Package `glmmSeq`

October 13, 2022

Title General Linear Mixed Models for Gene-Level Differential Expression

Version 0.5.5

Description Using mixed effects models to analyse longitudinal gene expression can highlight differences between sample groups over time. The most widely used differential gene expression tools are unable to fit linear mixed effect models, and are less optimal for analysing longitudinal data. This package provides negative binomial and Gaussian mixed effects models to fit gene expression and other biological data across repeated samples. This is particularly useful for investigating changes in RNA-Sequencing gene expression between groups of individuals over time, as described in: Rivellese, F., Surace, A. E., Goldmann, K., Sciacca, E., Cubuk, C., Giorli, G., ... Lewis, M. J., & Pitzalis, C. (2022) Nature medicine <doi:10.1038/s41591-022-01789-0>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

biocViews

RoxygenNote 7.2.1

Language en-gb

BugReports https://github.com/myles-lewis/glmmSeq/issues

Suggests knitr, rmarkdown, kableExtra, DESeq2, edgeR, emmeans

VignetteBuilder knitr

Depends R (>= 3.6.0)

Imports MASS, car, stats, ggplot2, ggpubr, glmmTMB, graphics, lme4, lmerTest, methods, plotly, qvalue, pbapply, pbmcapply

NeedsCompilation no

Author Myles Lewis [aut, cre] (<https://orcid.org/0000-0001-9365-5345>), Katriona Goldmann [aut] (<https://orcid.org/0000-0002-9073-6323>), Elisabetta Sciacca [aut] (<https://orcid.org/0000-0001-7525-1558>),
fcPlot

Plotly or ggplot fold change plots

Description

Plotly or ggplot fold change plots

Usage

```r
fcPlot(
  object,
  x1var,
  x2var,
  x1Values = NULL,
  x2Values = NULL,
  pCutoff = 0.01,
  labels = c(),
  useAdjusted = FALSE,
  plotCutoff = 1,
  graphics = "ggplot",
  fontSize = 12,
  labelFontSize = 4,
)```
fcPlot

```
colours = c("grey", "goldenrod1", "red", "blue"),
verbose = FALSE,
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>A glmmSeq object created by <code>glmmSeq::glmmSeq()</code>.</td>
</tr>
<tr>
<td>x1var</td>
<td>The name of the first (inner) x parameter</td>
</tr>
<tr>
<td>x2var</td>
<td>The name of the second (outer) x parameter</td>
</tr>
<tr>
<td>x1Values</td>
<td>Timepoints or categories in x1var used to calculate fold change. If NULL the first two levels in x1var are used.</td>
</tr>
<tr>
<td>x2Values</td>
<td>Categories in x2var to be compared on x and y axis.</td>
</tr>
<tr>
<td>pCutoff</td>
<td>The significance cut-off for colour-coding (default = 0.01)</td>
</tr>
<tr>
<td>labels</td>
<td>Row names or indices to label on plot</td>
</tr>
<tr>
<td>useAdjusted</td>
<td>whether to use adjusted p-values (must have q-values in object). Default = FALSE</td>
</tr>
<tr>
<td>plotCutoff</td>
<td>Which probes to include on plot by significance cut-off (default = 1, for all markers)</td>
</tr>
<tr>
<td>graphics</td>
<td>Graphics system to use: &quot;ggplot&quot; or &quot;plotly&quot;</td>
</tr>
<tr>
<td>fontSize</td>
<td>Font size</td>
</tr>
<tr>
<td>labelFontSize</td>
<td>Font size for labels</td>
</tr>
<tr>
<td>colours</td>
<td>Vector of colours to use for significance groups</td>
</tr>
<tr>
<td>verbose</td>
<td>Whether to print statistics</td>
</tr>
<tr>
<td>...</td>
<td>Other parameters to pass to plotly or ggplot</td>
</tr>
</tbody>
</table>

Value

Returns a plot for fold change between x1Values in one x2Value subset on x axis and fold change in the other x2Value on the y axis.

