Package ‘glmaag’

May 10, 2019

Title Adaptive LASSO and Network Regularized Generalized Linear Models
Version 0.0.6
Date 2019-05-09
Author Kaiqiao Li [aut, cre],
 Pei Fen Kuan [aut],
 Xuefeng Wang [aut]
Maintainer Kaiqiao Li <kaiqiao.li@stonybrook.edu>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
LinkingTo Rcpp, RcppArmadillo
Depends R (>= 3.6.0), survival, data.table
Imports Rcpp (>= 1.0.0), methods, stats, Matrix, ggplot2, gridExtra,
 maxstat, survminer, plotROC, shiny, foreach, pROC, huge,
 OptimalCutpoints
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-05-10 07:50:16 UTC
R topics documented:

coef.cv_glmaag .. 2
coef.glmaag .. 3
coef.ss_glmaag .. 4
cv_glmaag .. 4
evaluate ... 6
evaluate_plot .. 7
gcut ... 8
getS ... 8
glmaag .. 9
L0 ... 11
L1 ... 11
laps ... 11
plot.cv_glmaag ... 12
plot.glmaag .. 13
plot.ss_glmaag .. 13
predict.cv_glmaag ... 14
predict.glmaag ... 15
predict.ss_glmaag .. 16
print.cv_glmaag ... 16
print.ss_glmaag ... 17
runtheExample ... 18
sampledata ... 18
ss_glmaag .. 19
tune_network .. 21

Description

Get the coefficients estimated by the cv_glmaag model

Usage

S3 method for class 'cv_glmaag'
coef(object, type1se = T, ...)

Arguments

object the estimated cv_glmaag model
type1se whether or not used 1 SE error (default to be TRUE)
... ...
Value

estimated coefficient included intercept (Cox model does not return intercept)

Examples

```r
data(sampledata)
data(l0)
y <- sampledata$Y_Gau
x <- sampledata[, -(1:3)]
cvwhich <- sample(rep(0:4, length.out = length(y)))
mod <- cv_glmaag(y, x, l0, cvwhich = cvwhich)
cc <- coef(mod)
```

Description

Get coefficients for glmaag objects

Usage

```r
## S3 method for class 'glmaag'
coef(object, lam1, lam2, ...)
```

Arguments

- `object`: fitted glmaag object
- `lam1`: lambda1 sequence need coefficients, must be within the fitted model
- `lam2`: lambda2 sequence need coefficients, must be within the fitted model
- `...`: ...

Value

coefficients

Examples

```r
data(sampledata)
data(l0)
y <- sampledata$Y_Gau
x <- sampledata[, -(1:3)]
mod <- glmaag(y, x, l0)
cc <- coef(mod)
```
Description

Get the coefficients tuned by stability selection

Usage

```r
## S3 method for class 'ss_glmaag'
coef(object, ...)
```

Arguments

- `object`: the model estimated via stability selection
- `...`: ...

Value

The optimal coefficients get from stability selection including intercept (except for Cox)

Examples

```r
data(sampledata)
data(l0)
y <- sampledata$y_gau
x <- sampledata[, 4:6]
mod <- ss_glmaag(y, x, l0[seq_len(3), seq_len(3)], nsam = 3)
cc <- coef(mod)
```

Description

Do k-fold cross-validation for glmaag

Usage

```r
cv_glmaag(y, x, l, nfolds = 5, cvwhich, foldseed, stratify = T,
gam = 1, tune = F, est = T, lam1, lam2, dfmax, w0, adaptl1 = T,
adaptl2 = T, pind, intercept = T, standardize = T,
maxiter = 10000, cri = 0.001, fam = "Gaussian", measdev = T,
type1se = T, parallel = F)
```
Arguments

\(y \)
outcome

\(x \)
predictors matrix

\(L \)
Laplacian matrix for the first network

\(nfolds \)
number of folds used in cross validation, default to be five

\(cvwhich \)
fold assignment, start from zero, if missing do random cross validation

\(foldseed \)
the random seed for cross validation design

\(stratify \)
whether to do stratified cross validation for Logistic or Cox model, default to be TRUE

