "right" for vertical scales, "top" or
"bottom" for horizontal scales
super The super class to use for the constructed scale

References

Chang, W. "Cookbook for R"
http://jfly.iam.u-tokyo.ac.jp/color

See Also

The dichromat package, dichromat_pal(), and scale_color_tableau() for other colorblind
palettes.

Examples

library("ggplot2")
library("scales")

show_col(colorblind_pal()(8))
p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,
 colour = factor(gear))) + facet_wrap(~am)
p + theme_igray() + scale_colour_colorblind()

economist_pal Economist color palette (discrete)

Description

The hues in the palette are blues, grays, and greens. Red is not included in these palettes and should
be used to indicate important data.
Usage

economist_pal(fill = TRUE)

Arguments

fill Use the fill palette.

See Also

Other colour economist: scale_colour_economist

Examples

library("scales")

show_col(economist_pal())(6)
```r
## fill palette
show_col(economist_pal(fill = TRUE)(6))
```

Description

Color palettes used by current versions of Microsoft Office and Excel.

Usage

excel_new_pal(theme = "Office Theme")

Arguments

See Also

Other colour excel: excel_pal, scale_colour_excel_new, scale_fill_excel

Examples

library("scales")

for (i in names(ggthemes::ggthemes_data$excel$palettes)) {
 show_col(excel_new_pal(theme = i))(6)
}
```
excel_pal

Excel 97 ugly color palettes (discrete)

Description

The color palettes used in Microsoft Excel 97 (and up until Excel 2007). Use this for that classic ugly look and feel. For ironic purposes only. 3D bars and pies not included. Please never use this color palette.

Usage

```r
excel_pal(line = TRUE)
```

Arguments

- `line` If TRUE, use the palette for lines and points. Otherwise, use the palette for area.

See Also

Other colour excel: `excel_new_pal`, `scale_colour_excel_new`, `scale_fill_excel`

Examples

```r
library("scales")

show_col(excel_pal()(7))
show_col(excel_pal(line = FALSE)(7))
```

extended_range_breaks_

Pretty axis breaks inclusive of extreme values

Description

This function returns pretty axis breaks that always include the extreme values of the data. This works by calling the extended Wilkinson algorithm (Talbot et. al, 2010), constrained to solutions interior to the data range. Then, the minimum and maximum labels are moved to the minimum and maximum of the data range.

Usage

```r
extended_range_breaks_(dmin, dmax, n = 5, Q = c(1, 5, 2, 2.5, 4, 3),
 w = c(0.25, 0.2, 0.5, 0.05))

extended_range_breaks(n = 5, ...)```
Arguments

\(\text{dmin} \) minimum of the data range
\(\text{dmax} \) maximum of the data range
\(n \) desired number of breaks
\(Q \) set of nice numbers
\(w \) weights applied to the four optimization components (simplicity, coverage, density, and legibility)
\(\ldots \) other arguments passed to \texttt{extended_range_breaks()}

Details

\texttt{extended_range_breaks} implements the algorithm and returns the break values. \texttt{scales_extended_range_breaks} uses the conventions of the \texttt{scales} package, and returns a function.

Value

For \texttt{extended_range_breaks}, the vector of axis label locations. For \texttt{scales_extended_range_breaks}, a function which takes a single argument, a vector of data, and returns the vector of axis label locations.

A function which returns breaks given a vector.

Author(s)

Justin Talbot \(<\texttt{jtalbot@stanford.edu}>\), Jeffrey B. Arnold, Baptiste Auguie

References

\texttt{few_pal} \hspace{1cm} \textit{Color Palettes Few "Show Me the Numbers"}

Description

Qualitative color palettes from Stephen Few (2012) \textit{Show Me the Numbers}. There are three palettes: Light, Medium, and Dark. Each palette comprises nine colors: gray, blue, orange, green, pink, brown, purple, yellow, red. For \(n = 1 \), gray is used. For \(n > 1 \), the eight non-gray colors are used.

Usage

\texttt{few_pal(palette = "Medium")}

Arguments

\(\text{palette} \) One of

Details

Use the light palette for filled areas, such as bar charts. Use the medium palette for points and lines. Use the dark palette for highlighting specific points or for small and thin lines and points.
few_shape_pal

References

"Practical Rules for Using Color in Charts".

See Also

Other colour few: `scale_colour_few`

Examples

```r
library("scales")
show_col(few_pal()$(7))
show_col(few_pal("Dark")$(7))
show_col(few_pal("Light")$(7))
```

fivethirtyeight_pal

Description

The standard three-color fivethirtyeight.com palette for line plots comprises blue, red, and green.

Usage

```r
fivethirtyeight_pal()
```

See Also

Other colour fivethirtyeight: `scale_colour_fivethirtyeight`
Examples

library("scales")
show_col(fivethirtyeight_pal()(3))

gdocs_pal Google Docs color palette (discrete)

Description

Color palettes from Google Docs. This palette includes 20 colors.

Usage

gdocs_pal()

See Also

Other colour gdocs: scale_fill_gdocs

Examples

library("scales")
show_col(gdocs_pal()(20))

geom_rangeframe Range Frames

Description

Axis lines which extend to the maximum and minimum of the plotted data.

Usage

geom_rangeframe(mapping = NULL, data = NULL, stat = "identity",
position = "identity", ..., sides = "bl", na.rm = FALSE,
show.legend = NA, inherit.aes = TRUE)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_. If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to `ggplot()`.
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See `fortify()` for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Other arguments passed on to `layer()`. These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

A string that controls which sides of the plot the frames appear on. It can be set
to a string containing any of 'trbl', for top, right, bottom, and left.

If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. `borders()`.

Aesthetics

- colour
- size
- linetype
- alpha

References

See Also

Other geom tufte: `geom_tufteboxplot`

Examples

```r
library("ggplot2")

ggplot(mtcars, aes(wt, mpg)) +
geom_point() +
geom_rangeframe() +
theme_tufte()
```
Description

Edward Tufte’s revisions of the box plot as described in *The Visual Display of Quantitative Information*. This function provides several box plot variants:

- A point indicating the median, a gap indicating the interquartile range, and lines for whiskers.
- An offset line indicating the interquartile range and a gap indicating the median.
- A line indicating the interquartile range, a gap indicating the median, and points indicating the minimum and maximum values.
- A wide line indicating the interquartile range, a gap indicating the median, and lines indicating the minimum and maximum.

Usage

```r
geom_tufteboxplot(mapping = NULL, data = NULL, stat = "fivenumber", position = "dodge", outlier.colour = "black", outlier.shape = 19, outlier.size = 1.5, outlier.stroke = 0.5, voffset = 0.01, hoffset = 0.005, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, median.type = "point", whisker.type = "line", ...)
```

Arguments

- `mapping`: Set of aesthetic mappings created by `aes()` or `aes()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
- `data`: The data to be displayed in this layer. There are three options:
 - If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot()`.
 - A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify()` for which variables will be created.
 - A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data.
- `stat`: The statistical transformation to use on the data for this layer, as a string.
- `position`: Position adjustment, either as a string, or the result of a call to a position adjustment function.
- `outlier.colour`: Colour for outlying points.
- `outlier.shape`: Shape of outlying points.
- `outlier.size`: Size of outlying points.
- `outlier.stroke`: Stroke for outlying points.
- `voffset`: Controls the size of the gap in the line representing the median when `median.type = 'line'`. This is a fraction of the range of `y`.
geom_tufteboxplot

hoffset
controls how much the interquartile line is offset from the whiskers when median.type = 'line'. This is a fraction of the range of x.

na.rm
If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend
logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().

median.type
If 'point', then the median is represented by a point, and the interquartile range by a gap in the line. If median.type='line', then the interquartile range is represented by a line, possibly offset, and the median by a gap in the line.

whisker.type
If 'line', then whiskers are represented by lines. If 'point', then whiskers are represented by points at ymin and ymax.

...
Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.

Aesthetics

- x [required]
- y [required]
- colour
- size
- linetype
- shape
- fill
- alpha

References

See Also

g geom_boxplot()

Other geom tuft: geom_rangeframe

Examples

library("ggplot2")
p <- ggplot(mtcars, aes(factor(cyl), mpg))
with a point for the median and lines for whiskers
p + geom_tufteboxplot()
with a line for the interquartile range and points for whiskers
p + geom_tufteboxplot(median.type = "line", whisker.type = "point", hoffset = 0)
with a wide line for the interquartile range and lines for whiskers
p + geom_tufteboxplot(median.type = "line", hoffset = 0, width = 3)
with an offset line for the interquartile range and lines for whiskers
p + geom_tufteboxplot(median.type = "line")
combined with theme_tufte
p + geom_tufteboxplot() +
 theme_tufte() +
 theme(axis.ticks.x = element_blank())

ggthemes

ggthemes_data

Description

This package contains extra themes, scales, and geoms, and functions for and related to **ggplot2**. See https://jrnold.github.io/ggthemes/ for documentation.

Usage

ggthemes_data

Format

A list object.

hc_pal

Highcharts JS color palette (discrete)

Description

The Highcharts JS uses many different color palettes in its plots. This collects a few of them.

Usage

hc_pal(palette = "default")

Arguments

- **palette** character The name of the Highcharts theme to use.
Palettes

The following palettes are defined,

- default
- dark-unica

See Also

Other colour hc: `scale_colour_hc`

palette_pander
Color palette from the pander package

Description

The `pander` ships with a default colorblind and printer-friendly color palette borrowed from http://jfly.iam.u-tokyo.ac.jp/color/.