Examples

data(PEAC_minimal_load)

disp <- apply(tpm, 1, function(x) {
  (var(x, na.rm = TRUE)-mean(x, na.rm = TRUE))/(mean(x, na.rm = TRUE)**2)
})

glmmFit <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
  countdata = tpm[1:5, ],
  metadata = metadata,
  dispersion = disp,
  verbose = FALSE)

cfPlot(object = glmmFit,
\texttt{x1var = "Timepoint",}
\texttt{x2var = "EULAR\_6m",}
\texttt{x2Values = c("Good", "Non-response"),}
\texttt{pCutoff = 0.05,}
\texttt{useAdjusted = FALSE,}
\texttt{plotCutoff = 1,}
\texttt{graphics = "plotly"}

\section*{Description}

Plot to show differences between groups and over time using ggplot2.

\section*{Usage}

\begin{verbatim}
ggmodelPlot(
  object,
  geneName = NULL,
  x1var = NULL,
  x2var = NULL,
  x2shift = NULL,
  xlab = NULL,
  ylab = geneName,
  plab = NULL,
  title = geneName,
  logTransform = is(object, "GlmmSeq"),
  shapes = 19,
  colours = "grey60",
  lineColours = "grey60",
  markerSize = 1,
  fontSize = 12,
  alpha = 0.7,
  xZOffset = 5,
  addPoints = TRUE,
  addModel = TRUE,
  modelSize = 4,
  modelColours = "blue",
  modellLineSize = 1,
  modellLineColours = modelColours,
  addBox = FALSE,
  ...
)
\end{verbatim}
**Arguments**

object | A glmmSeq/lmmSeq object created by `glmmSeq::glmmSeq()` or `glmmSeq::lmmSeq()`
geneName | The gene/row name to be plotted
x1var | The name of the first (inner) x parameter, typically ‘time’. This is anticipated to have different values when matched by ID.
x2var | The name of an optional second (outer) x parameter, which should be a factor.
x2shift | Amount to shift along x axis for each level of x2var. By default the function will arrange each level of x2var side by side.
xlab | Title for the x axis
ylab | Title for the y axis
plab | Optional character vector of labels for p-values. These must align with column names in `object@stats$pvals`.
title | Plot title. If NULL gene name is used
logTransform | Whether to perform a log10 transform on the y axis
shapes | The marker shapes (default=19)
colours | The marker colours as vector
lineColours | The line colours (default='grey60') as vector
markerSize | Size of markers (default=1)
fontSize | Plot font size
alpha | Line and marker opacity (default=0.7)
x2Offset | Vertical adjustment to secondary x-axis labels (default=5)
addPoints | Whether to add underlying data points (default=TRUE)
addModel | Whether to add the fit model with markers (default=TRUE)
modelSize | Size of model points (default=4)
modelColours | Colour of model fit markers (default="blue") as vector
modelLineSize | Size of model points (default=1) as vector
modelLineColours | Colour of model fit lines
addBox | Logical whether to add boxplots for mean and IQR
... | Other parameters to pass to `ggplot2::theme()`.

**Value**

Returns a paired plot for matched samples.
Examples

data(PEAC_minimal_load)

disp <- apply(tpm, 1, function(x){
  (var(x, na.rm=TRUE)-mean(x, na.rm=TRUE))/(mean(x, na.rm=TRUE)**2)
})

MS4A1glmm <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
  countdata = tpm[,1], drop = FALSE,
  metadata = metadata,
  dispersion = disp,
  verbose = FALSE)

ggmodelPlot(object = MS4A1glmm,
  geneName = 'MS4A1',
  x1var = 'Timepoint',
  x2var = 'EULAR_6m',
  colours = c('skyblue', 'goldenrod1', 'mediumvioletred'))

---

glmmQvals

**Glmm Sequencing qvalues**

Description

Add qvalue columns to the glmmSeq dataframe

Usage

```r
glmmQvals(object, cutoff = 0.05, verbose = TRUE)
```

Arguments

- `object`: A glmmSeq/lmmSeq object created by `glmmSeq::glmmSeq()`.
- `cutoff`: Prints a table showing the number of probes considered significant by the pvalue cut-off (default=0.05)
- `verbose`: Logical whether to print the number of significant probes (default=TRUE)

