Package ‘glm.predict’

September 5, 2019

Type Package
Title Predicted Values and Discrete Changes for GLM
Version 3.1-0
Date 2019-08-26
Author Benjamin Schlegel [aut,cre]
Maintainer Benjamin Schlegel <kontakt@benjaminschlegel.ch>
Description Functions to calculate predicted values and the difference between
the two cases with confidence interval for lm() [linear model], glm() [general lin-
ear model], glm.nb() [negative binomial model],
polr() [ordinal logistic model] and multinom() [multinomial model] using Monte Carlo simu-
License GPL (>= 2)
Depends R (>= 3.1.0), stats, MASS, parallel
Imports nnet
URL https://benjaminschlegel.ch/r/glm.predict/
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-09-05 02:10:14 UTC

R topics documented:

 glm.predict-package .. 2
 basepredict .. 2
 basepredict.glm ... 3
 basepredict.lm .. 4
 basepredict.multinom .. 5
 basepredict.polr ... 6
 dc ... 7
 dc.glm ... 8
 dc.lm ... 9
Description

This package provides functions to calculate predicted values and the difference between two cases with confidence interval.

Author(s)

Benjamin Schlegel
Maintainer: Benjamin Schlegel <kontakt@benjaminschlegel.ch>

basepredict

Description

The generic function calculates the predicted value with the confidence interval. It can be used for any glm, polr or multinom model.

Usage

basepredict(model, values, sim.count=1000, conf.int=0.95, sigma=NULL, set.seed=NULL)

Arguments

model the model Object generated with glm(), glm.nb(), polr() or multinom()
values the values of the case as vector in the order how they appear in the summary(model) Estimate
sim.count OPTIONAL numbers of simulations to be done by the function. default: 1000
conf.int OPTIONAL the confidence interval used by the function. default: 0.95
sigma OPTIONAL the variance-covariance matrix, can be changed when having for exaple robust or clustered vcov. default: vcov(model)
set.seed OPTIONAL set a seed for the random number generator

Details

The function makes a simulation for the two cases and compares them to each other.
Value

The output is a matrix having in the first column the predicted value, in the second column the lower value of the confidence interval and in the third column the upper value of the confidence interval.

Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>

Examples

```r
modell = glm(Sex ~ Height + Smoke + Pulse, data=MASS::survey, family=binomial(link=logit))
summary(modell)
# predicted probability of a non smoking person with height 150 and average pulse
basepredict(modell, c(1,150,1,0,0,mean(MASS::survey$Pulse, na.rm=TRUE)))
```

<table>
<thead>
<tr>
<th>basepredict.glm</th>
<th>predicted value</th>
</tr>
</thead>
</table>

Description

The function calculates the predicted value with the confidence interval. It can be used for any glm model.

Usage

```r
# S3 method for class 'glm'
basepredict(model, values, sim.count=1000, conf.int=0.95, sigma=NULL, set.seed=NULL)
```

Arguments

- `model`: the model Object generated with glm() or glm.nb()
- `values`: the values of the case as vector in the order how they appear in the summary(model) Estimate
- `sim.count`: OPTIONAL numbers of simulations to be done by the function. default: 1000
- `conf.int`: OPTIONAL the confidence interval used by the function. default: 0.95
- `sigma`: OPTIONAL the variance-covariance matrix, can be changed when having for example robust or clustered vcov. default: vcov(model)
- `set.seed`: OPTIONAL set a seed for the random number generator

Details

The function makes a simulation for the two cases and compares them to each other.

Value

The output is a 3x3 matrix having in the first column the predicted value, in the second column the lower value of the confidence interval and in the third column the upper value of the confidence interval.
Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>

Examples

```r
model1 = glm(Sex ~ Height + Smoke + Pulse, data=MASS::survey, family=binomial(link=logit))
summary(model1)
# predicted probability of a non smoking person with height 150 and average pulse
basepredict(model1, c(1,150,1,0,0,mean(MASS::survey$Pulse,na.rm=TRUE)))
```

basepredict.lm

<table>
<thead>
<tr>
<th>basepredict.lm</th>
<th>predicted value</th>
</tr>
</thead>
</table>

Description

The function calculates the predicted value with the confidence interval for a lm model.