Usage

```r
palette_pander(n, random_order = FALSE)
```

Arguments

- `n` number of colors. This palette supports up to eight colors.
- `random_order` if the palette should be reordered randomly before rendering each plot to get colorful images

See Also

Other colour pander: `scale_color_pander`

Examples

```r
## Not run:
palette_pander(TRUE)

## End(Not run)
```
ptol_pal

Color Palettes from Paul Tol’s "Colour Schemes"

Description

Qualitative color palettes from Paul Tol, "Colour Schemes".

Usage

```r
ptol_pal()
```

Details

Incorporation of the palette into an R package was originally inspired by Peter Carl’s [Paul Tol 21 Gun Salute](https://tradeblotter.wordpress.com/2013/02/28/the-paul-tol-21-color-salute/)

References

See Also

Other colour ptol: `scale_colour_ptol`

Examples

```r
library("scales")

show_col(ptol_pal()(6))
show_col(ptol_pal()(4))
show_col(ptol_pal()(12))
```

scale_color_pander

Color scale from the pander package

Description

The *pander* ships with a default colorblind and printer-friendly color palette borrowed from http://jfly.iam.u-tokyo.ac.jp/color/.

Usage

```r
scale_color_pander(...)  
scale_colour_pander(...)  
scale_fill_pander(...)  
```
Arguments

Arguments passed on to `discrete_scale`

- **palette**: A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

- **breaks**: One of:
 - `NULL` for no breaks
 - `waiver()` for the default breaks computed by the transformation object
 - A character vector of breaks
 - A function that takes the limits as input and returns breaks as output

- **limits**: A character vector that defines possible values of the scale and their order.

- **drop**: Should unused factor levels be omitted from the scale? The default, `TRUE`, uses the levels that appear in the data; `FALSE` uses all the levels in the factor.

- **na.translate**: Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify `na.translate = FALSE`.

- **na.value**: If `na.translate = TRUE`, what value aesthetic value should missing be displayed as? Does not apply to position scales where `NA` is always placed at the far right.

- **scale_name**: The name of the scale

- **name**: The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If `NULL`, the legend title will be omitted.

- **labels**: One of:
 - `NULL` for no labels
 - `waiver()` for the default labels computed by the transformation object
 - A character vector giving labels (must be same length as `breaks`)
 - A function that takes the breaks as input and returns labels as output

- **expand**: Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function `expand_scale()` to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

- **guide**: A function used to create a guide or its name. See `guides()` for more info.

- **position**: The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

- **super**: The super class to use for the constructed scale

See Also

- `theme_pander()`

Other colour pander: `palette_pander`
scale_colour_canva
Discrete color scale using canva.com color palettes

Description
Color scale for canva.com color palettes described in canva_palettes().

Usage
scale_colour_canva(..., palette = "Fresh and bright")
scale_color_canva(..., palette = "Fresh and bright")
scale_fill_canva(..., palette = "Fresh and bright")

Arguments
...
Arguments passed to discrete_scale().
palette Palette name. See the names of canva_palettes() for valid names.

scale_colour_economist
Economist color scales

Description
Color scales using the colors in the Economist graphics.

Usage
scale_colour_economist(...)
scale_color_economist(...)
scale_fill_economist(...)

Arguments
...
Arguments passed on to discrete_scale
palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take.
breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output
limits A character vector that defines possible values of the scale and their or-
der.
Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:
- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also
theme_economist() for examples.
Other colour economist: economist_pal

scale_colour_excel_new

Excel (current versions) color scales

Description
Discrete color scales used in current versions of Microsoft Office and Excel.

Usage
scale_colour_excel_new(theme = "Office Theme", ...)
scale_color_excel_new(theme = "Office Theme", ...)
scale_fill_excel_new(theme = "Office Theme", ...)
scale_colour_excel_new

Arguments

theme

Arguments passed on to discrete_scale

palette

A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks

One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits

A character vector that defines possible values of the scale and their order.

drop

Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate

Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value

If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name

The name of the scale

name

The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels

One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand

Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide

A function used to create a guide or its name. See guides() for more info.

position

The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super

The super class to use for the constructed scale
Scale colour few

See Also

Other colour excel: excel_new_pal, excel_pal, scale_fill_excel

Examples

library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)

p + theme_excel_new() + scale_colour_excel_new()

scale_colour_few

Color scales from Few’s "Practical Rules for Using Color in Charts"

Description

See few_pal().

Usage

scale_colour_few(palette = "Medium", ...)

scale_color_few(palette = "Medium", ...)

scale_fill_few(palette = "Light", ...)

Arguments

palette One of

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

 • NULL for no breaks
 • waiver() for the default breaks computed by the transformation object
 • A character vector of breaks
 • A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale
name The name of the scale. Used as the axis or legend title. If `waiver()`, the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If `NULL`, the legend title will be omitted.

labels One of:
- `NULL` for no labels
- `waiver()` for the default labels computed by the transformation object
- A character vector giving labels (must be same length as `breaks`)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around
the data, to ensure that they are placed some distance away from the axes.
Use the convenience function `expand_scale()` to generate the values for the
expand argument. The defaults are to expand the scale by 5% on each
side for continuous variables, and by 0.6 units on each side for discrete
variables.

guide A function used to create a guide or its name. See `guides()` for more
info.

position The position of the axis. "left" or "right" for vertical scales, "top" or
"bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other colour few: `few_pal`

description

Color scales using the colors in the fivethirtyeight graphics.

Usage

scale_colour_fivethirtyeight(...)
scale_color_fivethirtyeight(...)
scale_fill_fivethirtyeight(...)
• A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:
 • NULL for no labels
 • waiver() for the default labels computed by the transformation object
 • A character vector giving labels (must be same length as breaks)
 • A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

theme_fivethirtyeight() for examples.

Other colour fivethirtyeight: fivethirtyeight_pal

scale_colour_gradient2_tableau

Tableau diverging colour scales (continuous)

Description

Continuous color scales using the diverging color scales in Tableau. See scale_colour_tableau() for Tableau discrete color scales, and scale_colour_gradient_tableau() for sequential color scales.
scale_colour_gradient2_tableau

Usage

scale_colour_gradient2_tableau(palette = "Orange-Blue Diverging", ...,
na.value = "grey50", guide = "colourbar")

scale_fill_gradient2_tableau(palette = "Orange-Blue Diverging", ...,
na.value = "grey50", guide = "colourbar")

scale_color_gradient2_tableau(palette = "Orange-Blue Diverging", ...,
na.value = "grey50", guide = "colourbar")

Arguments

palette
- Palette name.
- • "ordered-sequential" "Blue-Green Sequential", "Blue Light", "Orange Light",
 "Classic Area Red", "Classic Area Green", "Classic Area-Brown"
- • "ordered-diverging" "Orange-Blue Diverging", "Red-Green Diverging",
 "Green-Blue Diverging", "Red-Blue Diverging", "Red-Black Diverging",
 "Gold-Purple Diverging", "Red-Green-Gold Diverging", "Sunset-Sunrise Diverging",
 "Orange-Blue-White Diverging", "Red-Green-White Diverging", "Green-Blue-White Diverging",
 "Red-Blue-White Diverging", "Red-Black-White Diverging", "Orange-Blue Light Diverging",
 "Classic Orange-White-Blue Light", "Classic Red-White-Green Light",
 "Classic Red-Green Light"

... Arguments passed to tableau_gradient_pal.

na.value Colour to use for missing values

guide Type of legend. Use 'colourbar' for continuous colour bar, or 'legend' for
 discrete colour legend.

See Also

Other colour tableau: scale_colour_gradient_tableau, scale_colour_tableau, tableau_color_pal,
tableau_gradient_pal

Examples

library("ggplot2")

df <- data.frame(
 x = runif(100),
 y = runif(100),
 z1 = rnorm(100),
 z2 = abs(rnorm(100))
)
p <- ggplot(df, aes(x, y)) + geom_point(aes(colour = z2))

palettes <-
scale_colour_gradient_tableau

Tableau sequential colour scales (continuous)

Description

Continuous color scales using the sequential color palettes in Tableau. See `scale_colour_tableau()` for Tableau discrete color scales, and `scale_colour_gradient2_tableau()` for diverging color scales.

Usage

```r
scale_colour_gradient_tableau(palette = "Blue", ..., na.value = "grey50", guide = "colourbar")
scale_fill_gradient_tableau(palette = "Blue", ..., na.value = "grey50", guide = "colourbar")
scale_color_gradient_tableau(palette = "Blue", ..., na.value = "grey50", guide = "colourbar")
scale_color_continuous_tableau(palette = "Blue", ..., na.value = "grey50", guide = "colourbar")
scale_fill_continuous_tableau(palette = "Blue", ..., na.value = "grey50", guide = "colourbar")
```

Arguments

- `palette` Palette name.
 - "ordered-sequential""Blue-Green Sequential","Blue Light","Orange Light","Blue","Orange","Green","Red","Purple","Brown","Gray","Gray Warm","Blue-Teal","Orange-Gold","Green-Gold","Red-Gold","Classic Green","Classic Gray","Classic Blue","Classic Red","Classic Orange","Classic Area Red","Classic Area Green","Classic Area-Brown"
scale_colour_hc

"Classic Orange-White-Blue", "Classic Red-White-Black Light",
"Classic Orange-White-Blue Light", "Classic Red-White-Green Light",
"Classic Red-Green Light"

Arguments passed to `tableau_gradient_pal`.

na.value Colour to use for missing values

guide Type of legend. Use 'colourbar' for continuous colour bar, or 'legend' for
discrete colour legend.