Value

Returns a GlmmSeq object with results for gene-wise general linear mixed models with adjusted p-values using the qvalue function

Examples

```r
data(PEAC_minimal_load)
disp <- apply(tpm, 1, function(x){
 (var(x, na.rm=TRUE)-mean(x, na.rm=TRUE))/(mean(x, na.rm=TRUE)**2)
})
```
`glmmRefit`  

```r
MS4A1glmm <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
 countdata = tpm[1:5,],
 metadata = metadata,
 dispersion = disp[1:5],
 verbose=FALSE)
MS4A1glmm <- glmmQvals(MS4A1glmm)
```

---

**Description**

Based on a `GlmmSeq` or `lmmSeq` class result object, this function attempts to refit an identical model for a specific gene based on the data and fitting parameters stored in the results object and refitting using either `lme4::glmer()` for `GlmmSeq` objects or `lmer()` for `lmmSeq` objects. The fitted model can then be passed on to other packages such as `emmeans` to look at estimated marginal means for the model.

**Usage**

```r
glmmRefit(object, gene, ...)
```

**Arguments**

- `object` A fitted results object of class `GlmmSeq` or `lmmSeq`
- `gene` A character value specifying a single gene to extract a fitted model for
- `...` Optional arguments passed to either `lme4::glmer()` or `lme4::lmer()`
- `formula` Optional formula to use when refitting model
- `control` Optional control parameters, see `lme4::lmerControl()` or `lme4::glmerControl()`
- `family` Optional GLM family when refitting GLMM using `lme4::glmer()` or `glmmTMB()`

**Value**

Fitted model of class `lmerMod` in the case of LMM, or `glmerMod` or `glmmTMB` for a GLMM dependent on the original method.
Examples

data(PEAC_minimal_load)
disp <- apply(tpm, 1, function(x) {
  (var(x, na.rm = TRUE)-mean(x, na.rm = TRUE))/(mean(x, na.rm = TRUE)**2)
})
glmmtest <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
  countdata = tpm[1:2, ],
  metadata = metadata,
  dispersion = disp,
  verbose = FALSE)

# show summary for single gene
summary(glmmtest, "MS4A1")

# refit a single model using lme4::glmer()
fit <- glmmRefit(glmmtest, "MS4A1")

# refit model with reduced formula
fit2 <- glmmRefit(glmmtest, "MS4A1",
  formula = count ~ Timepoint + EULAR_6m + (1 | PATID))

# LRT
anova(fit, fit2)

---

**glmmSeq**

*GLMM with negative binomial distribution for sequencing count data*

**Description**

Fits many generalised linear mixed effects models (GLMM) with negative binomial distribution for analysis of overdispersed count data with random effects. Designed for longitudinal analysis of RNA-Sequencing count data.

