Package ‘glmertree’

November 19, 2019

Title Generalized Linear Mixed Model Trees
Date 2019-11-19
Version 0.2-0
Description Recursive partitioning based on (generalized) linear mixed models (GLMMs) combining lmer()/glmer() from 'lme4' and lmtree()/glmtree() from 'partykit'. The fitting algorithm is described in more detail in Fokkema, Smits, Zeileis, Hothorn & Kelderman (2018; <DOI:10.3758/s13428-017-0971-x>).
Depends R (>= 3.1.0), lme4, partykit (>= 1.0-4)
Imports graphics, stats, utils, Formula
Suggests vcd, lattice
LazyData yes
License GPL-2 | GPL-3
RoxygenNote 6.1.1
NeedsCompilation no
Author Marjolein Fokkema [aut, cre], Achim Zeileis [aut]
Maintainer Marjolein Fokkema <M.Fokkema@fsw.leidenuniv.nl>
Repository CRAN
Date/Publication 2019-11-19 18:30:05 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>coef.glmertree</td>
<td>2</td>
</tr>
<tr>
<td>DepressionDemo</td>
<td>3</td>
</tr>
<tr>
<td>glmertree</td>
<td>4</td>
</tr>
<tr>
<td>GrowthCurveDemo</td>
<td>8</td>
</tr>
<tr>
<td>MHserviceDemo</td>
<td>9</td>
</tr>
<tr>
<td>plot.glmertree</td>
<td>10</td>
</tr>
</tbody>
</table>

Index 13
coef.glmerTree

Obtaining Fixed-Effects Coefficient Estimates of (Generalized) Linear Mixed Model Trees

Description

coef and fixef methods for (g)lmertree objects.

Usage

```r
## S3 method for class 'lmertree'
coef(object, which = "tree", drop = FALSE, ...)
## S3 method for class 'lmertree'
fixef(object, which = "tree", drop = FALSE, ...)
## S3 method for class 'glmerTree'
coef(object, which = "tree", drop = FALSE, ...)
## S3 method for class 'glmerTree'
fixef(object, which = "tree", drop = FALSE, ...)
```

Arguments

- `object`: an object of class `lmertree` or `glmerTree`.
- `which`: character; "tree" (default) or "global". Specifies whether local (tree) or global fixed-effects estimates should be returned.
- `drop`: logical. Only used when `which = "tree"`; delete the dimensions of the resulting array if it has only one level?
- `...`: Additional arguments, currently not used.

Details

The code is still under development and might change in future versions.

Value

If `type = "local"`, returns a matrix of estimated local fixed-effects coefficients, with a row for every terminal node and a column for every fixed effect. If `type = "global"`, returns a numeric vector of estimated global fixed-effects coefficients.

References

See Also

`lmertree`, `glmerTree`, `party-plot`.
load artificial example data
data("DepressionDemo", package = "glmertree")

fit LMM tree with local fixed effects only
lt <- lmertree(depression ~ treatment + age | cluster | anxiety + duration,
 data = DepressionDemo)
coef(lt)

fit LMM tree including both local and global fixed effect
lt <- lmertree(depression ~ treatment | (age + (1|cluster)) | anxiety + duration,
 data = DepressionDemo)
coef(lt, which = "tree") # default behaviour
coef(lt, which = "global")

fit GLMM tree with local fixed effects only
gt <- glmertree(depression_bin ~ treatment | cluster |
 age + anxiety + duration, data = DepressionDemo)
coef(gt)

fit GLMM tree including both local and global fixed effect
gt <- glmertree(depression_bin ~ treatment | (age + (1|cluster)) |
 anxiety + duration, data = DepressionDemo)
coef(gt, which = "tree") # default behaviour
coef(gt, which = "global")

DepressionDemo
Artificial depression treatment dataset

Description

Simulated dataset of a randomized clinical trial (N = 150) to illustrate fitting of (G)LMM trees.

Usage

data("DepressionDemo")

Format

A data frame containing 150 observations on 6 variables:

- **depression** numeric. Continuous treatment outcome variable (range: 3-16, M = 9.12, SD = 2.66).
- **treatment** factor. Binary treatment variable.
- **cluster** factor. Indicator for cluster with 10 levels.
- **age** numeric. Continuous partitioning variable (range: 18-69, M = 45, SD = 9.56).
anxiety numeric. Continuous partitioning variable (range: 3-18, M = 10.26, SD = 3.05).

duration numeric. Continuous partitioning variable (range: 1-17, M = 6.97, SD = 2.90).

depression_bin factor. Binarized treatment outcome variable (0 = recovered, 1 = not recovered).