See Also

Other colour tableau: `scale_colour_gradient2_tableau`, `scale_colour_tableau`, `tableau_color_pal`,
`tableau_gradient_pal`

Examples

```r
library("ggplot2")

df <- data.frame(
  x = runif(100),
  y = runif(100),
  z1 = rnorm(100),
  z2 = abs(rnorm(100))
)

p <- ggplot(df, aes(x, y)) +
  geom_point(aes(colour = z2)) +
  theme_igray()

palettes <-
ggthemes_data[["tableau"]][["color-palettes"]][["ordered-sequential"]]
for (palette in head(names(palettes))) {
  print(p + scale_colour_gradient_tableau(palette) +
    ggtitle(palette))
}
```

scale_colour_hc

Highcharts color and fill scales

Description

Colour and fill scales which use the palettes in `hc_pal()` and are meant for use with `theme_hc()`.

Usage

```r
scale_colour_hc(palette = "default", ...) 

scale_color_hc(palette = "default", ...)

scale_fill_hc(palette = "default", ...)
```
Arguments

- **palette** (character) The name of the Highcharts theme to use.
- **breaks** (vector) Arguments passed on to discrete_scale
 - **palette** A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.
 - **breaks** One of:
 - `NULL` for no breaks
 - `waiver()` for default breaks computed by the transformation object
 - A character vector of breaks
 - A function that takes the limits as input and returns breaks as output
 - **limits** A character vector that defines possible values of the scale and their order.
 - **drop** Should unused factor levels be omitted from the scale? The default, `TRUE`, uses the levels that appear in the data; `FALSE` uses all the levels in the factor.
 - **na.translate** Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify `na.translate = FALSE`.
 - **na.value** If `na.translate = TRUE`, what value aesthetic value should missing be displayed as? Does not apply to position scales where `NA` is always placed at the far right.
 - **scale_name** The name of the scale
 - **name** The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If `NULL`, the legend title will be omitted.
 - **labels** One of:
 - `NULL` for no labels
 - `waiver()` for default labels computed by the transformation object
 - A character vector giving labels (must be same length as `breaks`)
 - A function that takes the breaks as input and returns labels as output
 - **expand** Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function `expand_scale()` to generate the values for the `expand` argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.
 - **guide** A function used to create a guide or its name. See `guides()` for more info.
 - **position** The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales
 - **super** The super class to use for the constructed scale

See Also

Other colour hc: `hc_pal`
scale_colour_ptol \hspace{1cm} \textit{Color Scales from Paul Tol's "Colour Schemes}

\begin{verbatim}
Description
See \texttt{ptol_pal()}. These palettes support up to 12 values.

Usage
scale_colour_ptol(...)
scale_color_ptol(...)
scale_fill_ptol(...)

Arguments
Arguments passed on to \texttt{discrete_scale}

\texttt{palette} \hspace{0.5cm} \texttt{A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.}

\texttt{breaks} \hspace{0.5cm} \texttt{One of:}
\begin{itemize}
 \item \texttt{NULL} for no breaks
 \item \texttt{waiver()} for the default breaks computed by the transformation object
 \item A character vector of breaks
 \item A function that takes the limits as input and returns breaks as output
\end{itemize}

\texttt{limits} \hspace{0.5cm} \texttt{A character vector that defines possible values of the scale and their order.}

\texttt{drop} \hspace{0.5cm} \texttt{Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; \texttt{FALSE} uses all the levels in the factor.}

\texttt{na.translate} \hspace{0.5cm} \texttt{Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify \texttt{na.translate = FALSE}.}

\texttt{na.value} \hspace{0.5cm} \texttt{If \texttt{na.translate = TRUE}, what value aesthetic value should missing be displayed as? Does not apply to position scales where \texttt{NA} is always placed at the far right.}

\texttt{scale_name} \hspace{0.5cm} \texttt{The name of the scale}

\texttt{name} \hspace{0.5cm} \texttt{The name of the scale. Used as the axis or legend title. If \texttt{waiver()}, the default, the name of the scale is taken from the first mapping used for that aesthetic. If \texttt{NULL}, the legend title will be omitted.}

\texttt{labels} \hspace{0.5cm} \texttt{One of:}
\begin{itemize}
 \item \texttt{NULL} for no labels
 \item \texttt{waiver()} for the default labels computed by the transformation object
 \item A character vector giving labels (must be same length as \texttt{breaks})
 \item A function that takes the breaks as input and returns labels as output
\end{itemize}

\texttt{expand} \hspace{0.5cm} \texttt{Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function \texttt{expand_scale()} to generate the values for the expand argument. The defaults are to expand the scale by 5\% on each}
\end{verbatim}
side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See `guides()` for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other colour ptol: `ptol_pal`

Examples

```r
library("ggplot2")

p2 <- ggplot(mtcars, aes(x = wt, y = mpg, colour = factor(gear))) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  scale_color_ptol("cyl") +
  theme_minimal() +
  ggtitle("Cars")

ggplot(diamonds, aes(x = clarity, fill = cut)) +
  geom_bar() +
  scale_fill_ptol() +
  theme_minimal()
```

`scale_colour_stata`

Stata color scales

scale_colour_stata

Description

See `stata_pal()` for details.

Usage

```r
scale_colour_stata(scheme = "s2color", ...)

scale_fill_stata(scheme = "s2color", ...)

scale_color_stata(scheme = "s2color", ...)
```

Arguments

- **scheme** character. One of "s2color", "s1rcolor", "s1color", or "mono".
- **...** Arguments passed on to `discrete_scale`

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

scale_colour_tableau Tableau color scales (discrete)

Description

Categorical (qualitative) color scales used in Tableau. Use the function scale_colour_gradient_tableau() for the sequential and scale_colour_gradient2_tableau() for the diverging continuous color scales from Tableau.

Usage

scale_colour_tableau(palette = "Tableau 10", type = "regular", ...)
scale_fill_tableau(palette = "Tableau 10", type = "regular", ...)
scale_color_tableau(palette = "Tableau 10", type = "regular", ...)
Arguments

palette Palette name. See `tableau_color_pal()` for available palettes.
type Palette type. One of "regular", "sequential", or "diverging". See `tableau_color_pal()`. Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
- `waiver()` for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify `na.translate = FALSE`.

na.value If `na.translate = TRUE`, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- `waiver()` for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function `expand_scale()` to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See `guides()` for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

`tableau_color_pal()` for references.

Other colour tableau: `scale_colour_gradient2_tableau, scale_colour_gradient_tableau, tableau_color_pal, tableau_gradient_pal`
Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
  facet_wrap(~am) +
  theme_igray()

palettes <- ggthemes_data[["tableau"]][["color-palettes"]][["regular"]]
for (palette in head(names(palettes), 3L)) {
  print(p + scale_colour_tableau(palette) +
        ggtitle(palette))
}
```

scale_colour_wsj
Wall Street Journal color and fill scales

Description

Colour and fill scales which use the palettes in `wsj_pal()`. These scales should be used with `theme_wsj()`.

Usage

```r
scale_colour_wsj(palette = "colors6", ...)
scale_color_wsj(palette = "colors6", ...)
scale_fill_wsj(palette = "colors6", ...)
```

Arguments

- `palette` character The color palette to use: "rgb", "red_green", "black_green", "dem_rep", "colors6"
- `...` Arguments passed on to `discrete_scale`

- `palette` A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

- `breaks` One of:
 - `NULL` for no breaks
 - `waiver()` for the default breaks computed by the transformation object
 - A character vector of breaks
 - A function that takes the limits as input and returns breaks as output

- `limits` A character vector that defines possible values of the scale and their order.

- `drop` Should unused factor levels be omitted from the scale? The default, `TRUE`, uses the levels that appear in the data; `FALSE` uses all the levels in the factor.

- `na.translate` Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify `na.translate = FALSE`.