**Usage**

```
glmmSeq(
 modelFormula, # GLMM formula
 countdata, # Count data matrix
 metadata, # Metadata
 id = NULL, # Optional ID column
 dispersion = NA,
 sizeFactors = NULL,
 reduced = NULL,
 modelData = NULL,
 designMatrix = NULL,
 method = c("lme4", "glmmTMB"),
 control = NULL,
)```
family = nbinom2,
cores = 1,
removeSingles = FALSE,
zeroCount = 0.125,
verbose = TRUE,
returnList = FALSE,
progress = FALSE,
)

Arguments

modelFormula the model formula. This must be of the form "~ ..." where the structure is assumed to be "counts ~ ...". The formula must include a random effects term. For more information on formula structure for random effects see lme4::glmer()
countdata the sequencing count data matrix with genes in rows and samples in columns
metadata a dataframe of sample information with variables in columns and samples in rows
id Optional. Used to specify the column in metadata which contains the sample IDs to be used in repeated samples for random effects. If not specified, the function defaults to using the variable after the "|" in the random effects term in the formula.
dispersion a numeric vector of gene dispersion. Not required for glmmTMB models, as these determine and fit dispersion for each gene.
sizeFactors size factors (default = NULL). If provided the glmer offset is set to log(sizeFactors). For more information see lme4::glmer()
reduced Optional reduced model formula. If this is chosen, a likelihood ratio test is used to calculate p-values instead of the default Wald type 2 Chi-squared test.
modelData Optional dataframe. Default is generated by call to expand.grid using levels of variables in the formula. Used to calculate model predictions (estimated means & 95% CI) for plotting via modelPlot. It can therefore be used to add/remove points in modelPlot.
designMatrix custom design matrix, used only for prediction
method Specifies which package to use for fitting GLMM models. Either "lme4" or "glmmTMB" depending on whether to use lme4::glmer or glmmTMB::glmmTMB to fit GLMM models.
control the glmer optimizer control. If method = "lme4" default is glmerControl(optimizer = "bobyqa"). If method = "glmmTMB" default is glmmTMBControl()
family Only used with glmmTMB models. Default is nbinom2. See glmmTMB::nbinom2
cores number of cores to use. Default = 1.
removeSingles whether to remove individuals without repeated measures (default = FALSE)
zeroCount numerical value to offset zeroes for the purpose of log (default = 0.125)
verbose Logical whether to display messaging (default = TRUE)
returnList: Logical whether to return results as a list or glmmSeq object (default = FALSE). Useful for debugging.

progress: Logical whether to display a progress bar

Details

This function is a wrapper for lme4::glmer(). By default, p-values for each model term are computed using Wald type 2 Chi-squared test as per car::Anova(). The underlying code for this has been optimised for speed. However, if a reduced model formula is specified by setting reduced, then a likelihood ratio test is performed instead using stats::anova. This will double computation time since two GLMM have to be fitted.

Parallelisation is provided using parallel::mclapply on Unix/Mac or parallel::parLapply on PC.

Setting method = "glmmTMB" enables an alternative method of fitting GLMM using the glmmTMB package. This gives access to a variety of alternative GLM family functions. Note, glmmTMB negative binomial models are substantially slower to fit than glmer models with known dispersion due to the extra time taken by glmmTMB to optimise the dispersion parameter.

The id argument is usually optional. By default the id column in the metadata is determined as the term after the bar in the random effects term of the model. Note that id is not passed to glmer or glmmTMB. It is only really used to remove singletons from the countdata matrix and metadata dataframe. The id is also stored in the output from glmmSeq and used by plotting function modelPlot(). However, due to its flexible nature, in theory glmmSeq should allow for more than one random effect term, although this has not been tested formally. In this case, it is probably prudent to specify a value for id.

Value

Returns an S4 class GlmmSeq object with results for gene-wise general linear mixed models. A list of results is returned if returnList is TRUE which is useful for debugging. If all genes return errors from glmer, then an error message is shown and a character vector containing error messages for all genes is returned.

See Also

lme4::glmer lme4::glmerControl glmmTMB::glmmTMB glmmTMB::nbinom2 glmmTMB::glmmTMBControl car::Anova

Examples

data(PEAC_minimal_load)
disp <- apply(tpm, 1, function(x) {
 (var(x, na.rm = TRUE)-mean(x, na.rm = TRUE))/(mean(x, na.rm = TRUE)**2)
})
MS4A1glmm <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
countdata = tpm[1:2,],
metadata = metadata,
dispersion = disp,
verbose = FALSE)
names(attributes(MS4A1glmm))
GlmmSeq-class

An S4 class to define the glmmSeq output

Description

An S4 class to define the glmmSeq output

Slots

info List including the matched call, dispersions, offset, designMatrix
formula The model formula
stats Statistics from fitted models
predict Predicted values
reduced Optional reduced formula for LRT
countdata The input expression data with count data in rows
metadata The input metadata
modelData Model data for predictions
optInfo Information on whether the model was singular or converged
errors Any errors
vars List of variables stored from the original call, including the id variable (by default automatically identified from the random effect term in the model) and removeSingles argument

lmmSeq

Linear mixed models for data matrix

Description

Fits many linear mixed effects models for analysis of gaussian data with random effects, with parallelisation and optimisation for speed. It is suitable for longitudinal analysis of high dimensional data. Wald type 2 Chi-squared test is used to calculate p-values.
Usage

