Package ‘glca’

Type Package
Title Latent Class Analysis with Group Variable
Date 2020-09-08
Version 1.0.1
Author Youngsun Kim [aut, cre],
Hwan Chung [aut]
Maintainer Youngsun Kim <kim@sun@korea.ac.kr>
Description Fits latent class analysis (LCA) including group variable and covariates.
The group variable can be handled either by multilevel LCA described in Vermunt (2003) <DOI:10.1111/j.0081-1750.2003.t01-1-00131.x> or standard LCA at each level of group variable.
The covariates can be incorporated in the form of logistic regression (Bandeen-Roche et al. (1997) <DOI:10.1080/01621459.1997.10473658>.
License GPL-3
BugReports https://github.com/kim0sun/glca/issues
Encoding UTF-8
LazyData true
Depends R (>= 3.5.0)
RoxygenNote 7.1.1
Imports MASS, Rcpp
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-09-08 06:50:03 UTC

R topics documented:

 nefq 2
 glca-package 2
 coef.glca 3
 glca 3
Description

Fits latent class analysis (LCA) including group variable and covariates. The group variable can be handled either by multilevel LCA described in Vermunt (2003) <DOI:10.1111/j.0081-1750.2003.t01-1-00131.x> or standard LCA at each level of group variable. The covariates can be incorporated in the form of logistic regression (Bandeen-Roche et al. (1997) <DOI:10.1080/01621459.1997.10473658>.

Description

Extracts regression coefficients of glca model if the model includes covariates.

Usage

```r
## S3 method for class 'glca'
coef(
  object,         
  intercept = FALSE, 
  digits = max(3,getOption("digits") - 3), 
  show.signif.stars = getOption("show.signif.stars"), 
  ...
)
```

Arguments

- `object`: an object of "glca"
- `intercept`: a logical value for whether to print intercept
- `digits`: number of significant digits to use when printing
- `show.signif.stars`: logical. If TRUE, ‘significance stars’ are printed for each coefficient
- `...`: further arguments passed to or from other methods
Value

Coefficient matrix from the glca model

If the model has calculated standard errors, coefficient matrix contains standard errors, t-statistic, and its p-value.

See Also

glca

Examples

For examples see example(glca)
The \texttt{glca} is the function for implementing LCA consist of two-type latent categorical variables (i.e., level-1 and level-2 latent class). The level-1 (individual-level) latent class is identified by the association among the individuals’ responses to multiple manifest items, but level-2 (group-level) latent class is categorized by the prevalence of level-1 latent class for group variable. The function \texttt{glca} can handle two types of covariates: level-1 and level-2 covariates. If covariates vary across individuals, they are considered as level-1 covariates. When \texttt{group} and \texttt{ncluster (>1)} are given, covariates which are varying across groups are considered as level-2 covariates. Both types of covariates have effect on level-1 class prevalence.

The formula should consist of an \texttt{~} operator between two sides. Manifest items should be indicated in LHS of formula using \texttt{item} function and covariates should be specified in RHS of formula. For example,

\begin{verbatim}
item(y1,y2,y3) ~ 1
item(y1,y2,y3) ~ x1 + x2
\end{verbatim}

where the first formula indicates LCA with three manifest variables (y1, y2, and y3) and no covariate, and the second formula includes two covariates (x1 and x2). Two types of covariates (i.e., level-1 and level-2 covariates) will be automatically detected by \texttt{glca}.

The estimated parameters in \texttt{glca} are rho, gamma, delta, and beta. The set of item response probabilities for each level-1 class is rho. The sets of prevalences for level-1 and level-2 class are gamma and delta, respectively. The prevalence for level-1 class (i.e., gamma) can be modeled as logistic regression using level-1 and/or level-2 covariates. The set of logistic regression coefficients is beta in \texttt{glca} output.
Value

`glca` returns an object of class "glca".

The function `summary` prints estimates for parameters and `glca.gof` function gives goodness of fit measures for the model.