```r
```
scale_fill_calc

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:
 • NULL for no labels
 • waiver() for the default labels computed by the transformation object
 • A character vector giving labels (must be same length as breaks)
 • A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other colour wsj: wsj_pal

scale_fill_calc LibreOffice Calc color scales

Description

Color scales from LibreOffice Calc.

Usage

scale_fill_calc(...)

scale_colour_calc(...)

scale_color_calc(...)

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.
drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.
na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.
scale_name The name of the scale
name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.
labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output
expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.
guide A function used to create a guide or its name. See guides() for more info.
position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales
super The super class to use for the constructed scale

See Also
See theme_calc() for examples.
Other colour calc: calc_pal

scale_fill_excel Excel 97 ugly color scales

Description
The classic "ugly" color scales from Excel 97.
Usage

scale_fill_excel(...)

scale_colour_excel(...)

scale_color_excel(...)

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
 number of levels in the scale) returns the values that they should take.

breaks One of:
 • NULL for no breaks
 • waiver() for the default breaks computed by the transformation object
 • A character vector of breaks
 • A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their or-
 der.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses
 the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing
 values, and do so by default. If you want to remove missing values from a
 discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing
 be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
 • NULL for no labels
 • waiver() for the default labels computed by the transformation object
 • A character vector giving labels (must be same length as breaks)
 • A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around
 the data, to ensure that they are placed some distance away from the axes.
 Use the convenience function expand_scale() to generate the values for
 the expand argument. The defaults are to expand the scale by 5% on each
 side for continuous variables, and by 0.6 units on each side for discrete
 variables.

guide A function used to create a guide or its name. See guides() for more
 info.

position The position of the axis. "left" or "right" for vertical scales, "top" or
 "bottom" for horizontal scales

super The super class to use for the constructed scale
See Also

Other colour excel: `excel_new_pal, excel_pal, scale_colour_excel_new`

Examples

```r
library("ggplot2")

# Line and scatter plot colors
p <- ggplot(mtcars) +
   geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
   facet_wrap(~am)

p + theme_excel() + scale_colour_excel()

# Bar plot (area/fill) colors
ggplot(mpg, aes(x = class, fill = drv)) +
   geom_bar() +
   scale_fill_excel() +
   theme_excel()
```

scale_fill_gdocs: *Google Docs color scales*

Description

Color scales from Google Docs.

Usage

```r
scale_fill_gdocs(...)  
scale_colour_gdocs(...)  
scale_color_gdocs(...)  
```

Arguments

... Arguments passed on to `discrete_scale`

palettes A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify `na.translate` = FALSE.
If `na.translate = TRUE`, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

`scale_name` The name of the scale

`name` The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

`labels` One of:
- `NULL` for no labels
- `waiver()` for the default labels computed by the transformation object
- A character vector giving labels (must be same length as `breaks`)
- A function that takes the breaks as input and returns labels as output

`expand` Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function `expand_scale()` to generate the values for the `expand` argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

`guide` A function used to create a guide or its name. See `guides()` for more info.

`position` The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

`super` The super class to use for the constructed scale

See Also

See `theme_gdocs()` for examples.

Other colour gdocs: `gdocs_pal`

scale_fill_solarized
Solarized color scales

Description

See `solarized_pal()` for details.

Usage

```r
scale_fill_solarized(accent = "blue", ...)
```

```r
scale_colour_solarized(accent = "blue", ...)
```

```r
scale_color_solarized(accent = "blue", ...)
```
Arguments

accent character Starting color.

Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:
- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:
- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other solarized colour: solarized_pal

Examples

library("ggplot2")
scale_linetype_stata

```r
p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
  facet_wrap(~am)
p + theme_solarized() +
  scale_colour_solarized()
```

scale_linetype_stata
Stata linetype palette (discrete)

Description

See `stata_linetype_pal()` for details.

Usage

```r
scale_linetype_stata(...)
```

Arguments

`...`
Arguments passed on to `discrete_scale`

`palette`
A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

`breaks`
One of:
- `NULL` for no breaks
- `waiver()` for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

`limits`
A character vector that defines possible values of the scale and their order.

`drop`
Should unused factor levels be omitted from the scale? The default, `TRUE`, uses the levels that appear in the data; `FALSE` uses all the levels in the factor.

`na.translate`
Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify `na.translate = FALSE`.

`na.value`
If `na.translate = TRUE`, what value aesthetic value should missing be displayed as? Does not apply to position scales where `NA` is always placed at the far right.

`aesthetics`
The names of the aesthetics that this scale works with

`scale_name`
The name of the scale

`name`
The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If `NULL`, the legend title will be omitted.

`labels`
One of:
- `NULL` for no labels
- `waiver()` for the default labels computed by the transformation object
- A character vector giving labels (must be same length as `breaks`)
- A function that takes the breaks as input and returns labels as output

`guide`
A function used to create a guide or its name. See `guides()` for more info.

`super`
The super class to use for the constructed scale
scale_shape_calc

Calc shape scale

Description

See calc_shape_pal() for details.

Usage

scale_shape_calc(...)

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:
 • NULL for no breaks
 • waiver() for the default breaks computed by the transformation object
 • A character vector of breaks
 • A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

Examples

require("dplyr")
require("tidyr")
require("ggplot2")
rescale01 <- function(x) {
 (x - min(x)) / diff(range(x))
}
gather(economics, variable, value, -date) %>%
group_by(variable) %>%
mutate(value = rescale01(value)) %>%
ggplot(aes(x = date, y = value, linetype = variable)) +
 geom_line() +
 scale_linetype_stata()
aesthetics The names of the aesthetics that this scale works with
scale_name The name of the scale
name The name of the scale. Used as the axis or legend title. If `waiver()`, the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.
labels One of:
 • NULL for no labels
 • waiver() for the default labels computed by the transformation object
 • A character vector giving labels (must be same length as breaks)
 • A function that takes the breaks as input and returns labels as output
guide A function used to create a guide or its name. See `guides()` for more
 info.
super The super class to use for the constructed scale

See Also
 theme_calc() for examples.
Other shapes calc: calc_shape_pal

scale_shape_circlefill

Filled Circle Shape palette (discrete)

Description
 Filled Circle Shape palette (discrete)

Usage
 scale_shape_circlefill(...)

Arguments
 ...
 Arguments passed on to discrete_scale
 palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take.
 breaks One of:
 • NULL for no breaks
 • waiver() for the default breaks computed by the transformation object
 • A character vector of breaks
 • A function that takes the limits as input and returns breaks as output
 limits A character vector that defines possible values of the scale and their or-
der.
 drop Should unused factor levels be omitted from the scale? The default, TRUE,
uses the levels that appear in the data; FALSE uses all the levels in the factor.
 na.translate Unlike continuous scales, discrete scales can easily show missing
values, and do so by default. If you want to remove missing values from a
discrete scale, specify `na.translate = FALSE`.
scale_shape_cleveland

`na.value` If `na.translate = TRUE`, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

`aesthetics` The names of the aesthetics that this scale works with

`scale_name` The name of the scale

`name` The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If `NULL`, the legend title will be omitted.

`labels` One of:
- `NULL` for no labels
- `waiver()` for the default labels computed by the transformation object
- A character vector giving labels (must be same length as `breaks`)
- A function that takes the breaks as input and returns labels as output

`guide` A function used to create a guide or its name. See `guides()` for more info.

`super` The super class to use for the constructed scale

See Also

`circlefill_shape_pal()` for a description of the palette.

Other shapes: `circlefill_shape_pal`, `cleveland_shape_pal`, `scale_shape_cleveland`, `scale_shape_tremmel`, `tremmel_shape_pal`

scale_shape_cleveland *Shape scales from Cleveland "Elements of Graphing Data"

Description

Shape scales from Cleveland "Elements of Graphing Data"

Usage

`scale_shape_cleveland(overlap = TRUE, ...)`

Arguments

`overlap` logical Use the scale for overlapping points?

`...` Arguments passed on to `discrete_scale`

`palette` A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

`breaks` One of:
- `NULL` for no breaks
- `waiver()` for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

`limits` A character vector that defines possible values of the scale and their order.
drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

aesthetics The names of the aesthetics that this scale works with

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:
- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

guide A function used to create a guide or its name. See guides() for more info.

super The super class to use for the constructed scale

References

See Also
cleveland_shape_pal() for a description of the palette.

Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_circlefill, scale_shape_tremmel, tremmel_shape_pal

descriptive summary

scale_shape_few Scales for shapes from "Show Me the Numbers"

Description

scale_shape_few() maps discrete variables to up to five easily discernible shapes. It is based on the shape palette suggested in Few (2012).

Usage

scale_shape_few(...)

Arguments

... Common discrete_scale() parameters.
scale_shape_stata

References

See Also

`scale_shape_few()` for the shape palette that this scale uses.

scale_shape_stata Stata shape scale

Description

See `stata_shape_pal()` for details.

Usage

`scale_shape_stata(...)`

Arguments

`...` Arguments passed on to `discrete_scale`

`palette` A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

`breaks` One of:
 - `NULL` for no breaks
 - `waiver()` for the default breaks computed by the transformation object
 - A character vector of breaks
 - A function that takes the limits as input and returns breaks as output

`limits` A character vector that defines possible values of the scale and their order.

`drop` Should unused factor levels be omitted from the scale? The default, `TRUE`, uses the levels that appear in the data; `FALSE` uses all the levels in the factor.

`na.translate` Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify `na.translate = FALSE`.

`na.value` If `na.translate = TRUE`, what value aesthetic value should missing be displayed as? Does not apply to position scales where `NA` is always placed at the far right.

`aesthetics` The names of the aesthetics that this scale works with

`scale_name` The name of the scale

`name` The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If `NULL`, the legend title will be omitted.

`labels` One of:
 - `NULL` for no labels
 - `waiver()` for the default labels computed by the transformation object
 - A character vector giving labels (must be same length as `breaks`
scale_shape_tableau

- A function that takes the breaks as input and returns labels as output
guide A function used to create a guide or its name. See guides() for more info.
super The super class to use for the constructed scale

Examples

library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
 facet_wrap(~am)
p + theme_stata() + scale_shape_stata()

scale_shape_tableau Tableau shape scales

Description

See tableau_shape_pal() for details.

Usage

scale_shape_tableau(palette = "default", ...)

Arguments

palette Palette name.
...
Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.
breaks One of:
 - NULL for no breaks
 - waiver() for the default breaks computed by the transformation object
 - A character vector of breaks
 - A function that takes the limits as input and returns breaks as output
limits A character vector that defines possible values of the scale and their order.
drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.
na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.
aesthetics The names of the aesthetics that this scale works with
scale_name The name of the scale
scale_shape_tremmel

name The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:
- NULL for no labels
- `waiver()` for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

guide A function used to create a guide or its name. See `guides()` for more info.

super The super class to use for the constructed scale

See Also

Other shape tableau: `tableau_shape_pal`

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
  facet_wrap(~am)

p + scale_shape_tableau()
```