\(gam \)
The power of weights of L1 penalty, default to be ones

\(tune \)
whether to tune the input network with estimated network or identity matrix, ignored if no input network

\(est \)
when there is no input network whether to use estimated network or identity matrix (elastic net) or mixed the network with estimated network or identity matrix, default to be estimated network

\(lam1 \)
The tuning parameters for L1 penalty. If not defined, searched by default

\(lam2 \)
The tuning parameters for quadratic penalty. If not defined, searched by default

\(dfmax \)
maximum number of parameters allowed in the model, default to be \(\frac{p}{2} \)

\(w0 \)
Weights for L1 penalty. If not defined, estimated via quadratic penalized regression

\(adaptl1 \)
whether to adapt the L1 penalty, default to be TRUE

\(adaptl2 \)
whether to adapt the sign for quadratic penalty, default to be TRUE

\(pin0 \)
indicator vector whether to put L1 penalty on the feature, 1 means penalized while 0 means not penalized, default to be all ones (all penalized)

\(intercept \)
whether to include intercept. Ignore for Cox regression

\(standardize \)
whether to standardize predictors

\(maxiter \)
maximum number of iterations, default to be 500

\(cri \)
stop pint criterion, default to be 0.001

\(fam \)
family for the outcome, can be "Gaussian", "Logistic", and "Cox"

\(measdev \)
Whether to use deviance to tune, default to be deviance. If not, use mean absolute error, area under ROC curve, or concordance index for Gaussian, Logistic, and Cox

\(type1se \)
whether to use one standard error or maximum rule, default to be one standard error rule

\(parallel \)
whether to do parallel computing at each fold, need to set up parallel first, default to be FALSE
Value

input input predictor matrix
inputweight estimated weights if mixing network
lambda1 lambda1 path that has been searched
lambda1 lambda1 path that has been searched
lambda1_max selected lambda1 based on maximum rule
lambda2_max selected lambda2 based on maximum rule
lambda1_1se selected lambda1 based on one standard error rule
lambda2_1se selected lambda2 based on one standard error rule
cvm the mean cross validation accuracy
cv1se the standard error of cross validation accuracy
cvn the mean number of parameter estimated among folds
n_max number of selected features based on maximum rule
n_1se number of selected features based on one standard error rule
intercept_max estimated intercept based on maximum rule
intercept_1se estimated intercept based on one standard error rule
coef_max estimated coefficients based on maximum rule
coef_1se estimated coefficients based on one standard error rule
fam family of outcome
measure measure in cross validation

Examples

data(sampledata)
data(l0)
y <- sampledata$y_gau
x <- sampledata[, -(1:3)]
cvwhich <- sample(rep(0:TL length.out = length(y)))
mod <- cv_glmaag(y, x, l0, cvwhich = cvwhich)

Evaluate prediction

Description

Evaluate goodness of prediction.

Usage

evaluate(y_pre, y, cutpoint = 0.5, fam = "Gaussian")
evaluate_plot

Arguments

- `y_pre`: predicted value
- `y`: actual values (class for binary phenotype and Surv object for right censored phenotype)
- `cutpoint`: cutpoints for binary phenotype, default to be 0.5
- `fam`: family of the phenotype, can be "continuous", "binary", or "Cox"

Value

goodness of prediction

Examples

```r
x <- rnorm(100)
y <- rnorm(100)
evaluate(x, y)
```

Description

Sample plots for prediction evaluation (scatter plot for Gaussian, ROC curve for logistic, and Kaplan Meier curve for Cox)

Usage

evaluate_plot(y_pre, y_test, fam = "Gaussian", mod, y_train, cutp)

Arguments

- `y_pre`: predicted value
- `y_test`: actual value
- `fam`: type of predicted outcome, can be "Gaussian" (default), "Logisitc", and "Cox"
- `mod`: fitted glm model, must be available for Cox if cutpoint not provided
- `y_train`: the training outcome to obtain
- `cutp`: cutpoint for Cox model

Value

plots

Examples

```r
x <- rnorm(100)
y <- x + rnorm(100)
evaluate_plot(x, y)
```
getcut

Get optimal cut points for binary or right censored phenotype

Description
Obtain optimal cut point based on Youden index for binary phenotype and log rank test for right censored phenotype.