An object of class "glca" is a list containing the following components:

- `call`: the matched call
- `call`: the `terms` object used.
- `model`: a list of model description
- `datalist`: a list of data used for fitting
- `param`: a list of parameter estimates
- `std.err`: a list of standard errors for estimates
- `coefficient`: a list of logistic regression coefficients for prevalence of level-1 class
- `posterior`: a data frame of posterior probabilities of each individual for latent classes and each group for latent clusters
- `gof`: a list of goodness of fit measures
- `convergence`: a list containing information about convergence

Author(s)

Youngsun Kim

References

See Also

`gss08` `nyts18`

Examples

```r
## Example 1. GSS dataset
##
data("gss08")
# LCA
lca = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
           data = gss08, nclass = 3)
summary(lca)

# LCA with covariate(s)
lcr = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ AGE,
          data = gss08, nclass = 3)
summary(lcr)
```
Multiple-group LCA (MGLCA)

```r
glca = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
            group = DEGREE, data = gss08, nclass = 3)
```

Multiple-group LCA with covariate(s) (MGLCR)

```r
glcr = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ SEX,
            group = DEGREE, data = gss08, nclass = 3)
```

Example 2. NYTS dataset

```r
##
data("nyts18")
# Multilevel LCA (MLCA)
mlca = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ 1,
             group = SCH_ID, data = nyts18, nclass = 3, ncluster = 2)
```

MLCA with covariate(s) (MLCR)

```r
# (SEX: level-1 covariate, SCH_LEV: level-2 covariate)
mlcr = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ SEX + SCH_LEV,
             group = SCH_ID, data = nyts18, nclass = 3, ncluster = 2)
```

glca.gof

Goodness of Fit Tests for Fitted glca Model

Description

Provides AIC, CAIC, BIC, entropy and deviance statistic for goodness of fit test for the fitted model. Given object2, the function computes the log-likelihood ratio (LRT) statistic for comparing the goodness of fit for two models. The bootstrap p-value can be obtained from the empirical distribution of LRT statistic by choosing test = "boot".

Usage

```r
glca.gof(
  object,
  ...,
  test = NULL,
)```
nboot = 50,  
random.seed = NULL,  
criteria = c("logLik", "AIC", "CAIC", "BIC", "entropy"),  
maxiter = 500,  
eps = 1e-04,  
verbose = FALSE)

Arguments

object an object of "glca", usually, a result of a call to glca
... an optional object of "glca" to be compared with object
test a character string indicating type of test (chi-square test or bootstrap) to obtain the p-value for goodness of fit test ("chisq" or "boot")
nboot number of bootstrap samples, only used when test = "boot"
random.seed random seed to have the equivalent solution for every bootstrap trials
criteria a character vector indicating criteria to be printed.
maxiter an integer for maximum number of iteration for bootstrap sample
eps positive convergence tolerance for bootstrap sample
verbose an logical value for whether or not to print the result of a function’s execution

Value

gtable a matrix with model goodness-of-fit criteria
dtable a matrix with deviance statistic and bootstrap p-value
boot a list of LRT statistics from each bootstrap sample
gtable, which is always included in output of this function, includes goodness-of-fit criteria which are indicated criteria arguments for the object(s). dtable are contained when the objects are competing models. (when used items of the models are identical) dtable prints deviance and p-value. (bootstrap or chi-square) Lastly, when the bootstrap sample is used, the G^2-statistics for each bootstrap samples will be included in return object..

Author(s)

Youngsun Kim

References


See Also
glca gss08 nyts18

Examples

```r
Example 1.
Model selection between two LCA models with different number of latent classes.
data(gss08)
class2 = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
 data = gss08, nclass = 2)
class3 = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
 data = gss08, nclass = 3)
class4 = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
 data = gss08, nclass = 4)
glca.gof(class2, class3, class4)
Not run: glca.gof(class2, class3, class4, test = "boot")

