Post-model-fitting procedures with \texttt{glmmTMB} models: diagnostics, inference, and model output

March 18, 2024

The purpose of this vignette is to describe (and test) the functions in various downstream packages that are available for summarizing and otherwise interpreting \texttt{glmmTMB} fits. Some of the packages/functions discussed below may not be suitable for inference on parameters of the zero-inflation or dispersion models, but will be restricted to the conditional-mean model.

\begin{verbatim}
library(glmmTMB)
library(car)
library(emmeans)
library(effects)
library(multcomp)
library(MuMIn)
require(DHARMa, quietly = TRUE) ## may be missing ...
library(broom)
library(broom.mixed)
require(dotwhisker, quietly = TRUE)
library(ggplot2); theme_set(theme_bw())
library(texreg)
library(xtable)
if (huxtable_OK) library(huxtable)
retrieve slow stuff
L <- gt_load("vignette_data/model_evaluation.rda")
\end{verbatim}

A couple of example models:
owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent + (1|Nest)+offset(log(BroodSize)), contrasts=list(FoodTreatment="contr.sum", SexParent="contr.sum"), family = nbinom1, zi = ~1, data=Owls)

data("cbpp",package="lme4")
cbpp_b1 <- glmmTMB(incidence/size~period+(1|herd), weights=size,family=binomial, data=cbpp)

simulated three-term Beta example
set.seed(1001)
dd <- data.frame(z=rbeta(1000,shape1=2,shape2=3), a=rnorm(1000),b=rnorm(1000),c=rnorm(1000))
simex_b1 <- glmmTMB(z~a*b*c,family=beta_family,data=dd)

1 model checking and diagnostics

1.1 DHARMa

The DHARMa package provides diagnostics for hierarchical models. After running

owls_nb1_simres <- simulateResiduals(owls_nb1)

you can plot the results:

plot(owls_nb1_simres)
DHARMa provides lots of other methods based on the simulated residuals: see vignette("DHARMa", package="DHARMa")

1.1.1 issues

- DHARMa will only work for models using families for which a simulate method has been implemented (in TMB, and appropriately reflected in glmmTMB)

2 Inference

2.1 car::Anova

We can use car::Anova() to get traditional ANOVA-style tables from glmmTMB fits. A few limitations/reminders:

- these tables use Wald χ^2 statistics for comparisons (neither likelihood ratio tests nor F tests)

- they apply to the fixed effects of the conditional component of the model only (other components might work, but haven’t been tested at all)

- as always, if you want to do type 3 tests, you should probably set sum-to-zero contrasts on factors and center numerical covariates (see contrasts argument above)
if (requireNamespace("car") && getRversion() >= "3.6.0") {
 Anova(owls_nb1) ## default type II
 Anova(owls_nb1,type="III")
}

<table>
<thead>
<tr>
<th>Chisq</th>
<th>Df</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4</td>
<td>1</td>
<td>3.66e-06</td>
</tr>
<tr>
<td>46.1</td>
<td>1</td>
<td>1.1e-11</td>
</tr>
<tr>
<td>0.512</td>
<td>1</td>
<td>0.474</td>
</tr>
<tr>
<td>2.29</td>
<td>1</td>
<td>0.13</td>
</tr>
</tbody>
</table>

2.2 effects

effects_ok <- (requireNamespace("effects") && getRversion() >= "3.6.0")
if (effects_ok) {
 (ae <- allEffects(owls_nb1))
 plot(ae)
}

Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding variance function for effects/dev.resids: computed variances may be incorrect
Food Treatment*SexParent effect plot

SiblingNegotiation

4
6
8
10
12
Deprived
Satiated

Female
Male

The error can probably be ignored

if (effects_ok) {
 plot(allEffects(simex_b1))
}

a*b*c effect plot

−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2
2.3 emmeans

```r
emmeans(owls_nb1, poly ~ FoodTreatment | SexParent)
```

$emmeans
SexParent = Female:
FoodTreatment emmean SE df asymp.LCL asymp.UCL
Deprived 2.30 0.1104 Inf 2.09 2.52
Satiated 1.44 0.1493 Inf 1.15 1.74
##
SexParent = Male:
FoodTreatment emmean SE df asymp.LCL asymp.UCL
Deprived 2.23 0.0964 Inf 2.04 2.42
Satiated 1.65 0.1357 Inf 1.38 1.91
##
Results are given on the log (not the response) scale.
Confidence level used: 0.95
##
$contrasts
SexParent = Female:
contrast estimate SE df z.ratio p.value
linear -0.859 0.149 Inf -5.776 <.0001
##
SexParent = Male:
contrast estimate SE df z.ratio p.value
linear -0.586 0.129 Inf -4.531 <.0001
##
Results are given on the log (not the response) scale.
```

Let us also consider a corresponding hurdle model:

```r
owls_hnb1 <- update(owls_nb1, family = truncated_nbinom1, ziformula = ~.)
```

On the response scale, this model estimates the means of the component distribution as follows:
These estimates differ because the first ones are back-transformed from the linear predictor, which is based on the un-truncated component distribution, while the second ones are estimates of the means of the truncated distribution (with zero omitted). This discrepancy occurs only with hurdle models.

The response means combine both the conditional and the zero-inflation model:

```
emmeans(owls_hnb1, ~ FoodTreatment * SexParent, component = "response")
```

<table>
<thead>
<tr>
<th>FoodTreatment</th>
<th>SexParent</th>
<th>emmean</th>
<th>SE</th>
<th>df</th>
<th>asymp.LCL</th>
<th>asymp.UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deprived</td>
<td>Female</td>
<td>8.86</td>
<td>0.874</td>
<td>Inf</td>
<td>7.14</td>
<td>10.57</td>
</tr>
<tr>
<td>Satiated</td>
<td>Female</td>
<td>3.99</td>
<td>0.692</td>
<td>Inf</td>
<td>2.63</td>
<td>5.35</td>
</tr>
<tr>
<td>Deprived</td>
<td>Male</td>
<td>8.72</td>
<td>0.668</td>
<td>Inf</td>
<td>7.41</td>
<td>10.03</td>
</tr>
<tr>
<td>Satiated</td>
<td>Male</td>
<td>4.74</td>
<td>0.662</td>
<td>Inf</td>
<td>3.44</td>
<td>6.03</td>
</tr>
</tbody>
</table>

---

These estimates differ because the first ones are back-transformed from the linear predictor, which is based on the *un-truncated* component distribution, while the second ones are estimates of the means of the *truncated* distribution (with zero omitted). This discrepancy occurs only with hurdle models.

The response means combine both the conditional and the zero-inflation model:
2.4 drop1

`stats::drop1` is a built-in R function that refits the model with various terms dropped. In its default mode it respects marginality (i.e., it will only drop the top-level interactions, not the main effects):

```r
system.time(owls_nb1_d1 <- drop1(owls_nb1, test="Chisq"))
```

```
user system elapsed
0.373 0.001 0.375
```

```r
print(owls_nb1_d1)
```

```
Single term deletions
Model:
SiblingNegotiation ~ FoodTreatment * SexParent + (1 | Nest) +
offset(log(BroodSize))
Df AIC LRT Pr(>Chi)
<none> 3383.6
FoodTreatment:SexParent 1 3383.9 2.2766 0.1313
```

In principle, using `scope = . ~ . - (1|Nest)` should work to execute a “type-3-like” series of tests, dropping the main effects one at a time while leaving the interaction in (we have to use `- (1|Nest)` to exclude the random effects because `drop1` can’t handle them). However, due to the way that R handles formulas, dropping main effects from an interaction of *factors* has no effect on the overall model. (It would work if we were testing the interaction of continuous variables.)

### 2.4.1 issues

The `mixed` package implements a true “type-3-like” parameter-dropping mechanism for `[g]lmer` models. Something like that could in principle be applied here.
2.5 Model selection and averaging with MuMIn

We can run `MuMIn::dredge(owls_nb1)` on the model to fit all possible submodels. Since this takes a little while (45 seconds or so), we've instead loaded some previously computed results:

```r
print(owls_nb1_dredge)
```

## Model selection table

| cnd((Int)) zi((Int)) dsp((Int)) cnd(FdT) cnd(SxP) cnd(FdT:SxP) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 10              | 0.4284          | -2.094          | +               | +               | +               |
| 16              | 0.4275          | -2.055          | +               | +               | +               |
| 12              | 0.4257          | -2.100          | +               | +               | +               |
| 2               | 1.8290          | -1.990          | +               | +               | +               |
| 8               | 1.8280          | -1.955          | +               | +               | +               |
| 4               | 1.8260          | -1.996          | +               | +               | +               |
| 9               | 0.6295          | -1.373          | +               |                |                |
| 1               | 2.0980          | -1.232          | +               |                |                |
| 11              | 0.6220          | -1.381          | +               | +               |                |
| 3               | 2.0920          | -1.236          | +               |                |                |

| cnd(off(log(BrS))) df logLik AICc delta weight |
|-----------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| 10 +                                         | 5 -1685.978     | 3382.1          | 0.00            | 0.525           |
| 16 +                                         | 7 -1684.819     | 3383.8          | 1.77            | 0.217           |
| 12 +                                         | 6 -1685.957     | 3384.1          | 2.00            | 0.193           |
| 2                                           | 5 -1688.628     | 3387.4          | 5.30            | 0.037           |
| 8                                           | 7 -1687.556     | 3389.3          | 7.24            | 0.014           |
| 4                                           | 6 -1688.610     | 3389.4          | 7.30            | 0.014           |
| 9 +                                         | 4 -1708.573     | 3425.2          | 43.15           | 0.000           |
| 1                                           | 4 -1708.672     | 3425.4          | 43.35           | 0.000           |
| 11 +                                         | 5 -1708.420     | 3426.9          | 44.88           | 0.000           |
| 3                                           | 5 -1708.509     | 3427.1          | 45.06           | 0.000           |

Models ranked by AICc(x)

Random terms (all models):