```r
lmmSeq(
    modelFormula, 
    maindata, 
    metadata, 
    id = NULL, 
    offset = NULL, 
    test.stat = c("Wald", "F", "LRT"), 
    reduced = NULL, 
    modelData = NULL, 
    designMatrix = NULL, 
    control = lmerControl(), 
    cores = 1, 
    removeSingles = FALSE, 
    verbose = TRUE, 
    returnList = FALSE, 
    progress = FALSE, 
    ...
)
```

Arguments

- **modelFormula**: the model formula. This must be of the form "~ ..." where the structure is assumed to be "gene ~ ...". The formula must include a random effects term. See formula structure for random effects in `lme4::lmer()`

- **maindata**: data matrix with genes in rows and samples in columns

- **metadata**: a dataframe of sample information with variables in columns and samples in rows

- **id**: Optional. Used to specify the column in metadata which contains the sample IDs to be used in repeated samples for random effects. If not specified, the function defaults to using the variable after the "|" in the random effects term in the formula.

- **offset**: Vector containing model offsets (default = NULL). If provided the `lmer()` offset is set to offset. See `lme4::lmer()`

- **test.stat**: Character value specifying test statistic. Current options are "Wald" for type 2 Wald Chi square test using code derived and modified from `car::Anova` to improve speed for matrix tests. Or "F" for conditional F tests using Satterthwaite’s method of approximated Df. This uses `lmerTest::lmer` and is somewhat slower.

- **reduced**: Optional reduced model formula. If this is chosen, a likelihood ratio test is used to calculate p-values instead of the default Wald type 2 Chi-squared test.

- **modelData**: Optional dataframe. Default is generated by call to `expand.grid` using levels of variables in the formula. Used to calculate model predictions (estimated means & 95% CI) for plotting via `modelPlot`. It can therefore be used to add/remove points in `modelPlot`.

- **designMatrix**: Optional custom design matrix generated by call to `model.matrix` using `modelData` and `FEformula`. Used to calculate model predictions for plotting.
control the lmer optimizer control (default = lmerControl()). See lme4::lmerControl().
cores number of cores to use for parallelisation. Default = 1.
removeSingles whether to remove individuals with no repeated measures (default = FALSE)
verbose Logical whether to display messaging (default = TRUE)
returnList Logical whether to return results as a list or lmmSeq object (default = FALSE).
Helpful for debugging.
progress Logical whether to display a progress bar
... Other parameters passed to lmerTest::lmer(). Only available if test.stat = "F".

Details

By default, p-values for each model term are computed using Wald type 2 Chi-squared test as per car::Anova(). The underlying code for this has been optimised for speed. However, if a reduced model formula is specified by setting reduced = TRUE, then a likelihood ratio test (LRT) is performed instead using anova. This will double computation time since two LMM have to be fitted for each gene. For LRT, models being compared are optimised by maximum likelihood and not REML (REML=FALSE).

Two key methods are used to speed up computation above and beyond simple parallelisation. The first is to speed up lme4::lmer() by calling lme4::lFormula() once at the start and then updating the lFormula output with new data. The 2nd speed up is through optimised code for repeated type 2 Wald Chi-squared tests (original code was derived from car::Anova). For example, elements such as the hypothesis matrices are generated only once to reduce unnecessarily repetitive computation, and the generation of p-values from Chi-squared values is vectorised and performed at the end. F-tests using the lmerTest package have not been optimised and are therefore slower.

Parallelisation is performed using parallel::mclapply on unix/mac and parallel::parLapply on windows. Progress bars use pbmclapply::pbmclapply on unix/mac and pbapply::pblapply on windows.

