Package ‘glmmfields’

March 10, 2023

Type Package

Title Generalized Linear Mixed Models with Robust Random Fields for Spatiotemporal Modeling

Version 0.1.7

Description Implements Bayesian spatial and spatiotemporal models that optionally allow for extreme spatial deviations through time. 'glmmfields' uses a predictive process approach with random fields implemented through a multivariate-t distribution instead of the usual multivariate normal. Sampling is conducted with 'Stan'. References: Anderson and Ward (2019) <doi:10.1002/ecy.2403>.

License GPL (>= 3)

URL https://github.com/seananderson/glmmfields

BugReports https://github.com/seananderson/glmmfields/issues

Depends methods, R (>= 3.4.0), Rcpp (>= 0.12.18)

Imports assertthat, broom, broom.mixed, cluster, dplyr (>= 0.8.0),forcats, ggplot2 (>= 2.2.0), loo (>= 2.0.0), mvtnorm, nlme, RcppParallel (>= 5.0.1), reshape2, rstan (>= 2.18.2), rstantools (>= 2.1.1), tibble

Suggests bayesplot, coda, knitr, parallel, rmarkdown, testthat, viridis

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.8), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.2), StanHeaders (>= 2.18.0)

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

SystemRequirements GNU make

NeedsCompilation yes

Biarch true
glmmfields-package

The 'glmmfields' package.

Description

Implements Bayesian spatial and spatiotemporal models that optionally allow for extreme spatial deviations through time. 'glmmfields' uses a predictive process approach with random fields implemented through a multivariate-t distribution instead of the usual multivariate normal. Sampling is conducted with 'Stan'.

References

Format data for fitting a glmmfields model

Usage

format_data(
 data,
 y,
 X,
 time,
 lon = "lon",
 lat = "lat",
 station = NULL,
 nknots = 25L,
 covariance = c("squared-exponential", "exponential", "matern"),
 fixed_intercept = FALSE,
 cluster = c("pam", "kmeans")
)

Arguments

data A data frame to be formatted
y A numeric vector of the response
X A matrix of the predictors
time A character object giving the name of the time column
lon A character object giving the name of the longitude column
lat A character object giving the name of the latitude column
station A numeric vector giving the integer ID of the station
nknots The number of knots
covariance The type of covariance function
fixed_intercept Should the intercept be fixed?
cluster The type of clustering algorithm used to determine the not locations. "pam" = pam. kmeans is faster for large datasets.
Description

Fit a spatiotemporal random fields model that optionally uses the MVT distribution instead of a MVN distribution to allow for spatial extremes through time. It is also possible to fit a spatial random fields model without a time component.

Usage

```r
glmmfields(
  formula,
  data,
  lon,
  lat,
  time = NULL,
  nknots = 15L,
  prior_gp_theta = half_t(3, 0, 5),
  prior_gp_sigma = half_t(3, 0, 5),
  prior_sigma = half_t(3, 0, 5),
  prior_rw_sigma = half_t(3, 0, 5),
  prior_intercept = student_t(3, 0, 10),
  prior_beta = student_t(3, 0, 3),
  prior_phi = student_t(1000, 0, 0.5),
  fixed_df_value = 1000,
  fixed_phi_value = 0,
  estimate_df = FALSE,
  estimate_ar = FALSE,
  family = gaussian(link = "identity"),
  binomial_N = NULL,
  covariance = c("squared-exponential", "exponential", "matern"),
  matern_kappa = 0.5,
  algorithm = c("sampling", "meanfield"),
  year_re = FALSE,
  nb_lower_truncation = 0,
  control = list(adapt_delta = 0.9),
  save_log_lik = FALSE,
  df_lower_bound = 2,
  cluster = c("pam", "kmeans"),
  offset = NULL,
  ...
)
```

Arguments

- `formula`: The model formula.
data
lon
lat
time
nknots
prior_gp_theta
prior_gp_sigma
prior_sigma
prior_rw_sigma
prior_intercept
prior_beta
prior_phi
fixed_df_value
fixed_phi_value
estimate_df
estimate_ar
family
binomial_N

A data frame.
A character object giving the name of the longitude column.
A character object giving the name of the latitude column.
A character object giving the name of the time column. Leave as NULL to fit a spatial GLMM without a time element.
The number of knots to use in the predictive process model. Smaller values will be faster but may not adequately represent the shape of the spatial pattern.
The prior on the Gaussian Process scale parameter. Must be declared with half_t(). Here, and throughout, priors that are normal or half-normal can be implemented by setting the first parameter in the half-t or student-t distribution to a large value. E.g. something greater than 100.
The prior on the Gaussian Process eta parameter. Must be declared with half_t().
The prior on the observation process scale parameter. Must be declared with half_t(). This acts as a substitute for the scale parameter in whatever observation distribution is being used. E.g. the CV for the Gamma or the dispersion parameter for the negative binomial.
The prior on the standard deviation parameter of the random walk process (if specified). Must be declared with half_t().
The prior on the intercept parameter. Must be declared with student_t().
The prior on the slope parameters (if any). Must be declared with student_t().
The prior on the AR parameter. Must be declared with student_t().
The fixed value for the student-t degrees of freedom parameter if the degrees of freedom parameter is fixed in the MVT. If the degrees of freedom parameter is estimated then this argument is ignored. Must be 1 or greater. Very large values (e.g. the default value) approximate the normal distribution. If the value is >=1000 then a true MVN distribution will be fit.
The fixed value for temporal autoregressive parameter, between random fields at time(t) and time(t-1). If the phi parameter is estimated then this argument is ignored.
Logical: should the degrees of freedom parameter be estimated?
Logical: should the AR (autoregressive) parameter be estimated? Here, this refers to a autoregressive process in the evolution of the spatial field through time.
Family object describing the observation model. Note that only one link is implemented for each distribution. Gamma, negative binomial (specified via nbinom2(link = "log")), and Poisson must have a log link. Binomial must have a logit link. Also implemented is the lognormal (specified via lognormal(link = "log"). Besides the negative binomial and lognormal, other families are specified as shown in family.
A character object giving the optional name of the column containing Binomial sample size. Leave as NULL to fit a spatial GLMM with sample sizes (N) = 1, equivalent to bernoulli model.
covariance The covariance function of the Gaussian Process. One of "squared-exponential", "exponential", or "matern".