```r
cond(1 | Nest)
```
op <- par(mar=c(2,5,14,3))
plot(owls_nb1_dredge)

par(op)  ## restore graphics parameters

Model averaging:

model.avg(owls_nb1_dredge)

##
## Call:
## model.avg(object = owls_nb1_dredge)
##
## Component models:
## '14' '1234' '124' '1' '123' '12' '4' '(Null)'
## '24' '2'
##
## Coefficients:
## cond((Int)) cond(FoodTreatment1) zi((Int)) cond(SexParent1)
## full 0.5183099 0.353877 -2.079432 -0.009556203
## subset 0.5183099 0.353877 -2.079432 -0.021827791
## cond(FoodTreatment1:SexParent1)
## full 0.01569108
## subset 0.06797533

### 2.5.1 issues

- may not work for Beta models because the family component (“beta”) is not identical to the name of the family function (beta_family())?
  (Kamil Bartoń, pers. comm.)

### 2.6 multcomp for multiple comparisons and post hoc tests

```r
g1 <- glht(cbpp_b1, linfct = mcp(period = "Tukey"))
summary(g1)
```

### Simultaneous Tests for General Linear Hypotheses

### Multiple Comparisons of Means: Tukey Contrasts

Fit: glmmTMB(formula = incidence/size ~ period + (1 | herd), data = cbpp,
family = binomial, weights = size, ziformula = ~0, dispformula = ~1)

Linear Hypotheses:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| 2 - 1 == 0 | -0.9923 | 0.3066 | -3.236 | 0.00638 ** |
| 3 - 1 == 0 | -1.1287 | 0.3266 | -3.455 | 0.00283 ** |
| 4 - 1 == 0 | -1.5803 | 0.4274 | -3.697 | 0.00111 ** |
### 3 - 2 == 0  -0.1363  0.3807  -0.358  0.98368
### 4 - 2 == 0  -0.5880  0.4703  -1.250  0.58569
### 4 - 3 == 0  -0.4516  0.4843  -0.933  0.78117
### ---
### Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
### (Adjusted p values reported -- single-step method)

3 Extracting coefficients, coefficient plots and tables

3.1 broom and friends

The broom and broom.mixed packages are designed to extract information from a broad range of models in a convenient (tidy) format; the dotwhisker package builds on this platform to draw elegant coefficient plots.

```r
if (requireNamespace("broom.mixed") &
 requireNamespace("dotwhisker")) {
 t1 <- broom.mixed::tidy(owls_nb1, conf.int = TRUE)
 t1 <- transform(t1,
 term=sprintf("%s.%s", component, term))

 if (packageVersion("dotwhisker")>"0.4.1") {
 dw <- dwplot(t1)
 } else {
 owls_nb1$coefficients <- TRUE ## hack!
 dw <- dwplot(owls_nb1, by_2sd=FALSE)
 }
 print(dw+geom_vline(xintercept=0,lty=2))
}
```
3.1.1 issues

(these are more general dwplot issues)

- use black rather than color(1) when there’s only a single model, i.e. only add aes(colour=model) conditionally? - draw points even if std err / confint are NA (draw geom_point() as well as geom_pointrange()?
  need to apply all aesthetics, dodging, etc. to both ...)

- for glmmTMB models, allow labeling by component? or should this be done by manipulating the tidied frame first? (i.e.: tidy(.)) \%>% tidyr::unite(term,c(component,term))

3.2 coefficient tables with xtable

The xtable package can output data frames as \LaTeX tables; this isn’t quite as elegant as stargazer etc., but is not a bad start. I’ve sprinkled lots of hard line-breaks, spaces, and newlines in below: someone who was better at \TeX could certainly do a better job. (xtable can also produce HTML output.)