Details

The data were generated such that the duration and anxiety covariates characterized three subgroups with differences in treatment effects. The `cluster` variable was used to introduce a random intercept that should be accounted for. The treatment outcome is an index of depressive symptomatology.

See Also

`lmertree`, `glmertree`

Examples

```r
data("DepressionDemo", package = "glmertree")
summary(DepressionDemo)
lm1 <- lmertree(depression ~ treatment | cluster | anxiety + duration + age,
data = DepressionDemo)
plot(lm1)
lm1 <- glmertree(depression_bin ~ treatment | cluster | anxiety + duration + age,
data = DepressionDemo)
plot(lm1)
```

Description

Model-based recursive partitioning based on (generalized) linear mixed models.

Usage

```r
lmertree(formula, data, weights = NULL, cluster = NULL,
         ranefstart = NULL, offset = NULL, joint = TRUE,
         abstol = 0.001, maxit = 100, dfsplit = TRUE, verbose = FALSE,
         plot = FALSE, REML = TRUE, lmercontrol = lmerControl(), ...)

glmertree(formula, data, family = "binomial", weights = NULL,
          cluster = NULL, ranefstart = NULL, offset = NULL, joint = TRUE,
          abstol = 0.001, maxit = 100, dfsplit = TRUE, verbose = FALSE,
          plot = FALSE, nAGQ = 1L, glmercontrol = glmerControl(), ...)
```
Arguments

formula
form | specifying the response variable and a three-part right-hand-side de-
sc | scribing the regressors, random effects, and partitioning variables, respec-
| tively. For details see below.

data
data frame to be used for estimating the model tree.

family
family specification for glmtree and glmer. See glm documentation for fami-
lies.

weights
numeric. An optional numeric vector of weights. Can be a name of a column in
data or a vector of length nrow(data).

cluster
optional vector of cluster IDs to be employed for clustered covariances in the
target stability tests. Can be a name of a column in data or a vector of
length nrow(data). If cluster = NULL (the default), observation-level covari-
ances are employed in the parameter stability tests. If partitioning variables are
measured on the cluster level, this will likely yield spurious splits, which can be
mitigated by specification of the cluster argument, which results in cluster-level
covariances being employed in the parameter stability tests.

ranefstart
NULL (the default), TRUE, or a numeric vector of length nrow(data). Specifies
the offset to be used in estimation of the first tree. NULL by default, yielding a
zero offset initialization. If ranefstart = TRUE is specified, the random effects
will be estimated first and the first tree will be grown using the random-effects
predictions as an offset.

offset
optional numeric vector to be included in the linear predictor with a coefficient
of one. Note that offset can be a name of a column in data or a numeric
vector of length nrow(data).

joint
logical. Should the fixed effects from the tree be (re-)estimated jointly along
with the random effects?

abstol
numeric. The convergence criterion used for estimation of the model. When the
difference in log-likelihoods of the random-effects model from two consecutive
iterations is smaller than abstol, estimation of the model tree has converged.

maxit
numeric. The maximum number of iterations to be performed in estimation of
the model tree.

dfsplit
logical or numeric. as.integer(dfsplit) is the degrees of freedom per se-
tected split employed when extracting the log-likelihood.

verbose
Should the log-likelihood value of the estimated random-effects model be printed
for every iteration of the estimation?

plot
Should the tree be plotted at every iteration of the estimation? Note that selecting
this option slows down execution of the function.

REML
logical scalar. Should the fixed-effects estimates be chosen to optimize the
REML criterion (as opposed to the log-likelihood)? Will be passed to function
lmer(). See lmer for details.

nAGQ
integer scalar. Specifies the number of points per axis for evaluating the adaptive
Gauss-Hermite approximation to the log-likelihood, to be passed to function
glmer(). See glmer for details.
lmer.control, glmer.control

list. An optional list with control parameters to be passed to lmer() and glmer(), respectively. See lmerControl for details.

... Additional arguments to be passed to lmmtree() or glmtree(). See mob_control documentation for details.

Details

(G)LMM trees learn a tree where each terminal node is associated with different fixed-effects regression coefficients while adjusting for global random effects (such as a random intercept). This allows for detection of subgroups with different fixed-effects parameter estimates, keeping the random effects constant throughout the tree (i.e., random effects are estimated globally). The estimation algorithm iterates between (1) estimation of the tree given an offset of random effects, and (2) estimation of the random effects given the tree structure. See Fokkema et al. (2018) for a detailed introduction.