Usage
getcut(pre, act, fam = "Logistic")

Arguments
- pre: predicted value
- act: actual values (class for binary phenotype and Surv object for right censored phenotype)
- fam: the family of the outcome, can be "Gaussian", "Logistic" or "Cox"

Value
optimal cut point

Examples
```r
x <- rnorm(100)
y <- as.numeric(x + rlogis(100) > 0)
getcut(x, y)
```

getS

Estimate standardized Laplacian matrix

Description
Estimate standardized Laplacian matrix given data using gene co-expression network method

Usage
getS(x, sparse = T)

Arguments
- x: data
- sparse: estimate a sparse network or not, default to be T, but may be slow
Value

standardized laplacian matrix

References

Examples

```r
xx <- matrix(rnorm(12), 3, 4)
s <- getS(xx, FALSE)
```

glmaag

Fit glmaag model

Description

Fit the glmaag model with given tuning parameters without cross validation or stability selection

Usage

```r
glmaag(y, x, L, tune = F, est = T, gam = 1, lam1, lam2, nfolds = 5,
       dfmax, w0, adaptl1 = T, adaptl2 = T, pind, intercept = T,
       standardize = T, maxiter = 10000, cri = 0.001, fam = "gaussian",
       measdev = T, type1se = T, parallel = F)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>y</code></td>
<td>outcome</td>
</tr>
<tr>
<td><code>x</code></td>
<td>predictors matrix</td>
</tr>
<tr>
<td><code>L</code></td>
<td>Laplacian matrix for the network</td>
</tr>
<tr>
<td><code>tune</code></td>
<td>whether to tune with an estimated network, default to be FALSE</td>
</tr>
<tr>
<td><code>est</code></td>
<td>whether to estimate a network from the data</td>
</tr>
<tr>
<td><code>gam</code></td>
<td>the parameter for l1 adaptive weight, default to be ones</td>
</tr>
<tr>
<td><code>lam1</code></td>
<td>The tuning parameters for L1 penalty. If not defined, searched by default</td>
</tr>
<tr>
<td><code>lam2</code></td>
<td>The tuning parameters for quadratic penalty. If not defined, searched by default</td>
</tr>
<tr>
<td><code>nfolds</code></td>
<td>number of folds used in cross validation to obtain network sign estimate and l1 weight estimate, default to be five</td>
</tr>
<tr>
<td><code>dfmax</code></td>
<td>maximum number of parameters allowed in the model, default to be p/2</td>
</tr>
</tbody>
</table>
Weights for l1 penalty. If not defined, estimated via quadratic penalized regression.

Whether to adapt the l1 penalty, default to be TRUE.

Whether to adapt the sign for quadratic penalty, default to be TRUE.

Indicator vector whether to put L1 penalty on the feature, 1 means penalized while 0 means not penalized, default to be all ones (all penalized).

Whether to include intercept. Ignore for Cox regression.

Whether to standardize predictors.

Maximum number of iterations, default to be 500.

Stopprint criterion, default to be 0.001.

Family for the outcome, can be "Gaussian", "Logistic", and "Cox".

Whether to use deviance to tune when estimate l1 weight and network sign, default to be deviance. If not, use mean absolute error, area under ROC curve, or concordance index for Gaussian, Logistic, and Cox.

Whether to use one standard error or maximum rule when estimate network sign and l1 weight, default to be one standard error rule.

Whether to do parallel computing at each lambda2, need to set up parallel first, default to be FALSE.

Input

Input predictors.

l1 penalty parameter search sequence.

Quadratic penalty parameter search sequence.

Number of parameters selected given provided tuning parameter.

Coefficients estimated.

Intercepts estimated.

Log likelihood estimated.

Family of the outcome.

Examples

data(sampledata)

data(L0)
y <- sampledata$Y_Gau
x <- sampledata[, -(1:3)]
mod <- glmaag(y, x, L0)
L₀
sample network 0

Description
A Laplacian matrix for the predictors

Usage
L₀

Format
a matrix with 20 rows and 20 columns

L₁
sample network 1

Description
An alternative Laplacian matrix for the predictors

Usage
L₁

Format
a matrix with 20 rows and 20 columns

laps
Standardized Laplacian matrix

Description
Obtain standardized Laplacian matrix given adjacency matrix

Usage
laps(A)

Arguments
A adjacency matrix
Value

Laplacian matrix

Examples