Usage

```r
## S3 method for class 'lm'
basepredict(model, values, sim.count=1000, conf.int=0.95, sigma=NULL, set.seed=NULL)
```

Arguments

- **model**: the model Object generated with lm()
- **values**: the values of the case as vector in the order how they appear in the summary(model) Estimate
- **sim.count**: OPTIONAL numbers of simulations to be done by the function. default: 1000
- **conf.int**: OPTIONAL the confidence interval used by the function. default: 0.95
- **sigma**: OPTIONAL the variance-covariance matrix, can be changed when having for exaple robust or clustered vcov. default: vcov(model)
- **set.seed**: OPTIONAL set a seed for the random number generator

Details

The function makes a simulation for the two cases and compares them to each other.

Value

The output is a 3x3 matrix haveing in the first colone the predicted value, in the second colone the lower value of the confidence interval and in the third colone the upper value of the confidence interval.

Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>
Examples

```r
model1 = lm(Pulse ~ Height + Smoke, data=MASS::survey)
summary(model1)
# predicted pulse value of a non smoking person with height 150
basepredict(model1, c(1,150,1,0,0))
```

Description

The function calculates the predicted value with the confidence interval. It can be used for any multinom model.

Usage

```r
## S3 method for class 'multinom'
basepredict(model, values, sim.count=1000, conf.int=0.95, sigma=NULL, set.seed=NULL)
```

Arguments

- `model`: the model Object generated with `multinom()`
- `values`: the values of the case as vector in the order how they appear in the `summary(model)`
- `sim.count`: OPTIONAL numbers of simulations to be done by the function. default: 1000
- `conf.int`: OPTIONAL the confidence interval used by the function. default: 0.95
- `sigma`: OPTIONAL the variance-covariance matrix, can be changed when having for example robust or clustered vcov. default: vcov(model)
- `set.seed`: OPTIONAL set a seed for the random number generator

Details

The function makes a simulation for the two cases and compares them to each other.

Value

The output is a matrix have in the first column the predicted value, in the second column the lower value of the confidence interval and in the third column the upper value of the confidence interval.

Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>
Examples

```r
model1 = nnet::multinom(Clap ~ Height + Smoke + Pulse, data=MASS::survey)
summary(model1)
# predicted probability of a non smoking person with height 150 and average pulse
basepredict(model1, c(1,150,1,0,0,mean(MASS::survey$Pulse,na.rm=TRUE)))
```

```
basepredict.polr predicted value
```

Description

The function calculates the predicted value with the confidence interval. It can be used for any polr model.

Usage

```r
## S3 method for class 'polr'
basepredict(model, values, sim.count=1000, conf.int=0.95, sigma=NULL, set.seed=NULL)
```

Arguments

- `model`: the model Object generated with polr()
- `values`: the values of the case as vector in the order how they appear in the summary(model)
- `sim.count`: OPTIONAL numbers of simulations to be done by the function. default: 1000
- `conf.int`: OPTIONAL the confidence interval used by the function. default: 0.95
- `sigma`: OPTIONAL the variance-covariance matrix, can be changed when having for example robust or clustered vcov. default: vcov(model)
- `set.seed`: OPTIONAL set a seed for the random number generator

Details

The function makes a simulation for the two cases and compares them to each other.

Value

The output is a matrix have in the first colone the predicted value, in the second colone the lower value of the confidence interval and in the third colone the upper value of the confidence interval.

Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>
Examples

data = MASS::survey
data$Smoke = ordered(data$Smoke, levels = c("Never", "Occas", "Regul", "Heavy"))
model1 = polr(Smoke ~ Height + Pulse, data=data)
summary(model1)
predicted probability of smoking of a person with height 170 and an average pulse
basepredict(model1, c(170,mean(MASS::survey$Pulse,na.rm=TRUE)))

\[\text{dc} \quad \text{predicted values and discrete change} \]

Description

The generic function calculates the predicted values and the difference of two cases with the confidence interval. It can be used for any glm, multinom or polr model.