```r
ss <- summary(owls_nb1)
print table; add space,
pxt <- function(x,title) {
 cat(sprintf("\n\n\textbf{\%s}\n\n\\\\\\\\vspace{2pt}\\\\\\\n",title))
```

13
random effects variances

<table>
<thead>
<tr>
<th>Groups</th>
<th>Name</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nest (Intercept)</td>
<td>0.35019</td>
</tr>
</tbody>
</table>

conditional fixed effects

|                           | Estimate | Std. Error | z value | Pr(>|z|) |
|---------------------------|----------|------------|---------|---------|
| (Intercept)               | 0.43     | 0.09       | 4.63    | 0.00    |
| FoodTreatment1            | 0.36     | 0.05       | 6.79    | 0.00    |
| SexParent1                | -0.03    | 0.05       | -0.72   | 0.47    |
| FoodTreatment1:SexParent1 | 0.07     | 0.05       | 1.51    | 0.13    |

conditional zero-inflation effects

|                        | Estimate | Std. Error | z value | Pr(>|z|) |
|------------------------|----------|------------|---------|---------|
| (Intercept)            | -2.06    | 0.29       | -7.03   | 0.00    |

3.3 coefficient tables with texreg

For now, to avoid needing to import the texreg package, we are providing the required extract.glmmTMB in a separate R file that you can import with source(), as follows:
### Model 1

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.43***</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
</tr>
<tr>
<td>FoodTreatment1</td>
<td>0.36***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
</tr>
<tr>
<td>SexParent1</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
</tr>
<tr>
<td>FoodTreatment1:SexParent1</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
</tr>
<tr>
<td>zi_(Intercept)</td>
<td>-2.06***</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
</tr>
</tbody>
</table>

***p < 0.001; **p < 0.01; *p < 0.05

Table 1: Owls model

```r
source(system.file("other_methods","extract.R",package="glmmTMB"))
texreg(owls_nb1,caption="Owls model", label="tab:owls")
```

See output in Table 1.

#### 3.4 coefficient tables with huxtable

The `huxtable` package allows output in either \LaTeX or HTML: this example is tuned for \LaTeX.

```r
if (!huxtable_OK) {
 cat("Sorry, huxtable+LaTeX is unreliable on this platform; skipping
}
else {
 cc <- c("intercept (mean)"="(Intercept)",
 "food treatment (starvation)"="FoodTreatment1",
 "parental sex (M)"="SexParent1",
 "food \times sex"="FoodTreatment1:SexParent1")
 h0 <- huxreg(" " = owls_nb1, # give model blank name so we don't get '(1)'
 tidy_args = list(effects="fixed"),
 coefs = cc,
 error_pos = "right",
```
```
statistics = "nobs" # don't include logLik and AIC
)
names(h0)[2:3] <- c("estimate", "std. err.")
allow use of math notation in name
h1 <- set_cell_properties(h0,row=5,col=1,escape_contents=FALSE)
cat(to_latex(h1,tabular_only=TRUE))
```
source file rather than exported as a method (see below), although it may be included in the package (or incorporated in the car package) in the future.

```r
source(system.file("other_methods","influence_mixed.R", package="glmmTMB"))
```

```r
owls_nb1_influence_time <- system.time(
 owls_nb1_influence <- influence_mixed(owls_nb1, groups="Nest")
)
```

Re-fitting the model with each of the 27 nests excluded takes 14 seconds (on an old Macbook Pro). The `car::infIndexPlot()` function is one way of displaying the results:

```r
car::infIndexPlot(owls_nb1_influence)
```

![Diagnostic Plots](image)

Or, you can transform the results and plot them however you like:
inf <- as.data.frame(owls_nb1_influence["fixed.effects[-Nest]"])
inf <- transform(inf,
    nest=rownames(inf),
    cooks=cooks.distance(owls_nb1_influence))
inf$ord <- rank(inf$cooks)
if (require(reshape2)) {
    inf_long <- melt(inf, id.vars=c("ord","nest"))
    gg_infl <- (ggplot(inf_long,aes(ord,value))
        + geom_point()
        + facet_wrap(~variable, scale="free_y"
        ## n.b. may need expand_scale() in older ggplot versions ?
        + scale_x_reverse(expand=expansion(mult=0.15))
        + scale_y_continuous(expand=expansion(mult=0.15))
        + geom_text(data=subset(inf_long,ord>24),
            aes(label=nest),vjust=-1.05)
    )
    print(gg_infl)
}

## Loading required package: reshape2
5 to do

- more plotting methods (sjplot)
- output with memisc
- AUC etc. with ModelMetrics