Description

Shape scales from Tremmel (1995)

Usage

```r
scale_shape_tremmel(overlap = FALSE, alt = TRUE, ...)
```

Arguments

- **overlap** use an empty circle instead of a solid circle when \(n = 2 \).
- **alt** If TRUE, then when \(n = 3 \), use a solid circle, plus sign and empty triangle. Otherwise use a solid circle, empty circle, and empty triangle.
- **...** Arguments passed on to `discrete_scale`

- **palette** A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

- **breaks** One of:
 - NULL for no breaks
 - `waiver()` for the default breaks computed by the transformation object
 - A character vector of breaks
 - A function that takes the limits as input and returns breaks as output
show_linetypes

limits A character vector that defines possible values of the scale and their order.
drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.
na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.
aesthetics The names of the aesthetics that this scale works with
scale_name The name of the scale
name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.
labels One of:
 • NULL for no labels
 • waiver() for the default labels computed by the transformation object
 • A character vector giving labels (must be same length as breaks)
 • A function that takes the breaks as input and returns labels as output
guide A function used to create a guide or its name. See guides() for more info.
super The super class to use for the constructed scale

See Also
tremmel_shape_pal() for a description of the palette.
Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_circlefill, scale_shape_cleveland, tremmel_shape_pal

Examples
library("ggplot2")

p <- ggplot(mtcars, aes(x = mpg, y = hp, shape = factor(cyl))) + geom_point()
p + scale_shape_tremmel()
p + scale_shape_tremmel(alt = TRUE)
p + scale_shape_tremmel(overlap = TRUE)

show_linetypes Show linetypes

Description
A quick and dirty way to show linetypes.

Usage
show_linetypes(linetypes, labels = TRUE)
show_shapes

Arguments

linetypes A character vector of linetypes. See \texttt{par}().
labels Label each line with its linetype (lty) value.

Value

This function called for the side effect of creating a plot. It returns linetypes.

See Also

\texttt{show_col()}, \texttt{show_linetypes()}

Examples

library("scales")

show_linetypes(linetype_pal()(3))
show_linetypes(linetype_pal()(3), labels = TRUE)

show_shapes

Show shapes

Description

A quick and dirty way to show shapes.

Usage

\texttt{show_shapes(shapes, labels = TRUE)}

Arguments

shapes A numeric or character vector of shapes. See \texttt{par}().
labels Include the plotting character value of the symbol.

Value

This function called for the side effect of creating a plot. It returns shapes.

See Also

\texttt{show_col()}, \texttt{show_linetypes()}

Examples

library("scales")

show_shapes(shape_pal()(5))
show_shapes(shape_pal()(3), labels = TRUE)
smart_digits

smart_digits

Format numbers with automatic number of digits

Description

Format numbers with automatic number of digits

Usage

```
smart_digits(x, ...)
smart_digits_format(x, ...)
```

Arguments

- `x`
 A numeric vector to format

- `...`
 Parameters passed to `format()`

Value

A character vector. `smart_digits_format()` returns a function with a single argument `x`, a numeric vector, that returns a character vector.

Author(s)

Josh O’Brien, Baptise Auguie, Jeffrey B. Arnold

References

solarized_pal

solarized_pal

Solarized color palette (discrete)

Description

Qualitative color palette based on the Ethan Schoonover’s Solarized palette, http://ethanschoonover.com/solarized. This palette supports up to seven values.

Usage

```
solarized_pal(accent = "blue")
```

Arguments

- `accent`
 character Starting color.
Note

For a given starting color and number of colors in the palette, the other colors are the combination of colors that maximizes the total Euclidean distance between colors in L*a*b space.

See Also

Other solarized colour: `scale_fill_solarized`

Examples

```r
library("scales")
show_col(solarized_pal()$(2))
show_col(solarized_pal()$(3))
show_col(solarized_pal("red")$(4))
```

stata_linetype_pal

Stata linetype palette (discrete)

Description

Linetype palette based on the linepattern scheme in Stata. This palette supports up to 15 values.

Usage

```r
stata_linetype_pal()
```

See Also

`scale_linetype_stata()

Other linetype stata: `scale_linetype_stata`

stata_pal

Stata color palettes (discrete)

Description

Usage

```r
stata_pal(scheme = "s2color")
```

Arguments

- `scheme` character. One of "s2color", "s1rcolor", "s1color", or "mono".

Details

All these palettes support up to 15 values.
Examples

library("scales")
show_col(stata_pal("s2color")(15))
show_col(stata_pal("s1rcolor")(15))
show_col(stata_pal("s1color")(15))
show_col(stata_pal("mono")(15))

Stata shape palette (discrete)

Description

Shape palette based on the symbol palette in Stata used in scheme s2mono. This palette supports up to 10 values.

Usage

stata_shape_pal()

See Also

See scale_shape_stata() for examples.

stat_fivenumber

Calculate components of a five-number summary

Description

The five number summary of a sample is the minimum, first quartile, median, third quartile, and maximum.

Usage

stat_fivenumber(mapping = NULL, data = NULL, geom = "boxplot",
probs = c(0, 0.25, 0.5, 0.75, 1), na.rm = FALSE,
position = "identity", show.legend = NA, inherit.aes = TRUE, ...)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_. If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data.
geom
probs
na.rm
position
show.legend
position
show.legend
inherit.aes
Value
A data frame with additional columns:
width
min
lower
middle
upper
max
See Also
stat_boxplot()

tableau_color_pal
Tableau Color Palettes (discrete)

Description
Color palettes used in Tableau.

Usage
tableau_color_pal(palette = "Tableau 10", type = c("regular",
"ordered-sequential", "ordered-diverging"), direction = 1)

Arguments
palette
Type of palette. One of "regular", "ordered-diverging", or "ordered-sequential".
direction
If 1, the default, then use the original order of colors. If -1, then reverse the
order.
Tableau provides three types of color palettes: "regular" (discrete, qualitative categories), "ordered-sequential", and "ordered-diverging".

References

http://vis.stanford.edu/color-names/analyzer/

Maureen Stone, 'Designing Colors for Data' (slides), at the International Symposium on Compu-
tational Aesthetics in Graphics, Visualization, and Imaging, Banff, AB, Canada, June 22, 2007

See Also

Other colour tableau: scale_colour_gradient2_tableau, scale_colour_gradient_tableau,

Examples

library("scales")

palettes <- ggthemes_data[["tableau"]][["color-palettes"]][["regular"]]
for (palname in names(palettes)) {
 pal <- tableau_color_pal(palname)
 max_n <- attr(pal, "max_n")
 show_col(pal(max_n))
 title(main = palname)
}
tableau_gradient_pal
Tableau colour gradient palettes (continuous)

Description
Gradient color palettes using the diverging and sequential continua color palettes in Tableau. See
tableau_color_pal() for discrete color palettes.

Usage
```
tableau_gradient_pal(palette = "Blue", type = "ordered-sequential")
tableau_seq_gradient_pal(palette = "Blue", ...)
tableau_div_gradient_pal(palette = "Orange-Blue Diverging", ...)
```

Arguments
```
palette  Palette name.
  •  "ordered-sequential""Blue-Green Sequential", "Blue Light", "Orange Light", 
      "Classic Area Red", "Classic Area Green", "Classic Area-Brown"
  •  "ordered-diverging""Orange-Blue Diverging", "Red-Green Diverging", 
      "Green-Blue Diverging", "Red-Blue Diverging", "Red-Black Diverging", 
      "Gold-Purple Diverging", "Red-Green-Gold Diverging", "Sunset-Sunrise Diverging", 
      "Orange-Blue-White Diverging", "Red-Green-White Diverging", "Green-Blue-White Div" 
      "Red-Blue-White Diverging", "Red-Black-White Diverging", "Orange-Blue Light Diver", 
      "Classic Orange-White-Blue Light", "Classic Red-White-Black Light", 
      "Classic Orange-White-Blue Light", "Classic Red-White-Black Light",

  type  Palette type, either "ordered-sequential" or "ordered-diverging".

...  Arguments passed to tableau_gradient_pal.
```

See Also
Other colour tableau: ```

scale_colour_gradient2_tableau, scale_colour_gradient_tableau,

scale_colour_tableau, tableau_color_pal
```

Examples
```
library("scales")
x <- seq(0, 1, length = 25)
r <- sqrt(outer(x ^ 2, x ^ 2, "+"))

palettes <- gthemes_data["tableau"][["color-palettes"]][["ordered-sequential"]]
```
for (palname in names(palettes)) {
  col <- tableau_seq_gradient_pal(palname)(seq(0, 1, length = 12))
  image(r, col = col)
  title(main = palname)
}

**Description**

Shape palettes used by Tableau.

**Usage**

`tableau_shape_pal(palette = c("default", "filled", "proportions"))`

**Arguments**

- `palette` Palette name.

**Details**

Not all shape palettes in Tableau are supported. Additionally, these palettes are not exact, and use the best unicode character for the shape palette.

Since these palettes use unicode characters, their look may depend on the font being used, and not all characters may be available.

Shape palettes in Tableau are used to expose images for use a markers in charts, and thus are sometimes groupings of closely related symbols.

**See Also**

Other shape tableau: `scale_shape_tableau`

**Examples**