Usage

\[
dc(model, values = NULL, sim.count = 1000, conf.int = 0.95,
sigma = NULL, set.seed = NULL, values1 = NULL, values2 = NULL)\]

Arguments

- **model**: the model-Object generated with glm(), glm.nb(), polr() or multinom()
- **values**: the values of case 1 and 2 as vector in the order how they appear in the summary(model) Estimate. Values is if values1 and values2 are specified after each other in the same vector. Either values or values1 and values2 have to be specified.
- **sim.count**: OPTIONAL numbers of simulations to be done by the function. default: 1000
- **conf.int**: OPTIONAL the confidence interval used by the function. default: 0.95
- **sigma**: OPTIONAL the variance- covariance matrix, can be changed when having for example robust or clustered vcov. default: vcov(model)
- **set.seed**: OPTIONAL set a seed for the random number generator
- **values1**: the values of case 1 as vector in the order how they appear in the summary(model) Estimate. Has to be defined if values is not defined.
- **values2**: the values of case 2 as vector in the order how they appear in the summary(model) Estimate. Has to be defined if values is not defined.

Details

The function makes a simulation for the two cases and compares them to each other.

Value

The output is a matrix have in the first colon the predicted values, in the second colon the lower value of the confidence interval and in the third colon the upper value of the confidence interval.
dc.glm

Author(s)
Benjamin Schlegel, <kontakt@benjaminschlegel.ch>

Examples

```r
model1 = glm(Sex ~ Height + Smoke + Pulse, data=MASS::survey, family=binomial(link=logit))
summary(model1)
# comparing a person with the height 150cm to 151cm
dc(model1, values1 = c(1,150,1,0,0,mean(MASS::survey$Pulse,na.rm=TRUE)),
values2 = c(1,151,1,0,0,mean(MASS::survey$Pulse,na.rm=TRUE)))
# the higher person has a greater probability to be a man
# the difference is significant, because the confidence interval
# does not include the 0
```

dc.glm

predicted values and discrete change

Description

The function calculates the predicted values and the difference of two cases with the confidence interval. It can be used for any glm model.

Usage

```r
## S3 method for class 'glm'
dc(model, values = NULL, sim.count = 1000, conf.int = 0.95,
sigma = NULL, set.seed = NULL, values1 = NULL, values2 = NULL)
```

Arguments

- `model`: the model-Object generated with glm() or glm.nb()
- `values`: the values of case 1 and 2 as vector in the order how they appear in the summary(model) Estimate. Values is if values1 and values2 are specified after each other in the same vector. Either values or values1 and values2 have to be specified.
- `sim.count`: OPTIONAL numbers of simulations to be done by the function. default: 1000
- `conf.int`: OPTIONAL the confidence interval used by the function. default: 0.95
- `sigma`: OPTIONAL the variance-covairance matrix, can be changed when having for exaple robust or clustered vcov. default: vcov(model)
- `set.seed`: OPTIONAL set a seed for the random number generator
- `values1`: the values of case 1 as vector in the order how they appear in the summary(model) Estimate. Has to be defined if values is not defined.
- `values2`: the values of case 2 as vector in the order how they appear in the summary(model) Estimate. Has to be defined if values is not defined.
dc.lm

Details

The function makes a simulation for the two cases and compares them to each other.

Value

The output is a matrix have in the first column the predicted values, in the second column the lower value of the confidence interval and in the third column the upper value of the confidence interval.

Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>

Examples

model1 = glm(Sex ~ Height + Smoke + Pulse, data=MASS::survey, family=binomial(link=logit))
summary(model1)
comparing a person with the height 150cm to 151cm
dc(model1, values1 = c(1,150,1,0,0,mean(MASS::survey$Pulse,na.rm=TRUE)),
 values2 = c(1,151,1,0,0,mean(MASS::survey$Pulse,na.rm=TRUE)))
the higher person has a greater probability to be a man
the difference is significant, because the confidence interval
does not include the 0

dc.lm

predicted values and discrete change

Description

The function calculates the predicted values and the difference of two cases with the confidence interval for a lm model.

