The purpose of this vignette is to describe (and test) the functions in various downstream packages that are available for summarizing and otherwise interpreting glmmTMB fits. Some of the packages/functions discussed below may not be suitable for inference on parameters of the zero-inflation or dispersion models, but will be restricted to the conditional-mean model.

```r
library(glmmTMB)
library(car)
library(emmeans)
library(effects)
library(multcomp)
library(MuMIn)
library(DHARMa)
library(broom)
library(broom.mixed)
library(dotwhisker)
library(ggplot2); theme_set(theme_bw())
library(texreg)
library(xtable)

## temporarily disabled: causes problems with <<caranova1>> chunk?
## library(huxtable)
## retrieve slow stuff
L <- load(system.file("vignette_data","model_evaluation.rda",
                      package="glmmTMB"))
```
A couple of example models:

```r
owel_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent +
                     (1|Nest)+offset(log(BroodSize)),
                     contrasts=list(FoodTreatment="contr.sum",
                                   SexParent="contr.sum"),
                     family = nbinom1, 
                     zi = ~1, data=Owls)
```

```r
data("cbpp",package="lme4")
cbpp_b1 <- glmmTMB(incidence/size~period+(1|herd),
                   weights=size,family=binomial,
                   data=cbpp)
## simulated three-term Beta example
set.seed(1001)
dd <- data.frame(z=rbeta(1000,shape1=2,shape2=3),
                 a=rnorm(1000),b=rnorm(1000),c=rnorm(1000))
simex_b1 <- glmmTMB(z~a*b*c,family=beta_family,data=dd)
```

model checking and diagnostics

DHARMa

The DHARMa package provides diagnostics for hierarchical models. After running

```r
owel_nb1_simres <- simulateResiduals(owel_nb1)
```

you can plot the results:

```r
plot(owel_nb1_simres)
```
DHARMa provides lots of other methods based on the simulated residuals: see vignette("DHARMa", package="DHARMa")

1.1.1 issues

- DHARMa will only work for models using families for which a simulate method has been implemented (in TMB, and appropriately reflected in glmmTMB)

2 Inference

2.1 car::Anova

We can use car::Anova() to get traditional ANOVA-style tables from glmmTMB fits. A few limitations/reminders:

- these tables use Wald χ^2 statistics for comparisons (neither likelihood ratio tests nor F tests)

- they apply to the fixed effects of the conditional component of the model only (other components might work, but haven’t been tested at all)

- as always, if you want to do type 3 tests, you should probably set sum-to-zero contrasts on factors and center numerical covariates (see contrasts argument above)
if (requireNamespace("car") && getRversion() >= "3.6.0") {
 Anova(owls_nb1) ## default type II
 Anova(owls_nb1, type="III")
}

Analysis of Deviance Table (Type III Wald chisquare tests)
Response: SiblingNegotiation
Chisq Df Pr(>Chisq)
(Intercept) 21.4354 1 3.66e-06 ***
FoodTreatment 46.1411 1 1.10e-11 ***
SexParent 0.5117 1 0.4744
FoodTreatment:SexParent 2.2900 1 0.1302

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.2 effects

effects_ok <- (requireNamespace("effects") & getRversion() >= "3.6.0")
if (effects_ok) {
 (ae <- allEffects(owls_nb1))
 plot(ae)
}

Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding variance function for effects: computed variances may be incorrect
(the error can probably be ignored)

```r
if (effects_ok) {
  plot(allEffects(simex_b1))
}
```
2.3 **emmeans**

```r
emmeans(owls_nb1, poly ~ FoodTreatment | SexParent)
```

```r
## $emmeans
## SexParent = Female:
## FoodTreatment emmean SE df lower.CL upper.CL
## Deprived 2.30 0.1104 592 2.09 2.52
## Satiated 1.44 0.1493 592 1.15 1.74
##
## SexParent = Male:
## FoodTreatment emmean SE df lower.CL upper.CL
## Deprived 2.23 0.0964 592 2.04 2.42
## Satiated 1.65 0.1357 592 1.38 1.91
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## SexParent = Female:
## contrast estimate SE df t.ratio p.value
## linear -0.859 0.149 592 -5.776 <.0001
##
## SexParent = Male:
## contrast estimate SE df t.ratio p.value
## linear -0.586 0.129 592 -4.531 <.0001
##
## Results are given on the log (not the response) scale.
```

2.4 **drop1**

`stats::drop1` is a built-in R function that refits the model with various terms dropped. In its default mode it respects marginality (i.e., it will only drop the top-level interactions, not the main effects):
system.time(owls_nb1_d1 <- drop1(owls_nb1,test="Chisq"))

user system elapsed
1.974 0.019 2.089

print(owls_nb1_d1)

Single term deletions
##
Model:
SiblingNegotiation ~ FoodTreatment * SexParent + (1 | Nest) +
offset(log(BroodSize))
Df AIC LRT Pr(>Chi)
<none> 3383.6
FoodTreatment:SexParent 1 3383.9 2.2766 0.1313

In principle, using `scope = . ~ . - (1|Nest)` should work to execute a “type-3-like” series of tests, dropping the main effects one at a time while leaving the interaction in (we have to use `- (1|Nest)` to exclude the random effects because `drop1` can’t handle them). However, due to the way that R handles formulas, dropping main effects from an interaction of *factors* has no effect on the overall model. (It would work if we were testing the interaction of continuous variables.)