```r
Not run:
need to set a font containing these values
show_shapes(tableau_shape_pal()(5))
End(Not run)
```
theme_base  

*Theme Base*

**Description**

Theme similar to the default settings of the ‘base’ R graphics.

**Usage**

```r
theme_base(base_size = 16, base_family = "")
```

**Arguments**

- `base_size`  
  base font size

- `base_family`  
  base font family

**See Also**

Other themes: `theme_foundation`, `theme_igray`, `theme_par`, `theme_solid`

**Examples**

```r
library("ggplot2")

p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,
 colour = factor(gear))) + facet_wrap(~am)

p + theme_base()

Change values of par
par(fg = "blue", bg = "gray", col.lab = "red", font.lab = 3)

p + theme_base()
```

date_theme_calculate  

*Theme Calc*

**Description**

Theme similar to the default settings of LibreOffice Calc charts.

**Usage**

```r
theme_calc(base_size = 10, base_family = "sans")
```

**Arguments**

- `base_size`  
  base font size

- `base_family`  
  base font family
Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am) + theme_calc()

p + scale_color_calc()

q <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
 facet_wrap(~am) +
 theme_calc()

q + scale_shape_calc()
```

theme_economist  ggplot color theme based on the Economist

Description

A theme that approximates the style of *The Economist*.

Usage

```r
theme_economist(base_size = 10, base_family = "sans",
 horizontal = TRUE, dkpanel = FALSE)

theme_economist_white(base_size = 11, base_family = "sans",
 gray_bg = TRUE, horizontal = TRUE)
```

Arguments

- `base_size`: base font size
- `base_family`: base font family
- `horizontal`: logical Horizontal axis lines?
- `dkpanel`: logical Darker background for panel region?
- `gray_bg`: logical If TRUE, use gray background, else use white background.

Details

theme_economist implements the standard bluish-gray background theme in the print *The Economist* and economist.com.

theme_economist_white implements a variant with a while panel and light gray (or white) background often used by *The Economist* blog Graphic Detail.

Use `scale_color_economist()` with this theme. The x axis should be displayed on the right hand side.

*The Economist* uses "ITC Officina Sans" as its font for graphs. If you have access to this font, you can use it with the `extrafont` package. "Verdana" is a good substitute.

Value

An object of class `theme()`.
References

- The Economist

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am) +
 # Economist puts x-axis labels on the right-hand side
 scale_y_continuous(position = "right")

Standard
p + theme_economist() +
 scale_colour_economist()

Change axis lines to vertical
p + theme_economist(horizontal = FALSE) +
 scale_colour_economist() +
 coord_flip()

White panel/light gray background
p + theme_economist_white() +
 scale_colour_economist()

All white variant
p + theme_economist_white(gray_bg = FALSE) +
 scale_colour_economist()

Not run:
The Economist uses ITC Officina Sans
library("extrafont")
p + theme_economist(base_family="ITC Officina Sans") +
 scale_colour_economist()

Verdana is a widely available substitute
p + theme_economist(base_family="Verdana") +
 scale_colour_economist()

End(Not run)
```

---

**theme_excel**  
*ggplot theme based on old Excel plots*

**Description**

Theme to replicate the ugly monstrosity that was the old gray-background Excel chart. Please never use this. This theme should be combined with the `scale_colour_excel()` color scale.
theme_excel_new

Usage

theme_excel(base_size = 12, base_family = "", horizontal = TRUE)

Arguments

- base_size: base font size
- base_family: base font family
- horizontal: logical. Horizontal axis lines?

Value

An object of class theme().

See Also

Other themes excel: theme_excel_new

Examples

library("ggplot2")

# Line and scatter plot colors
p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
  facet_wrap(~am)

p + theme_excel() + scale_colour_excel()

# Bar plot (area/fill) colors

ggplot(mpg, aes(x = class, fill = drv)) +
  geom_bar() +
  scale_fill_excel() +
  theme_excel()

theme_excel_new

ggplot theme similar to current Excel plot defaults

Description

Theme for ggplot2 that is similar to the default style of charts in current versions of Microsoft Excel.

Usage

theme_excel_new(base_size = 9, base_family = "sans")

Arguments

- base_size: base font size
- base_family: base font family

Value

An object of class theme().
See Also

Other themes excel: theme_excel

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)

p + theme_excel_new() + scale_colour_excel_new()
```

```
theme_few

Theme based on Few’s “Practical Rules for Using Color in Charts”

Description

Theme based on the rules and examples from Stephen Few’s Show Me the Numbers and "Practical Rules for Using Color in Charts".

Usage

```
theme_few(base_size = 12, base_family = "")
```

Arguments

- **base_size**: base font size
- **base_family**: base font family

References

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
  facet_wrap(~am)

p + theme_few() + scale_colour_few()

p + theme_few() + scale_colour_few("Light")

p + theme_few() + scale_colour_few("Dark")

ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
  theme_few() +
  scale_shape_few()
```
theme_fivethirtyeight

Theme inspired by fivethirtyeight.com plots

Description
Theme inspired by the plots on http://fivethirtyeight.com.

Usage
theme_fivethirtyeight(base_size = 12, base_family = "sans")

Arguments
base_size base font size
base_family base font family

Examples
library("ggplot2")
p <- ggplot(mtcars, aes(x = wt, y = mpg, colour = factor(gear))) +
 geom_point() +
 facet_wrap(~am) +
 geom_smooth(method = "lm", se = FALSE) +
 scale_color_fivethirtyeight() +
 theme_fivethirtyeight()
p

theme_foundation
Foundation Theme

Description
This theme is designed to be a foundation from which to build new themes, and not meant to be used
directly. theme_foundation() is a complete theme with only minimal number of elements defined.
It is easier to create new themes by extending this one rather than theme_gray() or theme_bw(),
because those themes define elements deep in the hierarchy.

Usage
theme_foundation(base_size = 12, base_family = "")

Arguments
base_size base font size
base_family base font family

Details
This theme takes theme_gray() and sets all colour and fill values to NULL, except for the top-
level elements (line, rect, and title), which have colour = "black", and fill = "white".
This leaves the spacing and-non colour defaults of the default ggplot2 themes in place.
theme_gdocs

Description

Theme similar to the default look of charts in Google Docs.

Usage

```r
theme_gdocs(base_size = 12, base_family = "sans")
```

Arguments

- `base_size`: base font size
- `base_family`: base font family

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
  facet_wrap(~am)

p + theme_gdocs() + scale_color_gdocs()
```

theme_hc

Description

Theme based on the plots in HighchartsJS.

Usage

