Package ‘ghcm’

November 2, 2023

Type Package
Title Functional Conditional Independence Testing with the GHCM
Version 3.0.1
Description A statistical hypothesis test for conditional independence. Given residuals from a sufficiently powerful regression, it tests whether the covariance of the residuals is vanishing. It can be applied to both discretely-observed functional data and multivariate data. Details of the method can be found in Anton Rask Lundborg, Rajen D. Shah and Jonas Peters (2022) <doi:10.1111/rssb.12544>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports CompQuadForm, Rcpp, splines
Depends R (>= 4.0.0)
RoxygenNote 7.2.3
Suggests graphics, stats, utils, refund, testthat, knitr, rmarkdown, bookdown, ggplot2, reshape2, dplyr, tidyvr
URL https://github.com/arlundborg/ghcm
BugReports https://github.com/arlundborg/ghcm/issues
VignetteBuilder knitr
LinkingTo Rcpp
NeedsCompilation yes
Author Anton Rask Lundborg [aut, cre], Rajen D. Shah [aut], Jonas Peters [aut]
Maintainer Anton Rask Lundborg <arl@math.ku.dk>
Repository CRAN
Date/Publication 2023-11-02 13:20:03 UTC
ghcm_sim_data

R topics documented:

- ghcm
- ghcm_sim_data
- ghcm_test
- inner_product_matrix_splines

Index

ghcm: A package for Functional Conditional Independence Testing

Description

To learn more about ghcm, start with the vignette: `browseVignettes(package = "ghcm")`

ghcm_sim_data: GHCM simulated data

Description

A simulated dataset containing a combination of functional and scalar variables. Y_1 and Y_2 are scalar random variables and are both functions of Z. X, Z and W are functional, Z is a function of X and W is a function of Z.

Usage

- ghcm_sim_data
- ghcm_sim_data_irregular

Format

- ghcm_sim_data is a data frame with 500 rows of 5 variables:
 - Y_1 Numeric vector.
 - Y_2 Numeric vector.
 - Z 500 x 101 matrix.
 - X 500 x 101 matrix.
 - W 500 x 101 matrix.

- ghcm_sim_data_irregular is a list with 5 elements:
 - Y_1 Numeric vector.
 - Y_2 Numeric vector.
 - Z 500 x 101 matrix.
X A data frame with
 .obs Integer between 1 and 500 indicating which curve the row corresponds to.
 .index Function argument that the curve is evaluated at.
 .value Value of the function.

W A data frame with
 .obs Integer between 1 and 500 indicating which curve the row corresponds to.
 .index Function argument that the curve is evaluated at.
 .value Value of the function.

Details

In ghcm_sim_data the functional variables each consists of 101 observations on an equidistant grid
on [0, 1].

In ghcm_sim_data_irregular the functional variables X and W are instead only observed on a
subsample of the original equidistant grid.

Source

The generation script can be found in the data-raw folder of the package.

ghcm_test Conditional Independence Test using the GHCM

Description

Test whether X is independent of Y given Z using the Generalised Hilbertian Covariance Measure.
The function is applied to residuals from regressing each of X and Y on Z respectively. Its validity
is contingent on the performance of the regression methods. For a more in-depth explanation see
the package vignette or the paper mentioned in the references.

Usage

ghcm_test(
 resid_X_on_Z,
 resid_Y_on_Z,
 X_limits = NULL,
 Y_limits = NULL,
 alpha = 0.05
)

Arguments

\texttt{resid_X_on_Z, resid_Y_on_Z}

Residuals from regressing X (Y) on Z with a suitable regression method. If X (Y) is univariate or functional on a constant, fixed grid, the residuals should be supplied as a vector or matrix with no missing values. If instead X (Y) is functional and observed on varying grids or with missing values, the residuals should be supplied as a "melted" data frame with

- \texttt{.obs} Integer indicating which curve the row corresponds to.
- \texttt{.index} Function argument that the curve is evaluated at.
- \texttt{.value} Value of the function.

Note that in the irregular case, a minimum of 4 observations per curve is required.

\texttt{X_limits, Y_limits}

The minimum and maximum values of the function argument of the X (Y) curves. Ignored if X (Y) is not functional.

\texttt{alpha}

Numeric in the unit interval. Significance level of the test.

Value

An object of class \texttt{ghcm} containing:

- \texttt{test_statistic} Numeric, test statistic of the test.
- \texttt{p} Numeric in the unit interval, estimated p-value of the test.
- \texttt{alpha} Numeric in the unit interval, significance level of the test.
- \texttt{reject} \texttt{TRUE} if \texttt{p < alpha}, \texttt{FALSE} otherwise.

References

Examples

```r
if (require(refund)) {
  set.seed(1)
  data(ghcm_sim_data)
  grid <- seq(0, 1, length.out = 101)

  # Test independence of two scalars given a functional variable
  m_1 <- pfr(Y_1 ~ lf(Z), data=ghcm_sim_data)
  m_2 <- pfr(Y_2 ~ lf(Z), data=ghcm_sim_data)
  ghcm_test(resid(m_1), resid(m_2))

  # Test independence of a regularly observed functional variable and a scalar variable given a functional variable
```
inner_product_matrix_splines

Computes the matrix of L2 inner products of the splines given in list_of_splines as produced by splines::interpSpline. The splines are assumed to be functions on the interval [from, to].

Description

Computes the matrix of L2 inner products of the splines given in list_of_splines as produced by splines::interpSpline. The splines are assumed to be functions on the interval [from, to].

Usage

inner_product_matrix_splines(list_of_splines, from, to)
Arguments

- list_of_splines
 - list of interpSpline objects.
- from, to
 - limits of integration.

Value

- matrix of inner products.
Index

* datasets
 ghcm_sim_data, 2

ghcm, 2
ghcm_sim_data, 2
gerhc_sim_data_irregular
 (ghcm_sim_data), 2
ghcm_test, 3

inner_product_matrix_splines, 5