To specify all variables in the model a formula such as \(y \sim x_1 + x_2 \mid \text{random} \mid z_1 + z_2 + z_3 \) is used, where \(y \) is the response, \(x_1 \) and \(x_2 \) are the regressors in every node of the tree, \(\text{random} \) is the random effects, and \(z_1 \) to \(z_3 \) are the partitioning variables considered for growing the tree. If \(\text{random} \) is only a single variable such as \(\text{id} \) a random intercept with respect to \(\text{id} \) is used. Alternatively, it may be an explicit random-effects formula such as \((1 \mid \text{id}) \) or a more complicated formula such as \(((1+\text{time}) \mid \text{id}) \). (Note that in the latter two formulas, the brackets are necessary to protect the pipes in the random-effects formulation.)

In the random-effects model from step (2), two strategies are available: Either the fitted values from the tree can be supplied as an offset (\(\text{joint} = \text{FALSE} \)) so that only the random effects are estimated. Or the fixed effects are (re-)estimated along with the random effects using a nesting factor with nodes from the tree (\(\text{joint} = \text{TRUE} \)). In the former case, the estimation of each random-effects model is typically faster, but more iterations are required.

The code is still under development and might change in future versions.

Value

The function returns a list with the following objects:

- **tree**: The final lmmtree/glmtree.
- **lmer**: The final lmer random-effects model.
- **ranef**: The corresponding random effects of lmer.
- **varcorrr**: The corresponding VarCorr(lmer).
- **variance**: The corresponding attr(VarCorr(lmer),”sc”)^2.
- **data**: The dataset specified with the data argument including added auxiliary variables .ranef and .tree from the last iteration.
- **loglik**: The log-likelihood value of the last iteration.
- **iterations**: The number of iterations used to estimate the lmmtree.
- **maxit**: The maximum number of iterations specified with the maxit argument.
- **ranefstart**: The random effects used as an offset, as specified with the ranefstart argument.
formula The formula as specified with the formula argument.
randomformula The formula as specified with the randomformula argument.
abstol The prespecified value for the change in log-likelihood to evaluate convergence, as specified with the abstol argument.
mob.control A list containing control parameters passed to lmtree(), as specified with
lmer.control A list containing control parameters passed to lmer(), as specified in the lmer.control argument.
joint Whether the fixed effects from the tree were (re-)estimated jointly along with the random effects, specified with the joint argument.

References

See Also
lmer, glmer, lmtree, glmmtree, plot.lmertree, plot.glmertree

Examples

artificial example data
data("DepressionDemo", package = "glmertree")

fit normal linear regression LMM tree for continuous outcome
lt <- lmertree(depression ~ treatment | cluster | age + anxiety + duration,
 data = DepressionDemo)
print(lt)
plot(lt, which = "all") # default behavior, may also be "tree" or "ranef"
coef(lt)
ranef(lt)
predict(lt, type = "response") # default behavior, may also be "node"
predict(lt, re.form = NA) # excludes random effects, see ?lme4::predict.merMod
residuals(lt)
VarCorr(lt) # see lme4::VarCorr

fit logistic regression GLMM tree for binary outcome
gt <- glmertree(depression_bin ~ treatment | cluster | age + anxiety + duration,
 data = DepressionDemo)
print(gt)
plot(gt, which = "all") # default behavior, may also be "tree" or "ranef"
coef(gt)
ranef(gt)
predict(gt, type = "response") # default behavior, may also be "node" or "link"
predict(gt, re.form = NA) # excludes random effects, see ?lme4::predict.merMod
residuals(gt)
VarCorr(gt) # see lme4::VarCorr
GrowthCurveDemo Artificial dataset for partitioning of linear growth curve models

Description

Artificial dataset to illustrate fitting of LMM trees with growth curve models in the terminal nodes.

Usage

data("GrowthCurveDemo")

Format

A data frame containing 1250 repeated observations on 250 persons. x1 - x8 are time-invariant partitioning variables. Thus, they are measurements on the person (i.e., cluster) level, not on the individual observation level.

person numeric. Indicator linking repeated measurements to persons.

time factor. Indicator for timepoint.

y numeric. Response variable.

x1 numeric. Potential partitioning variable.

x2 numeric. Potential partitioning variable.

x3 numeric. Potential partitioning variable.

x4 numeric. Potential partitioning variable.

x5 numeric. Potential partitioning variable.

x6 numeric. Potential partitioning variable.

x7 numeric. Potential partitioning variable.

x8 numeric. Potential partitioning variable.