```r
theme_hc(base_size = 12, base_family = "sans", style = c("default", "darkunica"), bgcolor = NULL)
```

Arguments

- `base_size`: base font size
- `base_family`: base font family
- `style`: The Highcharts theme to use 'default', 'darkunica'.
- `bgcolor`: Deprecated
References

http://www.highcharts.com/demo/line-basic
https://github.com/highslide-software/highcharts.com/tree/master/js/themes

Examples

library("ggplot2")

p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,
colour = factor(gear))) + facet_wrap(~am)
p + theme_hc() + scale_colour_hc()
p + theme_hc(bgcolor = "darkunica") +
 scale_colour_hc("darkunica")

dtemp <- data.frame(months = factor(rep(substr(month.name, 1, 3), 4),
 levels = substr(month.name, 1, 3)),
city = rep(c("Tokyo", "New York", "Berlin", "London"),
each = 12),
temp = c(7.0, 6.9, 9.5, 14.5, 18.2, 21.5,
 25.2, 26.5, 23.3, 18.3, 13.9, 9.6,
 -0.2, 0.8, 5.7, 11.3, 17.0, 22.0,
 24.8, 24.1, 20.1, 14.1, 8.6, 2.5,
 -0.9, 0.6, 3.5, 8.4, 13.5, 17.0,
 18.6, 17.9, 14.3, 9.0, 3.9, 1.0,
 3.9, 4.2, 5.7, 8.5, 11.9, 15.2,
 17.0, 16.6, 14.2, 10.3, 6.6, 4.8))

ggplot(dtemp, aes(x = months, y = temp, group = city, color = city)) +
 geom_line() +
 geom_point(size = 1.1) +
 ggtitle("Monthly Average Temperature") +
 theme_hc() +
 scale_colour_hc()

ggplot(dtemp, aes(x = months, y = temp, group = city, color = city)) +
 geom_line() +
 geom_point(size = 1.1) +
 ggtitle("Monthly Average Temperature") +
 theme_hc(bgcolor = "darkunica") +
 scale_fill_hc("darkunica")

\begin{verbatim}
theme_igray
\end{verbatim}

\textit{Inverse gray theme}

\textbf{Description}

Theme with white panel and gray background.

\textbf{Usage}

\begin{verbatim}
theme_igray(base_size = 12, base_family = "")
\end{verbatim}
Arguments

 base_size base font size
 base_family base font family

Details

This theme inverts the colors in the theme_gray(), a white panel and a light gray area around it. This keeps a white background for the color scales like theme_bw(). But by using a gray background, the plot is closer to the typographical color of the document, which is the motivation for using a gray panel in theme_gray(). This is similar to the style of plots in Stata and Tableau.

See Also

 theme_gray(), theme_bw()

Other themes: theme_base, theme_foundation, theme_par, theme_solid

Examples

library("ggplot2")

p <- ggplot(mtcars) +
 geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
 facet_wrap(~am)
p + theme_igray()

theme_map

Clean theme for maps

Description

A clean theme that is good for displaying maps from geom_map().

Usage

 theme_map(base_size = 9, base_family = "")

Arguments

 base_size base font size
 base_family base font family

Examples

library("maps")
library("ggplot2")

us <- fortify(map_data("state"), region = "region")

gg <- ggplot() +
 geom_map(data = us, map = us,
 aes(x = long, y = lat, map_id = region, group = group),
 fill = "white", color = "black", size = 0.25) +
 coord_map("albers", lat0 = 39, lat1 = 45) +
theme_pander

A ggplot theme originated from the pander package

Description

The pander ships with a default theme when the 'unify plots' option is enabled via panderOptions, which is now also available outside of pander internals, like evals, eval.msgs or Pandoc.brew.

Usage

theme_pander(base_size = 12, base_family = "sans", nomargin = TRUE, ff = NULL, fc = "black", fs = NULL, gM = TRUE, gm = TRUE, gc = "grey", gl = "dashed", boxes = FALSE, bc = "white", pc = "transparent", lp = "right", axis = 1)

Arguments

base_size base font size
base_family base font family
nomargin suppress the white space around the plot (boolean)
ff font family, like sans. Deprecated: use base_family instead.
fcs font color (name or hexa code)
fs font size (integer). Deprecated: use base_size instead.
gM major grid (boolean)
gm minor grid (boolean)
gc grid color (name or hexa code)
g1 grid line type (lty)
boxes to render a border around the plot or not
bc background color (name or hexa code)
pe panel background color (name or hexa code)
lp legend position
axis axis angle as defined in par(les)

Examples

require("ggplot2")
require("pander")

p <- ggplot(mtcars, aes(x = mpg, y = wt)) +
 geom_point()
 p + theme_pander()

panderOptions("graph.grid.color", "red")
p + theme_pander()
theme_par

Theme which uses the current 'base' graphics parameter values from `par()`. Not all `par()` parameters, are supported, and not all are relevant to `ggplot2` themes.

Description

Usage

```r
theme_par(base_size = par()$ps, base_family = par()$family)
```

Arguments

- `base_size` base font size
- `base_family` base font family

Details

This theme does not translate the base graphics perfectly, so the graphs produced by it will not be identical to those produced by base graphics, most notably in the spacing of the margins.

See Also

Other themes: `theme_base`, `theme_foundation`, `theme_igray`, `theme_solid`

Examples

```r
library("ggplot2")

p <- ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +
  geom_point()
p + theme_pander() + scale_color_pander()

ggplot(mpg, aes(x = class, fill = drv)) +
  geom_bar() +
  scale_fill_pander() +
  theme_pander()
```

```r
# theme changes with respect to values of par
par(font = 2, col.lab = "red", fg = "white", bg = "black")
p + theme_par()
```
theme_solarized

ggplot color themes based on the Solarized palette

Description

Usage
theme_solarized(base_size = 12, base_family = "", light = TRUE)

theme_solarized_2(base_size = 12, base_family = "", light = TRUE)

Arguments
- base_size: base font size
- base_family: base font family
- light: logical. Light or dark theme?

Details
Plots made with this theme integrate seamlessly with the Solarized Beamer color theme. https://github.com/jrnold/beamercolorthemesolarized. There are two variations: theme_solarized is similar to theme_bw(), while theme_solarized_2() is similar to theme_gray().

Examples
```r
library("ggplot2")
p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg, colour = factor(gear)))

# Light version with different main accent colors
for (accent in names(ggthemes::ggthemes_data[["solarized"]][["accents"]])) {
  print(p + theme_solarized() + scale_colour_solarized(accent))
}

# Dark version
p + theme_solarized(light = FALSE) + scale_colour_solarized("blue")

# Alternative theme
p + theme_solarized_2(light = FALSE) + scale_colour_solarized("blue")
```
theme_solid

Theme with nothing other than a background color

Description

Theme that removes all non-geom elements (lines, text, etc). This theme is when only the geometric objects are desired.

Usage

```r
theme_solid(base_size = 12, base_family = "", fill = NA)
```

Arguments

- `base_size`: Base font size.
- `base_family`: Ignored, kept for consistency with `theme()`.
- `fill`: Background color of the plot.

See Also

Other themes: `theme_base`, `theme_foundation`, `theme_igray`, `theme_par`

Examples

```r
library("ggplot2")

ggplot(mtcars, aes(wt, mpg)) +
  geom_point() +
  theme_solid(fill = "white")

ggplot(mtcars, aes(wt, mpg)) +
  geom_point(color = "white") +
  theme_solid(fill = "black")
```

theme_stata

Themes based on Stata graph schemes

Description

Themes based on Stata graph schemes

Usage

```r
theme_stata(base_size = 11, base_family = "sans", scheme = "s2color")
```

Arguments

- `base_size`: Base font size
- `base_family`: Base font family
- `scheme`: One of "s2color", "s2mono", "s1color", "s1rcolor", or "s1mono", "s2manual", "s1manual", or "sj"
Details

These themes approximate Stata schemes using the features `ggplot2`. The graphical models of Stata and `ggplot2` differ in various ways that make an exact replication impossible (or more difficult than it is worth). Some features in Stata schemes not in `ggplot2`: defaults for specific graph types, different levels of titles, captions and notes. These themes also adopt some of the `ggplot2` defaults, and more effort was made to match the colors and sizes of major elements than in matching the margins.

References

http://www.stata.com/help.cgi?schemes

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
  facet_wrap(~ am) +
  labs(title = "Graphs by car type",
       x = "Weight (lbs.)", y = "MPG")

# s2color
p + theme_stata() +
  scale_colour_stata("s2color")
# s2mono
p + theme_stata(scheme = "s2mono") +
  scale_colour_stata("mono")
# s1color
p + theme_stata(scheme = "s1color") +
  scale_colour_stata("s1color")
# s1rcolor
p + theme_stata(scheme = "s1rcolor") +
  scale_colour_stata("s1rcolor")
# s1mono
p + theme_stata(scheme = "s1mono") +
  scale_colour_stata("mono")
```

theme_tufte

Tufted Maximal Data, Minimal Ink Theme

Description

Theme based on Chapter 6 'Data-Ink Maximization and Graphical Design' of Edward Tufte *The Visual Display of Quantitative Information*. No border, no axis lines, no grids. This theme works best in combination with `geom_rug()` or `geom_rangeframe()`.

Usage

```r
theme_tufte(base_size = 11, base_family = "serif", ticks = TRUE)
```
Arguments

base_size base font size
base_family base font family
ticks logical Show axis ticks?

Note

The default font family is set to 'serif' as he uses serif fonts for labels in 'The Visual Display of Quantitative Information'. The serif font used by Tufte in his books is a variant of Bembo, while the sans serif font is Gill Sans. If these fonts are installed on your system, then you can use them with the package extrafont.

References

Examples

library("ggplot2")

p <- ggplot(mtcars, aes(x = wt, y = mpg)) +
 geom_point() +
 scale_x_continuous(breaks = extended_range_breaks()(mtcars$wt)) +
 scale_y_continuous(breaks = extended_range_breaks()(mtcars$mpg)) +
 ggtitle("Cars")

p + geom_rangeframe() +
 theme_tufte()

p + geom_rug() +
 theme_tufte(ticks = FALSE)

theme_wsj

Wall Street Journal theme

Description

Theme based on the plots in The Wall Street Journal.

Usage

theme_wsj(base_size = 12, color = "brown", base_family = "sans", title_family = "mono")

Arguments

base_size base font size
color The background color of plot. One of 'brown', 'gray', 'green', 'blue'.
base_family base font family
title_family Plot title font family.
Details

This theme should be used with `scale_color_wsj()`.

References

https://twitter.com/WSJGraphics
https://pinterest.com/wsjgraphics/wsj-graphics/

Examples

```r
library("ggplot2")

p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
  facet_wrap(~am) +
  ggtitle("Diamond Prices")
p + scale_colour_wsj("colors6", ") + theme_wsj()
# Use a gray background instead
p + scale_colour_wsj("colors6", ") + theme_wsj(color = "gray")
```

tremmel_shape_pal

Shape palette from Tremmel (1995) (discrete)

Description

Based on experiments Tremmel (1995) suggests the following shape palettes:

Usage

tremmel_shape_pal(overlap = FALSE, alt = FALSE, n3alt = NULL)

Arguments

overlap, alt, n3alt

Details

If two symbols, then use a solid circle and plus sign.

If three symbols, then use a solid circle, empty circle, and an empty triangle. However, that set of symbols does not satisfy the requirement that each symbol should differ from the other symbols in the same feature dimension. A set of three symbols that satisfies this is a circle (curvature), plus sign (number of terminators), triangle (line orientation).

This palette supports up to three values. If more than three groups of data, then separate the groups into different plots.