2.4.1 issues

The `mixed` package implements a true “type-3-like” parameter-dropping mechanism for `glmer` models. Something like that could in principle be applied here.

2.5 Model selection and averaging with MuMIn

We can run `MuMIn::dredge(owls_nb1)` on the model to fit all possible submodels. Since this takes a little while (45 seconds or so), we’ve instead loaded some previously computed results:
owls_nb1_dredge

Global model call: glmmTMB(formula = SiblingNegotiation ~ FoodTreatment * SexParent +
(1 | Nest) + offset(log(BroodSize)), data = Owls, family = nbinom1,
ziformula = ~1, contrasts = list(FoodTreatment = "contr.sum",
SexParent = "contr.sum"), dispformula = ~1)

Model selection table
cnd((Int)) zi((Int)) dsp((Int)) cnd(FdT) cnd(SxP) cnd(FdT:SxP)
10 0.4284 -2.094 + +
16 0.4275 -2.055 + + + +
12 0.4257 -2.100 + + +
2 1.8290 -1.990 + +
8 1.8280 -1.955 + + + +
4 1.8260 -1.996 + + +
9 0.6295 -1.373 +
1 2.0980 -1.232 +
11 0.6220 -1.381 + +
3 2.0920 -1.236 + +
cnd(off(log(BrS))) df logLik AICc delta weight
10 + 5 -1685.978 3382.1 0.00 0.525
16 + 7 -1684.819 3383.8 1.77 0.217
12 + 6 -1685.957 3384.1 2.00 0.193
2 5 -1688.628 3387.4 5.30 0.037
8 7 -1687.556 3389.3 7.24 0.014
4 6 -1688.610 3389.4 7.30 0.014
9 + 4 -1708.573 3425.2 43.15 0.000
1 4 -1708.672 3425.4 43.35 0.000
11 + 5 -1708.420 3426.9 44.88 0.000
3 5 -1708.509 3427.1 45.06 0.000
Models ranked by AICc(x)
Random terms (all models):
'cond(1 | Nest)'

op <- par(mar=c(2,5,14,3))
plot(owls_nb1_dredge)
par(op) ## restore graphics parameters

Model averaging:

model.avg(owls_nb1_dredge)

##
Call:
model.avg(object = owls_nb1_dredge)
##
Component models:
'14' '1234' '124' '1' '123' '12' '4' '(Null)'
'24' '2'
##
Coefficients:
2.5.1 issues

- may not work for Beta models because the family component ("beta") is not identical to the name of the family function (beta_family())? (Kamil Bartoń, pers. comm.)

2.6 multcomp for multiple comparisons and post hoc tests

g1 <- glht(cbpp_b1, linfct = mcp(period = "Tukey"))
summary(g1)

##
Simultaneous Tests for General Linear Hypotheses
##
Multiple Comparisons of Means: Tukey Contrasts
##
Fit: glmmTMB(formula = incidence/size ~ period + (1 | herd), data = cbpp,
family = binomial, weights = size, ziformula = ~0, dispformula = ~1)
##
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
2 - 1 == 0 0.9923 0.3066 3.236 0.00635 **
3 - 1 == 0 -1.1287 0.3266 -3.455 0.00283 **
4 - 1 == 0 -1.5803 0.4274 -3.697 0.00106 **
3 - 2 == 0 -1.2873 0.3266 -3.455 0.00283 **
4 - 2 == 0 -1.5803 0.4274 -3.697 0.00106 **
4 - 3 == 0 -0.4516 0.4843 -0.933 0.78116
3 Extracting coefficients, coefficient plots and tables

3.1 broom and friends

The broom and broom.mixed packages are designed to extract information from a broad range of models in a convenient (tidy) format; the dotwhisker package builds on this platform to draw elegant coefficient plots.

```r
if (requireNamespace("broom.mixed") && requireNamespace("dotwhisker")) {
  (t1 <- broom.mixed::tidy(owls_nb1, conf.int = TRUE))
  if (packageVersion("dotwhisker")>"0.4.1") {
    dw <- dwplot(owls_nb1)
  } else {
    owls_nb1$coefficients <- TRUE  # hack!
    dw <- dwplot(owls_nb1,by_2sd=FALSE)
  }
  print(dw+geom_vline(xintercept=0,lty=2))
}
```
3.1.1 issues

(these are more general dwplot issues)

- use black rather than color(1) when there’s only a single model, i.e. only add aes(colour=model) conditionally? - draw points even if std err / confint are NA (draw geom_point() as well as geom_pointrange() ? need to apply all aesthetics, dodging, etc. to both ...)