Example 2.
Model selection between two MLCA models with different number of latent clusters.
class2 = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ 1,
 group = SCH_ID, data = nyts18, nclass = 2, ncluster = 2)
class3 = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ 1,
 group = SCH_ID, data = nyts18, nclass = 2, ncluster = 3)
glca.gof(class2, class3)
Not run: glca.gof(class2, class3, test = "boot")

Example 3.
MGLCA model selection under the measurement (invariance) assumption across groups.
measInv = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
 group = DEGREE, data = gss08, nclass = 3)
measVar = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
 group = DEGREE, data = gss08, nclass = 3, measure.inv = FALSE)
glca.gof(measInv, measVar)
glca.gof(measInv, measVar, test = "chisq")
```

---

**gss08**

*General Social Study (GSS) 2008*
Description

This dataset includes 6 manifest items about abortion and several covariates from 355 respondents to the 2008 General Social Survey. Respondents answer the questions whether or not think it should be possible for a pregnant woman to obtain a legal abortion. The covariates include age, sex, race, region, and degree of respondents.

Format

A data frame with 355 observations on 11 variables.

DEFECT  If there is a strong chance of serious defect in the baby?
HLTH   If the woman’s own health is seriously endangered by the pregnancy?
RAPE   If she became pregnant as a result of rape?
POOR   If the family has a very low income and cannot afford any more children?
SINGLE If she is not married and does not want to marry the man?
NOMORE If she is married and does not want any more children?
AGE    Respondent’s age
SEX    Respondent’s race
RACE   Respondent’s sex
REGION Region of interview
DEGREE Respondent’s degree

Source

http://gss.norc.org

References

Smith, Tom W, Peter Marsden, Michael Hout, and Jibum Kim. General Social Surveys, 2008/Principal Investigator, Tom W. Smith; Co-Principal Investigator, Peter V. Marsden; Co-Principal Investigator, Michael Hout; Sponsored by National Science Foundation. -NORC ed.- Chicago: NORC at the University of Chicago

Examples

data("gss")
# Model 1: LCA
lca = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,  
data = gss08, nclass = 3)
summary(lca)

# Model 2: LCA with a covariate
lcr = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ SEX,  
data = gss08, nclass = 3)
summary(lcr)
coef(lcr)
# Model 3: MGLCA
mglca = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ 1,
              group = REGION, data = gss08, nclass = 3)

# Model 4: MGLCA with covariates
summary(mglca)
mglcr = glca(item(DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE) ~ AGE,
              group = SEX, data = gss08, nclass = 3)
summary(mglcr)
coef(mglcr)

---

**item**

*Specifies Manifest Items for glca*

**Description**

Specifying manifest items in formula of glca function.

**Usage**

```
item(..., starts.with = NULL, ends.with = NULL)
```

**Arguments**

- `...` vectors of manifest items. These can be given as named arguments which is colnames of `data.frame`.
- `starts.with` a string
- `ends.with` a string

**Value**

A matrix of specified variables, which contains names and levels of manifest items.

**See Also**

- `glca`

**Examples**