References

See Also

Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_circlefill, scale_shape_cleveland, scale_shape_tremmel

wsj_pal

Wall Street Journal color palette (discrete)

Description

The Wall Street Journal uses many different color palettes in its plots. This collects a few of them, but is by no means exhaustive. Collections of these plots can be found on the WSJ Graphics Twitter feed and Pinterest.

Usage

```r
wsj_pal(palette = "colors6")
```

Arguments

- `palette` character The color palette to use: "rgby", "red_green", "black_green", "dem_rep", "colors6"

Palettes

The following palettes are defined,

- **rgby** Red/Green/Blue/Yellow theme. Examples: https://twitpic.com/b2e3v2. Up to four values.
- **green_black** Black-green 4-color scale for 'Very negative', 'Somewhat negative', 'somewhat positive', 'very positive'. Examples: https://twitpic.com/awbua0.
- **dem_rep** Democrat/Republican/Undecided blue/red/gray scale. Examples: https://twitpic.com/awbua0.
- **colors6** Red, blue, gold, green, orange, and black palette. Examples: https://twitpic.com/9gfg5q.

See Also

Other colour wsj: `scale_colour_wsj`
Index

*Topic datasets
 canva_palettes, 7
gem_rangeframe, 16
gem_tufteboxplot, 18
ggthemes_data, 20
stat_fivenumber, 57

aes(), 16, 18, 57
aes_(), 16, 18, 57
bank_slopes, 3
banking, 5
borders(), 17, 19, 58
calc_pal, 5, 40
calc_shape_pal, 6, 46, 47
canva_pal, 6
canva_palettes, 6, 7, 24
circlefill_shape_pal, 8, 9, 48, 49, 53, 78
cleveland_shape_pal, 8, 9, 48, 49, 53, 78
colorblind_pal, 11
dichromat_pal, 11
discrete_scale, 24, 49
economist_pal, 11, 25
economics_new_pal, 12, 13, 27, 42
economics_pal, 12, 13, 27, 42
expand_scale(), 11, 23, 25, 26, 28, 29, 33, 34, 36, 37, 39–41, 43, 44
extended_range_breaks
 (extended_range_breaks_), 13
extended_range_breaks, 13
few_pal, 14, 27, 28
few_shape_pal, 15
fivethirtyeight_pal, 15, 29
format, 55
fortify(), 17, 18, 57
gdocs_pal, 16, 43
gem_boxplot, 19
gem_map, 70
gem_rangeframe, 16, 19, 75
gem_rug, 75
gem_tufteboxplot, 17, 18
GeomRangeFrame (geom_rangeframe), 16
GeomTufteboxplot (geom_tufteboxplot), 18
ggplot(), 17, 18, 57
ggthemes, 20
ggthemes-package (ggthemes), 20
ggthemes_data, 20
hc_pal, 20, 32, 33
layer(), 17, 19, 58
palette_pander, 21, 23
par, 54, 72
ptol_pal, 22, 34, 35
scale_color_calc (scale_fill_calc), 39
scale_color_canva (scale_colour_canva), 24
scale_color_colorblind
 (colorblind_pal), 10
scale_color_continuous_tableau
 (scale_colour_gradient_tableau), 31
scale_color_economist, 63
scale_color_economist
 (scale_colour_economist), 24
scale_color_excel
 (scale_colour_excel), 40
scale_color_excel_new
 (scale_colour_excel_new), 25
scale_color_few
 (scale_colour_few), 27
scale_color_fivethirtyeight
 (scale_colour_fivethirtyeight), 28
scale_color_gdocs
 (scale_fill_gdocs), 42
scale_color_gradient2_tableau
 (scale_colour_gradient2_tableau), 29
scale_color_gradient_tableau
 (scale_colour_gradient_tableau), 31
scale_color_hc
 (scale_colour_hc), 32
scale_color_pander, \texttt{21, 22}
scale_color_ptol(scale_colour_ptol), \texttt{34}
scale_color_solarized
(scale_fill_solarized), \texttt{43}
scale_color_stata(scale_colour_stata),
\texttt{35}
scale_color_tableau, \texttt{11}
scale_color_tableau
(scale_colour_tableau), \texttt{36}
scale_color_wsj, \texttt{77}
scale_color_wsj(scale_colour_wsj), \texttt{38}
scale_colour_calc(scale_fill_calc), \texttt{39}
scale_colour_canva, \texttt{24}
scale_colour_colorblind
(colorblind_pal), \texttt{10}
scale_colour_economist, \texttt{12, 24}
scale_colour_excel, \texttt{64}
scale_colour_excel(scale_fill_excel),
\texttt{40}
scale_colour_excel_new, \texttt{12, 13, 25, 42}
scale_colour_few, \texttt{15, 27}
scale_colour_fivethirtyeight, \texttt{15, 28}
scale_colour_gdocs(scale_fill_gdocs),
\texttt{42}
scale_colour_gradient2_tableau, \texttt{29, 32, 37, 59, 60}
scale_colour_gradient2_tableau(), \texttt{31, 36}
scale_colour_gradient_tableau, \texttt{30, 31, 37, 59, 60}
scale_colour_gradient_tableau(), \texttt{29, 36}
scale_colour_hc, \texttt{21, 32}
scale_colour_pander
(scale_color_pander), \texttt{22}
scale_colour_ptol, \texttt{22, 34}
scale_colour_solarized
(scale_fill_solarized), \texttt{43}
scale_colour_stata, \texttt{35}
scale_colour_tableau, \texttt{30, 32, 36, 59, 60}
scale_colour_tableau(), \texttt{29, 31}
scale_colour_wsj, \texttt{38, 78}
scale_fill_calc, \texttt{5, 39}
scale_fill_canva(scale_colour_canva),
\texttt{24}
scale_fill_colorblind(colorblind_pal),
\texttt{10}
scale_fill_continuous_tableau
(scale_colour_gradient_tableau), \texttt{31}
scale_fill_economist
(scale_colour_economist), \texttt{24}
scale_fill_excel, \texttt{12, 13, 27, 40}
scale_fill_excel_new
(scale_colour_excel_new), \texttt{25}
scale_fill_few(scale_colour_few), \texttt{27}
scale_fill_fivethirtyeight
(scale_colour_fivethirtyeight), \texttt{28}
scale_fill_gdocs, \texttt{16, 42}
scale_fill_gradient2_tableau
(scale_colour_gradient2_tableau),
\texttt{29}
scale_fill_gradient_tableau
(scale_colour_gradient_tableau), \texttt{31}
scale_fill_hc(scale_colour_hc), \texttt{32}
scale_fill_pander(scale_color_pander),
\texttt{22}
scale_fill_ptol(scale_colour_ptol), \texttt{34}
scale_fill_solarized, \texttt{43, 56}
scale_fill_stata(scale_colour_stata),
\texttt{35}
scale_fill_tableau
(scale_colour_tableau), \texttt{36}
scale_fill_wsj(scale_colour_wsj), \texttt{38}
scale_linetype_stata, \texttt{45, 56}
scale_shape_calc, \texttt{6, 46}
scale_shape_circlefill, \texttt{8, 9, 47, 49, 53, 78}
scale_shape_cleveland, \texttt{8, 9, 48, 48, 53, 78}
scale_shape_few, \texttt{49, 50}
scale_shape_stata, \texttt{50, 57}
scale_shape_tableau, \texttt{51, 61}
scale_shape_tremmel, \texttt{8, 9, 48, 49, 52, 78}
show_col, \texttt{54}
show_linetypes, \texttt{53, 54}
show_shapes, \texttt{54}
smart_digits, \texttt{55}
smart_digits_format(smart_digits), \texttt{55}
solarized_pal, \texttt{43, 44, 55}
stat_boxplot, \texttt{58}
stat_fivenumber, \texttt{57}
sta_t_linetype_pal, \texttt{45, 46, 56}
sta_t_pal, \texttt{35, 56}
sta_t_shape_pal, \texttt{50, 57}
Statfivenumber(stat_fivenumber), \texttt{57}
tableau_color_pal, \texttt{30, 32, 37, 58, 60}
tableau_color_pal(), \texttt{37, 60}
tableau_div_gradient_pal
(tableau_gradient_pal), \texttt{60}
tableau_gradient_pal, \texttt{30, 32, 37, 59, 60}
tableau_seq_gradient_pal
(tableau_gradient_pal), \texttt{60}
tableau_shape_pal, \texttt{51, 52, 61}
theme, \texttt{63, 65, 74}
theme_base, 62, 68, 70, 72, 74
theme_bw, 67, 70, 73
theme_calc, 40, 47, 62
theme_economist, 25, 63
theme_economist_white
 (theme_economist), 63
theme_excel, 64, 66
theme_excel_new, 65, 65
theme_few, 66
theme_fivethirtyeight, 29, 67
theme_foundation, 62, 67, 70, 72, 74
theme_gdocs, 43, 68
theme_gray, 67, 70, 73
theme_hc, 32, 68
theme_igray, 62, 68, 69, 72, 74
theme_map, 70
theme_pander, 23, 71
theme_par, 62, 68, 70, 72, 74
theme_solarized, 73
theme_solarized_2 (theme_solarized), 73
theme_solid, 62, 68, 70, 72, 74
theme_stata, 74
theme_tufte, 75
theme_wsj, 38, 76
tremmel_shape_pal, 8, 9, 48, 49, 53, 77
wsj_pal, 38, 39, 78