The id argument is usually optional. By default the id column in the metadata is determined as the term after the bar in the random effects term of the model. Note that id is not passed to lmer. It is only really used to remove singletons from the maindata matrix and metadata dataframe. The id is also stored in the output from lmmSeq and used by plotting function modelPlot(). However, due to its flexible nature, in theory lmmSeq should allow for more than one random effect term, although this has not been tested formally. In this case, it is probably prudent to specify a value for id.

Value

Returns an S4 class lmmSeq object with results for gene-wise linear mixed models; or a list of results if returnList is TRUE, which is useful for debugging. If all genes return errors from lmer, then an error message is shown and a character vector containing error messages for all genes is returned.

Examples

data(PEAC_minimal_load)
logtpm <- log2(tpm +1)

lmmtest <- lmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
 maindata = logtpm[1:2,],
 metadata = metadata,
maPlot

verbose = FALSE)

names(attributes(lmmtest))

lmmSeq-class

An S4 class to define the lmmSeq output

Description

An S4 class to define the lmmSeq output

Slots

info List including matched call, offset, designMatrix
formula The model formula
stats Statistics from fitted models
predict Predicted values
reduced Optional reduced formula for LRT
maindata The input expression data with variables in rows
metadata The input metadata
modelData Model data for predictions
optInfo Information on whether the model was singular or converged
errors Any errors
vars List of variables stored from the original call

maPlot

MA plots

Description

MA plots

Usage

maPlot(
 object,
 x1var,
 x2var,
 x1Values = NULL,
 x2Values = NULL,
 pcutoff = 0.01,
 plotCutoff = 1,
 zeroCountCutoff = 50,
colours = c("grey", "midnightblue", "mediumvioletred", "goldenrod"),
labels = c(),
fontSize = 12,
labelFontSize = 4,
useAdjusted = FALSE,
graphics = "ggplot",
verbose = FALSE
)

Arguments

object A glmmSeq object created by glmmSeq::glmmSeq().

x1var The name of the first (inner) x parameter

x2var The name of the second (outer) x parameter

x1Values Timepoints or categories in x1var to be used to calculate fold change. If NULL
the first two levels in x1var are used.

x2Values Categories in x2var to be compared on x and y axis.
pCutoff The significance cut-off for colour-coding (default=0.01)

plotCutoff Which probes to include by significance cut-off (default=1 for all markers)

disp Cutoff Which probes to include by minimum counts cut-off (default=50)

colours Vector of colours to use for significance groups

labels Row names or indices to label on plot

fontSize Font size

labelFontSize Font size for labels

useAdjusted whether to use adjusted p-values (must have q-values in object)

graphics Either "ggplot" or "plotly"

verbose Whether to print statistics

Value

List of three plots. One plot for each x2Value and one combined figure

Examples

data(PEAC_minimal_load)

disp <- apply(tpm, 1, function(x){
 (var(x, na.rm=TRUE)-mean(x, na.rm=TRUE))/(mean(x, na.rm=TRUE)**2)
})

resultTable <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
 countdata = tpm[1:5,],
 metadata = metadata,
 dispersion = disp)
plots <- maPlot(resultTable,
 x1var='Timepoint',
 x2var='EULAR_6m',
 x2Values=c('Good', 'Non-response'),
 graphics="plotly")

plots$combined

metadata

Minimal metadata from PEAC

Description

Minimal metadata for paired longitudinal response analysis.

Usage

metadata

Format

A data frame

PATID Id for matching patients

Timepoint timepoints

EULAR_6m response data

modelPlot

Mixed model effects plot

Description

Plot to show differences between groups over time using base graphics.

Usage

modelPlot(
 object,
 geneName = NULL,
 x1var = NULL,
 x2var = NULL,
 x2shift = NULL,
 xlab = NA,
 ylab = geneName,
 plab = NULL,
 title = geneName,
logTransform = is(object, "GlmmSeq"),
shapes = 21,
colours = "grey60",
lineColours = "grey60",