```
For examples see example(glca)
```
National Youth Tobacco Survey (NYTS) 2018 This dataset includes 5 manifest items about abortion and several covariates. From the original 2018 National Youth Tobacco Survey data, the Non Hispanic, white students are selected and schools with 30-50 students were selected. Thus, the dataset has 1743 respondents. The covariates include the sex of the respondents and the school ID to which the respondents belong, and the level of the corresponding school.

Description

National Youth Tobacco Survey (NYTS) 2018 This dataset includes 5 manifest items about abortion and several covariates. From the original 2018 National Youth Tobacco Survey data, the Non Hispanic, white students are selected and schools with 30-50 students were selected. Thus, the dataset has 1743 respondents. The covariates include the sex of the respondents and the school ID to which the respondents belong, and the level of the corresponding school.

Format

A data frame with 1743 observations on the following 8 variables.

ECIGT  Whether to have tried cigarette smoking, even one or two puffs
ECIGAR Whether to have ever tried cigar smoking, even one or two puffs
ESLT  Whether to have used chewing tobacco, snuff, or dip
EELCIGT Whether to have used electronic cigarettes or e-cigarettes
EHOOKAH Whether to have tried smoking tobacco from a hookah or a waterpipe
SEX  Respondent’s Sex
SCH_ID School ID to which the respondent belongs
SCH_LEV Level of the corresponding school

Source

https://www.cdc.gov/tobacco/data_statistics/surveys/nyts/index.htm

Examples

data("nyts18")

# Model 1: LCA
lca = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ 1,
  data = nyts18, nclass = 3)
summary(lca)

# Model 2: LCR
lca = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ SEX,
  data = nyts18, nclass = 3)
summary(lca)
coef(lca)

# Model 3: MGLCA
mglca = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ 1,
    group = SEX, data = nyts18, nclass = 3)
summary(mglca)

# Model 4: MLCA
mlca = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ 1,
    group = SCH_ID, data = nyts18, nclass = 3, ncluster = 2)
summary(mlca)

# Model 5: MLCA with level-1 covariate(s) only
mlcr = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ SEX,
    group = SCH_ID, data = nyts18, nclass = 3, ncluster = 2)
summary(mlcr)
coef(mlcr)

# Model 6: MLCA with level-1 and level-2 covariate(s)
# (SEX: level-1 covariate, PARTY: level-2 covariate)
mlcr2 = glca(item(ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH) ~ SEX + SCH_LEV,
    group = SCH_ID, data = nyts18, nclass = 3, ncluster = 2)
summary(mlcr2)
coef(mlcr2)

---

plot.glca

Plots the Estimated Parameters of Fitted glca Model

Description

plot method for class "glca".

Usage

## S3 method for class 'glca'
plot(x, ask = TRUE, ...)

Arguments

x an object of "glca", usually, a result of a call to glca
ask a logical value whether to be asked before each plot, see par(ask=.).
... further arguments passed to or from other methods

Value

This function plots estimated parameters of model.
See Also

\texttt{glca gss08 nyts18}

Examples

### Not run:

# LCA
lca = \texttt{glca}((\texttt{DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE}) \sim 1, \\
\texttt{data = gss08, nclass = 3, na.rm = TRUE})
plot(lca)

# Multiple Group LCA (MGLCA)
mglca1 = \texttt{glca}((\texttt{DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE}) \sim 1, \\
\texttt{group = DEGREE, data = gss08, nclass = 3})
plot(mglca1)

# Multiple Group LCA (MGLCA) (measure.inv = FALSE)
mglca2 = \texttt{glca}((\texttt{DEFECT, HLTH, RAPE, POOR, SINGLE, NOMORE}) \sim 1, \\
\texttt{group = DEGREE, data = gss08, nclass = 3, measure.inv = FALSE})
plot(mglca2)
plot(mglca2, "all")

# Multilevel LCA (MLCA)
mlca = \texttt{glca}((\texttt{ECIGT, ECIGAR, ESLT, EELCIGT, EHOOKAH}) \sim 1, \\
\texttt{group = SCH_ID, data = nyts18, nclass = 3, ncluster = 3})
plot(mlca)

### End(Not run)

---

**summary.glca**

\textit{Summarizes the Estimated Parameters of Fitted glca Model}

**Description**

\texttt{summary} method for class "glca".

**Usage**

### S3 method for class 'glca'

\texttt{summary(object, digits = max(3, getOption("digits") - 3), ...)}

**Arguments**

- object: an object of "glca", usually, a result of a call to \texttt{glca}
- digits: the number of digits to be printed
- ...: further arguments passed to or from other methods
Value

This function prints descriptions of model and its more detailed estimated parameters but returns NULL.

See Also

glca

Examples

## For examples see example(glca)
Index

* datasets
  gss08, 8
  nyts18, 11

ccoef.glca, 2

glca, 3, 3, 8, 10, 13, 14
  glca-package, 2
  glca.gof, 6
  gss08, 5, 8, 8, 13

  item, 10

  nyts18, 5, 8, 11, 13

  par, 12

  plot.glca, 12

  summary.glca, 13

  terms, 5