Usage

```r
## S3 method for class 'lm'
dc(model, values = NULL, sim.count = 1000, conf.int = 0.95,
   sigma = NULL, set.seed = NULL, values1 = NULL, values2 = NULL)
```

Arguments

- `model` the model-Object generated with lm()
- `values` the values of case 1 and 2 as vector in the order how they appear in the summary(model) Estimate. Values is if values1 and values2 are specified after each other in the same vector. Either values or values1 and values2 have to be specified.
- `sim.count` OPTIONAL numbers of simulations to be done by the function. default: 1000
- `conf.int` OPTIONAL the confidence interval used by the function. default: 0.95
dc.multinom

The function makes a simulation for the two cases and compares them to each other.

Value

The output is a matrix have in the first colone the predicted values, in the second colone the lower value of the confidence interval and in the third colone the upper value of the confidence interval.

Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>

Examples

```r
model1 = lm(Pulse ~ Height + Smoke, data=MASS::survey)
summary(model1)
# comparing a person with the height 150cm to 151cm
dc(model1, values1 = c(1,150,1,0,0),
    values2 = c(1,151,1,0,0))
# the difference is not significant, because the confidence interval
# includes the 0
```

Description

The function calculates the predicted values and the difference of two cases with the confidence interval. It can be used for a multinom model.

Usage

```r
## S3 method for class 'multinom'
dc(model, values = NULL, sim.count = 1000, conf.int = 0.95,
    sigma = NULL, set.seed = NULL, values1 = NULL, values2 = NULL)
```
Arguments

model the model-Object generated with multinom()
values the values of case 1 and 2 as vector in the order how they appear in the summary(model) Estimate. Values is if values1 and values2 are specified after each other in the same vector. Either values or values1 and values2 have to be specified.
sim.count OPTIONAL numbers of simulations to be done by the function. default: 1000
conf.int OPTIONAL the confidence interval used by the function. default: 0.95
sigma OPTIONAL the variance-covairance matrix, can be changed when having for exaple robust or clustered vcov. default: vcov(model)
set.seed OPTIONAL set a seed for the random number generator
values1 the values of case 1 as vector in the order how they appear in the summary(model) Estimate. Has to be definied if values is not definied.
values2 the values of case 2 as vector in the order how they appear in the summary(model) Estimate. Has to be definied if values is not definied.

Details

The function makes a simulation for the two cases and compares them to each other.

Value

The output is a matrix have in the first colone the predicted values, in the second colone the lower value of the confidence interval and in the third colone the upper value of the confidence interval.

Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>

Examples

model1 = nnet::multinom(Clap ~ Height + Smoke + Pulse, data=MASS::survey)
summary(model1)
dc(model1, values1 = c(1,150,1,0,0,mean(MASS::survey$Pulse,na.rm=TRUE)),
 values2 = c(1,151,1,0,0,mean(MASS::survey$Pulse,na.rm=TRUE)))
the higher person has a greater probability to be left clapping
the difference is significant, because the confidence interval
does not include the 0
dc.polr

predicted values and discrete change

Description

The function calculates the predicted values and the difference of two cases with the confidence interval. It can be used for a polr model.

Usage

```r
## S3 method for class 'polr'
dc(model, values = NULL, sim.count = 1000, conf.int = 0.95,
   sigma = NULL, set.seed = NULL, values1 = NULL, values2 = NULL)
```

Arguments

- `model`: the model-Object generated with `polr()`
- `values`: the values of case 1 and 2 as vector in the order how they appear in the summary(model) Estimate. Values is if values1 and values2 are specified after each other in the same vector. Either values or values1 and values2 have to be specified.
- `sim.count`: OPTIONAL numbers of simulations to be done by the function. default: 1000
- `conf.int`: OPTIONAL the confidence interval used by the function. default: 0.95
- `sigma`: OPTIONAL the variance-covairance matrix, can be changed when having for exaple robust or clustered vcov. default: vcov(model)
- `set.seed`: OPTIONAL set a seed for the random number generator
- `values1`: the values of case 1 as vector in the order how they appear in the summary(model) Estimate. Has to be definied if values is not definied.
- `values2`: the values of case 2 as vector in the order how they appear in the summary(model) Estimate. Has to be definied if values is not definied.

Details

The function makes a simulation for the two cases and compares them to each other.

Value

The output is a matrix have in the first colone the predicted values, in the second colone the lower value of the confidence interval and in the third colone the upper value of the confidence interval.

Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>
Examples

data = MASS::survey
data$Smoke = ordered(data$Smoke, levels = c("Never", "Occas", "Regul", "Heavy"))
model1 = polr(Smoke ~ Height + Pulse, data=data)
summary(model1)
dc(model1, values1 = c(150,mean(MASS::survey$Pulse,na.rm=TRUE)),
 values2 = c(151,mean(MASS::survey$Pulse,na.rm=TRUE)))
all differences are significant as the confidence intervals do not include 0

predicts

predicted values and discrete change

Description

The function calculates the predicted values and the difference of a range of cases with the confidence interval. It can be used for any glm, polr or multinom model.

Usage

predicts(model, values, position = NULL, sim.count = 1000, conf.int = 0.95,
sigma = NULL, set.seed = NULL, doPar = TRUE)

Arguments

model the model-Object generated with glm(), glm.nb(), polr() or multinom()
values The values of cases as character in the order how they appear in the summary(model) Estimate. The values must be in the following way: "value1;value2;value3;...". Each one of the values can be one of the following:
 • "mean": takes the mean of that variable (can only be used when the variable is numeric)
 • "median": takes the median of that variable (can only be used when the variable is numeric)
 • "mode": takes the mode of that variable
 • "Q4": takes the quartiles (0,0.25,0.5,0.75,1) of that variable (other number for other quantiles)
 • "min": takes the minimum of that variable
 • "max": takes the maximum of that variable
 • from-to,by: takes all values from "from" to "to" with the distance "by" (for example: "160-180,5" -> 160,165,170,175,180)
 • from-to: same as from-to,by with by=1 (for example: "2-8" -> 2,3,4,5,6,7,8)
 • value1,value2,value3,...: takes the given values (for example: "160,180" -> 160,180)
 • value1: takes the given value (for example: "5.34" -> 5.34)
 • log(from-to,by): takes the log of all values from "from" to "to" with the distance "by" (for example: "160-180,5" -> 160,165,170,175,180)
• **log(from-to)**: same as log(from-to,by) with by=1 (for example: "2-8" -> 2,3,4,5,6,7,8)
• **log(value1,value2,value3,...)**: takes the log of the given values (for example: "160,180" -> 160,180)
• **log(value1)**: takes the log of the given value (for example: "5.34" -> 5.34)
• "F": takes all values of a factor/character
• "F(2)": takes the second level of a factor/character

position
OPTIONAL which variable should be taken for the discrete change, the variable must have at least two values. default: only predicted probabilities

sim.count
OPTIONAL numbers of simulations to be done by the function. default: 1000

conf.int
OPTIONAL the confidence interval used by the function. default: 0.95

sigma
OPTIONAL the variance-covariance matrix, can be changed when having for example robust or clustered vcov. default: vcov(model)

set.seed
OPTIONAL set a seed for the random number generator

doPar
OPTIONAL if the code should run parallel if more than 2 cores are detected

Details

The function makes a simulation for the all combination of cases and compares them to each other.

Value

The output is a data.frame with the predicted values and discrete changes.

Author(s)

Benjamin Schlegel, <kontakt@benjaminschlegel.ch>

Examples

```r
model1 = glm(Sex ~ Height + Smoke + Pulse, data=MASS::survey, family=binomial(link=logit))
summary(model1)
# comparing person with hight 150 to 160, 160 to 170, 170 to 180, 180 to 190
# with all combination of(non-)smokers and a median of pulse
predicts(model1, "150-190,10;F;median", position = 1, doPar = FALSE)
```
Index

*Topic models
 basepredict, 2
 basepredict.glm, 3
 basepredict.lm, 4
 basepredict.multinom, 5
 basepredict.polr, 6
 dc, 7
 dc.glm, 8
 dc.lm, 9
 dc.multinom, 10
 dc.polr, 12
 predicts, 13
*Topic package
 glm.predict-package, 2

basepredict, 2
basepredict.glm, 3
basepredict.lm, 4
basepredict.multinom, 5
basepredict.polr, 6

dc, 7
dc.glm, 8
dc.lm, 9
dc.multinom, 10
dc.polr, 12

glm.predict (glm.predict-package), 2
glm.predict-package, 2

predicts, 13