markerSize = 0.5,
fontSize = NULL,
alpha = 0.7,
addModel = TRUE,
addPoints = TRUE,
modelSize = 2,
modelColours = "royalblue",
modellineSize = 1,
modellineColours = modelColours,
errorBarLwd = 2.5,
errorBarLength = 0.05,
...)

Arguments

object A glmmSeq/lmmSeq object created by glmmSeq::glmmSeq() or glmmSeq::lmmSeq()
geneName The gene/row name to be plotted
x1var The name of the first (inner) x parameter, typically 'time'. This is anticipated to have different values when matched by ID.
x2var The name of an optional second (outer) x parameter, which should be a factor.
x2shift Amount to shift along x axis for each level of x2var. By default the function will arrange each level of x2var side by side. Lower values of x2shift or x2shift = 0 can be used to overlap plots similar to 'dodge' or stagger them.
xlab Title for the x axis
ylab Title for the y axis
plab Optional character vector of labels for p-values. These must align with column names in object@stats$pvals.
title Plot title. If NULL gene name is used
logTransform Whether to perform a log10 transform on the y axis
shapes The marker shapes (default=19)
colours The marker colours (default='red') as vector or named vector
lineColours The line colours (default='grey60') as vector or named vector
markerSize Size of markers (default=2)
fontSize Plot font size
alpha Line and marker opacity (default=0.7)
addModel Whether to add the fit model with markers (default=TRUE)
addPoints Whether to add underlying data points (default=TRUE)
modelSize Size of model points (default=2)
summary.lmmSeq

modelColours Colour of model fit markers (default="black") as vector or named vector
modelLineSize Size of model points (default=1) as vector or named vector
modelLineColours Colour of model fit lines.
errorBarLwd Line width of error bars
errorBarLength Head width of error bars
... Other parameters to pass to graphics::plot()

Value

Returns a paired plot for matched samples

Examples

data(PEAC_minimal_load)

disp <- apply(tpm, 1, function(x){
 (var(x, na.rm=TRUE)-mean(x, na.rm=TRUE))/mean(x, na.rm=TRUE)**2
})

MS4A1glmm <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
 countdata = tpm[1:2,],
 metadata = metadata,
 dispersion = disp)

modelPlot(object=MS4A1glmm,
 geneName = 'MS4A1',
 x1var = 'Timepoint',
 x2var='EULAR_6m')

summary.lmmSeq

Summarise a 'glmmSeq'/'lmmSeq' object

Description

Summarise results from glmmSeq or lmmSeq analysis

Usage

S3 method for class 'lmmSeq'
summary(object, gene = NULL, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'GlmmSeq'
summary(object, gene = NULL, ...)
Arguments

object: an object of class "GlmmSeq" or "lmmSeq"
gene: an optional character value specifying a single gene whose results are summarised
digits: integer, used for number formatting
... arguments to be passed to other methods

Value

If gene=NULL a dataframe of results for all genes is returned. Otherwise the output of GLMM or LMM model results for a single gene including coefficients, test statistics, p-values is printed and the dataframe for all genes is returned invisibly.

See Also

glmmSeq(), lmmSeq()
Index

* datasets
 metadata, 16
 tpm, 19

* hplot
 fcPlot, 2
 maPlot, 14

anova, 13

car::Anova, 10, 12, 13
car::Anova(), 10, 13

fcPlot, 2

ggmodelPlot, 4
ggplot2::theme(), 5
glmmQvals, 6
glmmRefit, 7
glmmSeq, 8, 18
glmmSeq(), 19
GlmmSeq-class, 11
GlmmSeq::glmmSeq(), 3, 5, 6, 15, 17
GlmmSeq::lmmSeq(), 5, 17
glmmTMB, 7
glmmTMB::glmmTMB, 9, 10
glmmTMB::glmmTMBControl, 10
glmmTMB::nbinom2, 9, 10
graphics::plot(), 18

lme4::glmer, 9, 10
lme4::glmer(), 7, 9, 10
lme4::glmerControl, 10
lme4::glmerControl(), 7
lme4::lFormula(), 13
lme4::lmer(), 7, 12, 13
lme4::lmerControl(), 7, 13
lmerTest::lmer, 12
lmerTest::lmer(), 13
lmmSeq, 11, 18
lmmSeq(), 19
lmmSeq-class, 14

maPlot, 14
metadata, 16
modelPlot, 9, 12, 16
modelPlot(), 10, 13

parallel::mclapply, 10, 13
parallel::parLapply, 10, 13
pbapply::pbLapply, 13
pbmcapply::pbMclapply, 13

stats::anova, 10
summary.GlmmSeq(summary.lmmSeq), 18
summary.lmmSeq, 18

tpm, 19