Details

Data were generated so that x1, x2 and x3 are true partitioning variables, x4 through x8 are noise variables. The (potential) partitioning variables are time invariant. Time-varying covariates can also be included in the model. For partitioning growth curves these should probably not be potential partitioning variables, as this could result in observations from the same person ending up in different terminal nodes. Thus, time-varying covariates are probably best included as predictors in the node-specific regression model. E.g.: y ~ time + timevarying_cov | person | x1 + x2 + x3 + x4.

See Also

lmertree, glmertree
Examples

data("GrowthCurveDemo", package = "glmertree")
head(GrowthCurveDemo)

Fit LMM tree with a random intercept w.r.t. person:
form <- y ~ time | person | x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8
lt.default <- lmertree(form, data = GrowthCurveDemo)
plot(lt.default, which = "tree") ## yields too large tree
VarCorr(lt.default)

Account for measurement level of the partitioning variables:
lt.cluster <- lmertree(form, cluster = person, data = GrowthCurveDemo)
plot(lt.cluster, which = "tree") ## yields correct tree
VarCorr(lt.cluster) ## yields slightly larger ranef variance

Fit LMM tree with random intercept and random slope of time w.r.t. person:
form.s <- y ~ time | (1 + time | person) | x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8
lt.s.cluster <- lmertree(form.s, cluster = person, data = GrowthCurveDemo)
plot(lt.s.cluster, which = "tree") ## same tree as before
VarCorr(lt.s.cluster)

MHserviceDemo

Artificial mental-health service outcomes dataset

Description

Artificial dataset of treatment outcomes (N = 3739) of 13 mental-health services to illustrate fitting of (G)LMM trees with constant fits in terminal nodes.

Usage

data("MHserviceDemo")

Format

A data frame containing 3739 observations on 8 variables:

age numeric. Variable representing age in years (range: 4.8 - 23.6, M = 11.46).
impact numeric. Continuous variable representing severity of and impairment due to mental-health problems at baseline. Higher values indicate higher severity and impairment.
gender factor. Indicator for gender.
emotional factor. Indicator for presence of emotional disorder at baseline.
autism factor. Indicator for presence of autistic disorder at baseline.
conduct factor. Indicator for mental-health service provider.
cluster_id factor. Binarized treatment outcome variable (0 = recovered, 1 = not recovered.)
outcome numeric. Variable representing treatment outcome as measured by a total mental-health difficulties score assessed about 6 months after baseline, corrected for the baseline assessment. Higher values indicate poorer outcome.

Details

Dataset was modelled after Edbrooke-Childs et al. (2017), who analyzed a sample of $N = 3,739$ young people who received treatment at one of 13 mental-health service providers in the UK. Note that the data were artificially generated and do not reflect actual empirical findings.

See Also

lmertree, glmertree

Examples

data("MHserviceDemo", package = "glmertree")
summary(MHserviceDemo)
lm <- lmertree(outcome ~ 1 | cluster_id | age + gender + emotional +
 autism + impact + conduct, data = MHserviceDemo)
plot(lm)
MHserviceDemo$outcome_bin <- factor(MHserviceDemo$outcome > 0)
glm <- glmertree(outcome_bin ~ 1 | cluster_id | age + gender +
 emotional + autism + impact + conduct,
 data = MHserviceDemo, family = "binomial")
plot(glm)

plot.glmertree Plotting (Generalized) Linear Mixed Model Trees

Description

plot method for (g)lmertree objects.

Usage

S3 method for class 'lmertree'
plot(x, which = "all", ask = TRUE, type = "extended",
 observed = TRUE, fitted = "combined", tp_args = list(),
 drop_terminal = TRUE, terminal_panel = NULL, ...)
S3 method for class 'glmertree'
plot(x, which = "all", ask = TRUE, type = "extended",
 observed = TRUE, fitted = "combined", tp_args = list(),
 drop_terminal = TRUE, terminal_panel = NULL, ...)
Arguments