```r
a <- matrix(0, 2, 2)
l1a <- laps(a)
```

Description

plot cross validation performance paths

Usage

```r
## S3 method for class 'cv_glmaag'
plot(x, col_count = 3, SE = T, ...)
```

Arguments

- `x` : the cv_glmaag object
- `col_count` : number of columns in the plots
- `SE` : whether or not plot the standard error curves (when SE = TRUE)
- `...` : ...

Value

plot generated by the model

Examples

```r
data(sampledata)
data(l0)
y <- sampledata$Y_Gau
x <- sampledata[, -(1:3)]
cvwhich <- sample(rep(0:4, length.out = length(y)))
mod <- cv_glmaag(y, x, l0, cvwhich = cvwhich)
mod <- plot(mod, SE = FALSE)
```
plot.glmaag

Paths for glmaag object

Description

Generates coefficients, log likelihood, or number of parameters paths for glmaag models

Usage

```r
## S3 method for class 'glmaag'
plot(x, col_count = 3, type = "coef", ...)  
```

Arguments

- `x`:
 - glmaag object
- `col_count`:
 - number of columns shown in the plot (when type = "coef")
- `type`:
 - can be "coef" (coefficients paths), "loglik" (log likelihood paths), or "n" (number of parameters paths)
- `...`:
 - ...

Value

plots

Examples

```r
data(sampledata)
data(l0)
y <- sampledata$y_gau
x <- sampledata[, -(1:3)]
mod <- glmaag(y, x, l0)
gg <- plot(mod, type = "loglik")
```

plot.ss_glmaag

Instability plot

Description

Instability path plot

Usage

```r
## S3 method for class 'ss_glmaag'
plot(x, ...)  
```

Examples

```r
```
predict.cv_glmaag

Arguments

x the input ss.glmaaph object

Value

the instability path

Examples

data(sampledata)
data(l0)
y <- sampledata$y_gau
x <- sampledata[, 4:6]
mod <- ss.glmaag(y, x, l0[seq_len(3), seq_len(3)], nsa = 3)

predict.cv_glmaag

Description

Prediction for cv_glmaag model

Usage

S3 method for class 'cv_glmaag'
predict(object, x, typelse = T, type = "link", ...)

Arguments

object the estimated cv_glmaag model
x the new dataset for prediction, if omitted returns the training prediction
typelse whether or not using the coefficients by one standard error rule, default to be TRUE
type can be either "link", or "response", link returns linear predicted score, For Gaussian model this option can be ignored, for logistic model "response" returns predicted probability, for Cox model "response" returns relative risk

Value

the predicted value
Examples

data(sampledata)
data(l0)
y <- sampledata$Y_Gau
x <- sampledata[, -(1:3)]
cvwhich <- sample(rep(0:4, length.out = length(y)))
mod <- cv_glmaag(y, x, l0, cvwhich = cvwhich)
pp <- predict(mod)

Description

Prediction using glmaag model

Usage

S3 method for class 'glmaag'
predict(object, x, lam1, lam2, type = "link",
cutp = 0.5, ...)

Arguments

object fitted glmaag object
x The new dataset to be predicted, do training prediction if x is missing
lam1 lambda1 sequence for prediction, must be within the fitted model
lam2 lambda2 sequence for prediction, must be within the fitted model
type type of prediction (can be "link", "response"), ignored for Gaussian model. "link"
is the linear predicted score, "response" is the predicted probability for logistic
model and relative risk for Cox model
cutp the cut off value for binary outcome, default to be 0.5
...

Value

predicted values

Examples

data(sampledata)
data(l0)
y <- sampledata$Y_Gau
x <- sampledata[, -(1:3)]
mod <- glmaag(y, x, l0)
pp <- predict(mod)
predict.ss_glmaag

Prediction via stability selection

Description

Predict using the model tuned by stability selection

Usage