- for glmmTMB models, allow labeling by component? or should this be done by manipulating the tidied frame first? (i.e.: tidy(.) \%\% tidyr::unite(term,c(component,term)))

3.2 coefficient tables with xtable

The xtable package can output data frames as \LaTeX\ tables; this isn’t quite as elegant as stargazer etc., but is not a bad start. I’ve sprinkled lots of hard line-breaks, spaces, and newlines in below: someone who was better at \LaTeX\ could certainly do a better job. (xtable can also produce HTML output.)

```r
ss <- summary(owls_nb1)
## print table; add space,
pxt <- function(x,title) {

ss <- summary(owls_nb1)
## print table; add space,
pxt <- function(x,title) {
random effects variances

<table>
<thead>
<tr>
<th>Groups</th>
<th>Name</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nest (Intercept)</td>
<td>0.35019</td>
</tr>
</tbody>
</table>

conditional fixed effects

|                     | Estimate | Std. Error | z value | Pr(>|z|) |
|---------------------|----------|------------|---------|---------|
| (Intercept)         | 0.43     | 0.09       | 4.63    | 0.00    |
| FoodTreatment1      | 0.36     | 0.05       | 6.79    | 0.00    |
| SexParent1          | -0.03    | 0.05       | -0.72   | 0.47    |
| FoodTreatment1:SexParent1 | 0.07   | 0.05       | 1.51    | 0.13    |

conditional zero-inflation effects

|                     | Estimate | Std. Error | z value | Pr(>|z|) |
|---------------------|----------|------------|---------|---------|
| (Intercept)         | -2.06    | 0.29       | -7.03   | 0.00    |

3.3 coefficient tables with texreg

For now, to avoid needing to import the texreg package, we are providing the required extract.glmmTMB in a separate R file that you can import with
<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.43***</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
</tr>
<tr>
<td>FoodTreatment1</td>
<td>0.36***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
</tr>
<tr>
<td>SexParent1</td>
<td>−0.03</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
</tr>
<tr>
<td>FoodTreatment1:SexParent1</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
</tr>
<tr>
<td>zi_(Intercept)</td>
<td>−2.06***</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
</tr>
</tbody>
</table>

***p < 0.001, **p < 0.01, *p < 0.05

Table 1: Owls model

source(), as follows:

```r
texreg(owls_nb1, caption="Owls model", label="tab:owls")
```

See output in Table 1.

3.4 coefficient tables with huxtable

The `huxtable` package allows output in either \LaTeX{} or HTML: this example is tuned for \LaTeX{}. *The current version (5.0.0) is giving us a little bit of trouble, so we’ve temporarily disabled evaluation of this code chunk . . .*

```r
library("huxtable")
c <- c("intercept (mean)"="(Intercept)",
 "food treatment (starvation)"="FoodTreatment1",
 "parental sex (M)"="SexParent1",
 "food \times sex"="FoodTreatment1:SexParent1")
h0 <- huxreg(" =owls_nb1, # give model blank name so we don't get '(1)'
 tidy_args=list(effects="fixed"),
 coefs=c,
 error_pos="right",
```
3.4.1 issues

- **huxtable** needs quite a few additional \LaTeX packages: use `report_latex_dependencies()` to see what they are.

4 influence measures

_Influence measures_ quantify the effects of particular observations, or groups of observations, on the results of a statistical model; _leverage_ and _Cook’s distance_ are the two most common formats for influence measures. If a [projection matrix](https://en.wikipedia.org/wiki/Hat_matrix) (or “hat matrix”) is available, influence measures can be computed efficiently; otherwise, the same quantities can be estimated by brute-force methods, refitting the model with each group or observation successively left out.

We’ve adapted the `car::influence.merMod` function to handle `glmmTMB` models; because it uses brute force, it can be slow, especially if evaluating the influence of individual observations. For now, it is included as a separate source file rather than exported as a method (see below), although it may be included in the package (or incorporated in the `car` package) in the future.

```r
source(system.file("other_methods","influence_mixed.R", package="glmmTMB"))
```

```r
owls_nb1_influence_time <- system.time(
 owls_nb1_influence <- influence_mixed(owls_nb1, groups="Nest")
)
```

Re-fitting the model with each of the 27 nests excluded takes 50 seconds (on an old Macbook Pro). The `car::infIndexPlot()` function is one way of displaying the results:
Or, you can transform the results and plot them however you like:

```r
inf <- as.data.frame(owls_nb1_influence["fixed.effects[-Nest]"])
inf <- transform(inf,
 nest=rownames(inf),
 cooks=cooks.distance(owls_nb1_influence))
inf$ord <- rank(inf$cooks)
if (require(reshape2)) {
 inf_long <- melt(inf, id.vars=c("ord","nest"))
 gg_infl <- (ggplot(inf_long,aes(ord,value))
 + geom_point()
 + facet_wrap(~variable, scale="free_y")
 ## n.b. may need expand_scale() in older ggplot versions ?
 + scale_x_reverse(expand=expansion(mult=0.15))
```
5 to do

- more plotting methods (**sjplot**)
- output with **memisc**
- AUC etc. with **ModelMetrics**