- **x**: an object of class `lmertree` or `glmertree`.
- **which**: character; "all" (default), "tree", "random" or "tree.coef". Specifies whether, tree, random effects, or both should be plotted. Alternatively, "tree.coef" yields caterpillar plots of the estimated fixed-effects coefficients in every terminal node of the tree, but omits the tree structure (see Details).
- **ask**: logical. Should user be asked for input, before a new figure is drawn?
- **type**: character; "extended" (default) or "simple". `type = "extended"` yields a plotted tree with observed data and/or fitted means plotted in the terminal nodes; "simple" yields a plotted tree with the value of fixed and/or random effects coefficients reported in the terminal nodes.
- **observed**: logical. Should observed datapoints be plotted in the tree? Defaults to TRUE, FALSE is only supported for objects of class `lmertree`, not of class `glmertree`.
- **fitted**: character. "combined" (default), "marginal" or "none". Specifies whether and how fitted values should be computed and visualized. Only used when predictor variables for the node-specific (G)LMs were specified. If "combined", fitted values will computed, based on the observed values of the remaining (random and fixed-effects) predictor variables, and their estimated effects. If "marginal", fitted values will be calculated, keeping all remaining variables (with random and/or fixed effects) fixed at their (population and sample) means (or majority class).
- **tp_args**: list of arguments to be passed to panel generating function `node_glmertree`. See arguments `node_bivplot` in `panelfunctions`.
- **drop_terminal**: logical. Should all terminal nodes be plotted at the bottom of the plot?
- **terminal_panel**: an optional panel function to be passed to `plot.party()`. See `party-plot` documentation for details.
- **...**: Additional arguments to be passed to `plot.party()`. See `party-plot` documentation for details.

Details

The caterpillar plot(s) for the local (node-specific) fixed effects (created when `which = "tree.coef"`) depict the estimated fixed-effects coefficients with 95% confidence intervals, but these CIs do not account for the searching of the tree structure and are therefore likely too narrow. There is currently no way to adjust CIs for searching of the tree structure, but the CIs can be useful to obtain an indication of the variability of the coefficient estimates, not for statistical significance testing.

The caterpillar plot(s) for the random effect (created if `which = "ranef"` or "all") depict the predicted random effects with 95% confidence intervals. See also `ranef`.

The code is still under development and might change in future versions.

References

See Also

lmertree, glmertree, party-plot.

Examples

```r
## load artificial example data
data("DepressionDemo", package = "glmertree")

## fit linear regression LMM tree for continuous outcome
lt <- lmertree(depression ~ treatment + age | cluster | anxiety + duration,
               data = DepressionDemo)
plot(lt)
plot(lt, type = "simple")
plot(lt, which = "tree", fitted = "combined")
plot(lt, which = "tree", fitted = "none")
plot(lt, which = "tree", observed = FALSE)
plot(lt, which = "tree.coef")
plot(lt, which = "ranef")

## fit logistic regression GLMM tree for binary outcome
gt <- glmertree(depression_bin ~ treatment + age | cluster |
                anxiety + duration, data = DepressionDemo)
plot(gt)
plot(gt, type = "simple")
plot(gt, which = "tree", fitted = "combined")
plot(gt, which = "tree", fitted = "none")
plot(gt, which = "tree.coef")
plot(gt, which = "ranef")
```
Index

*Topic **datasets**
 DepressionDemo, 3
 GrowthCurveDemo, 8
 MHserviceDemo, 9
*Topic **hplot**
 plot.glmertree, 10
*Topic **tree**
 glmertree, 4
as.party.glmertree (glmertree), 4
as.party.lmertree (glmertree), 4
coef.glmertree, 2
coef.lmertree (coef.glmertree), 2
DepressionDemo, 3
fixef.glmertree (coef.glmertree), 2
fixef.lmertree (coef.glmertree), 2
glm, 5
glmer, 5, 7
glmertree, 2, 4, 8, 10, 12
glmtree, 7
GrowthCurveDemo, 8
lmer, 5, 7
lmerControl, 6
lmertree, 2, 4, 8, 10, 12
lmertree (glmertree), 4
lmtree, 7
logLik.glmertree (glmertree), 4
logLik.lmertree (glmertree), 4
MHserviceDemo, 9
mob_control, 6
model.frame.glmertree (glmertree), 4
model.frame.lmertree (glmertree), 4
panelfunctions, 11
plot.glmertree, 7, 10
plot.lmertree (plot.glmertree), 10
predict.glmertree (glmertree), 4
predict.lmertree (glmertree), 4
print.glmertree (glmertree), 4
print.lmertree (glmertree), 4
ranef, 11
ranef.glmertree (glmertree), 4
ranef.lmertree (glmertree), 4
resid.glmertree (glmertree), 4
resid.lmertree (glmertree), 4
residuals.glmertree (glmertree), 4
residuals.lmertree (glmertree), 4
terms.glmertree (glmertree), 4
terms.lmertree (glmertree), 4
VarCorr.glmertree (glmertree), 4
VarCorr.lmertree (glmertree), 4
VarCorr.lmertree (glmertree), 4

13