```r
## S3 method for class 'ss_glmaag'
predict(object, x, type = "link", ...)  
```

Arguments

- `object`: the ss_glmaag object
- `x`: the new dataset to be predicted, do training prediction if `x` is missing
- `type`: type of prediction (can be "link", or "response"), ignored for Gaussian model. "link" is the linear predicted score, "response" is the predicted probability for logistic model and relative risk for Cox model

- `...`: ...

Value

the predicted values

Examples

```r
data(sampledata)
data(l0)
y <- sampledata$Y_Gau
x <- sampledata[, 4:6]
mod <- ss_glmaag(y, x, l0[seq_len(3), seq_len(3)], nsam = 3)
pp <- predict(mod)
```

print.cv_glmaag

the results of the cross validation model

Description

print fitted information

Usage

```r
## S3 method for class 'cv_glmaag'
print(x, ...)  
```
print.ss_glmaag

Arguments

x the fitted cv_glmaag object

Examples

data(sampledata)
data(l0)
y <- sampledata$y_Gau
x <- sampledata[, -(1:3)]
cvwhich <- sample(rep(0:4, length.out = length(y)))
mod <- cv_glmaag(y, x, l0, cvwhich = cvwhich)
print(mod)

print.ss_glmaag

the results of the stability selection model

Description

print fitted information

Usage

S3 method for class 'ss_glmaag'
print(x, ...)

Arguments

x the fitted ss_glmaag object

Examples

data(sampledata)
data(l0)
y <- sampledata$y_Gau
x <- sampledata[, 4:6]
mod <- ss_glmaag(y, x, l0[seq_len(3), seq_len(3)], nsam = 3)
print(mod)
runtheExample Shiny app

Description

Run the shiny app for web interactive using. You need to load data.table, dplyr, ggplot2, plotROC, and survminer beforehand. If you want to do parallel computing, you also need to register cores.

Usage

runtheExample(whetherrun)

Arguments

whetherrun whether to run shiny app, default to be TRUE

Examples

runtheExample(FALSE)

sampledata Simulated data

Description

A data set containing outcome for Gaussian, logistic, and Cox variables and 20 predictors

Usage

sampledata

Format

a data frame with 100 rows and 23 variables
Stability selection for glmaag

Description

Do stability selection for glmaag

Usage

```r
ss_glmaag(y, x, L, nfolds = 5, subn, nsam = 100, beta = 0.15,
        gam = 1, tune = T, est = T, lam1, lam2, w0, adaptl1 = T,
        adaptl2 = T, pind, intercept = T, standardize = T,
        maxiter = 10000, cri = 0.001, fam = "Gaussian", measdev = T,
        type1se = T, parallel = F)
```

Arguments

- `y`: outcome
- `x`: predictors matrix
- `L`: Laplacian matrix for the first network
- `nfolds`: number of folds used in cross validation to estimate the l1 weights or network tuning, default to be five
- `subn`: number of samples in each subset, default to be n/2 if n<400 and 10sqrt(10) if n>400
- `nsam`: number of subsets, default to be 100
- `beta`: the cut off for instability score
- `gam`: The power of weights of l1 penalty, default to be ones
- `tune`: whether to tune the input network with estimated network or identity matrix, ignored if no input network
- `est`: when there is no input network whether to use estimated network or identiy matrix (elastic net) or mixed the network with estimated network or identity matrix, default to be estimated network
- `lam1`: The tuning parameters for l1 penalty. If not defined, searched by default
- `lam2`: The tuning parameters for quadratic penalty. If not defined, searched by default
- `w0`: Weights for l1 penalty. If not defined, estimated via quadratic penalized regression
- `adaptl1`: whether to adapt the l1 penalty, default to be TRUE
- `adaptl2`: whether to adapt the sign for quadratic penalty, default to be TRUE
- `pind`: indicator vector whether to put l1 penalty on the feature, 1 means penalyzed while 0 means not penalyzed, default to be all ones (all penalyzed)
- `intercept`: whether to include intercept. Ignore for Cox regression
- `standardize`: whether to standardize predictors
maxiter maximum number of iterations, default to be 500
cri stoppint criterion, default to be 0.001
fam family for the outcome, can be "Gaussian", "Logistic", and "Cox"
measdev Whether to use deviance to tune when estimate l1 weight and network sign, default to be deviance. If not, use mean absolute error, area under ROC curve, or concordance index for Gaussian, Logistic, and Cox
type1se whether to use one standard error or maximum rule for l1 weight estimation and network sign, default to be one standard error rule
parallel whether to do parallel computing at each subset, need to set up parallel first, default to be FALSE

Value
input input matrix for predictors
lambda1 searching sequence for l1 penalty parameters
lambda2 searching sequence for quadratic penalty parameters
lambda1_ss optimal l1 parameter
lambda2_ss optimal quadratic parameter
n_ss number of parameters obtained by the optimal model
ssm instability score paths
ssf selection probability paths
intercept_ss intercept estimated by the optimal model
coef_ss coefficients estimated by the optimal model
fam the family of the outcome

References

Examples

data(sampledata)
data(l0)
y <- sampledata$Y_Gau
x <- sampledata[, 4:6]
mod <- ss_glmaag(y, x, l0[seq_len(3), seq_len(3)], nsam = 3)
tune_network

Description

Tune two network for better prediction.

Usage

```r
tune_network(y, x, L1, L2, adaptl2 = T, nfolds = 5, cvwhich, foldseed, stratify = T, lam0, bets, intercept = T, standardize = T, fam = "Gaussian", typelse = T, measdev = T, maxiter = 10000, cri = 0.001, parallel = F)
```

Arguments

- **y**: outcome
- **x**: predictors matrix
- **L1**: Laplacian matrix for the first network
- **L2**: Laplacian matrix for the second network
- **adaptl2**: whether to adapt the sign for quadratic penalty, default to be TRUE
- **nfolds**: number of folds used in cross validation, default to be five
- **cvwhich**: fold assignment, start from zero, if missing do random cross validation
- **foldseed**: the random seed for cross validation design
- **stratify**: whether to do stratified cross validation for Logistic or Cox model, default to be TRUE
- **lam0**: The tuning parameters for quadratic penalty. If not defined, tuned by default
- **bets**: The candidate weight for the first network, must be between 0 and 1, default to be 0, 0.1, ... , 1
- **intercept**: whether to include intercept. Ignore for Cox regression
- **standardize**: whether to standardize predictors
- **fam**: family for the outcome, can be "Gaussian", "Logistic", and "Cox"
- **typelse**: whether to use one standard error or maximum rule, default to be one standard error rule
- **measdev**: Whether to use deviance to tune, default to be deviance. If not, use mean absolute error, area under ROC curve, or concordance index for Gaussian, Logistic, and Cox
- **maxiter**: maximum number of iterations, default to be 500
- **cri**: stopping criterion, default to be 0.001
- **parallel**: whether to do parallel computing at each fold
Value

- est: estimated mixed Laplacian matrix
- weight: weights for the two Laplacian matrix

Examples

data(sampledata)
data(L0)
data(L1)
y <- sampledata$Y_Gau
x <- sampledata[, -(1:3)]
Ltune <- tune_network(y, x, L0, L1, adaptl2 = FALSE)
weight <- Ltune@weight
Lest <- Ltune@est
Index

*Topic **datasets**
 L0, 11
 L1, 11
 sampledata, 18

coeff.cv_glmaag, 2
coeff.glmaag, 3
coeff.ss_glmaag, 4
cv_glmaag, 4
evaluate, 6
evaluate_plot, 7
gcut, 8
gS, 8
glmaag, 9
 L0, 11
 L1, 11
 laps, 11
plot.cv_glmaag, 12
plot.glmaag, 13
plot.ss_glmaag, 13
predict.cv_glmaag, 14
predict.glmaag, 15
predict.ss_glmaag, 16
print.cv_glmaag, 16
print.ss_glmaag, 17
runtheExample, 18

sampledata, 18
ss_glmaag, 19

tune_network, 21