matern_kappa Optional parameter for the Matern covariance function. Optional values are 1.5 or 2.5. Values of 0.5 are equivalent to exponential.

algorithm Character object describing whether the model should be fit with full NUTS MCMC or via the variational inference mean-field approach. See rstan::vn(). Note that the variational inference approach should not be trusted for final inference and is much more likely to give incorrect inference than MCMC.

year_re Logical: estimate a random walk for the time variable? If TRUE, then no fixed effects (B coefficients) will be estimated. In this case, prior_intercept will be used as the prior for the initial value in time.

nb_lower_truncation For NB2 only: lower truncation value. E.g. 0 for no truncation, 1 for 1 and all values above. Note that estimation is likely to be considerably slower with lower truncation because the sampling is not vectorized. Also note that the log likelihood values returned for estimating quantities like LOOIC will not be correct if lower truncation is implemented.

control List to pass to rstan::sampling(). For example, increase adapt_delta if there are warnings about divergent transitions: control = list(adapt_delta = 0.99). By default, glmmfields sets adapt_delta = 0.9.

save_log_lik Logical: should the log likelihood for each data point be saved so that information criteria such as LOOIC or WAIC can be calculated? Defaults to FALSE so that the size of model objects is smaller.

df_lower_bound The lower bound on the degrees of freedom parameter. Values that are too low, e.g. below 2 or 3, it might affect chain convergence. Defaults to 2.

cluster The type of clustering algorithm used to determine the knot locations. "pam" = cluster::pam(). The "kmeans" algorithm will be faster on larger datasets.

offset An optional offset vector.

... Any other arguments to pass to rstan::sampling().

Details

Note that there is no guarantee that the default priors are reasonable for your data. Also, there is no guarantee the default priors will remain the same in future versions. Therefore it is important that you specify any priors that are used in your model, even if they replicate the defaults in the package. It is particularly important that you consider that prior on gp_theta since it depends on the distance between your location points. You may need to scale your coordinate units so they are on a ballpark range of 1-10 by, say, dividing the coordinates (say in UTMs) by several order of magnitude.

Examples

Spatiotemporal example:
set.seed(1)
s <- sim_glmmfields(n_drawing = 12, n_knots = 12, gp_theta = 1.5, gp_sigma = 0.2, sd_obs = 0.2)
print(s$plot)
options(mc.cores = parallel::detectCores()) # for parallel processing
should use 4 or more chains for real model fits
m <- glmmfields(y ~ 0, time = "time",
 lat = "lat", lon = "lon", data = s$dat,
 nknots = 12, iter = 1000, chains = 2, seed = 1)

Spatial example (with covariates) from the vignette and customizing
some priors:
set.seed(1)
N <- 100 # number of data points
temperature <- rnorm(N, 0, 1) # simulated temperature data
X <- cbind(1, temperature) # design matrix
s <- sim_glmmfields(n_draws = 1, gp_theta = 1.2, n_data_points = N,
 gp_sigma = 0.3, sd_obs = 0.1, n_knots = 12, obs_error = "gamma",
 covariance = "squared-exponential", X = X,
 B = c(0.5, 0.2)) # B represents our intercept and slope
d <- s$dat
d$temperature <- temperature
library(ggplot2)
pp <- ggplot(s$dat, aes(lon, lat, colour = y)) +
 viridis::scale_colour_viridis() +
 geom_point(size = 3)

m_spatial <- glmmfields(y ~ temperature, data = d, family = Gamma(link = "log"),
 lat = "lat", lon = "lon", nknots = 12, iter = 2000, chains = 2,
 prior_beta = student_t(100, 0, 1), prior_intercept = student_t(100, 0, 5),
 control = list(adapt_delta = 0.95))

lognormal

lognormal

Lognormal family

Description

Lognormal family

Usage

lognormal(link = "log")

Arguments

link The link (must be log)

Examples

lognormal()
loo.glmmfields

Return LOO information criteria

Description

Extract the LOOIC (leave-one-out information criterion) using `loo::loo()`.

Usage

```r
## S3 method for class 'glmmfields'
loo(x, ...)
```

Arguments

- **x**
 - Output from `glmmfields()`. Must be fit with `save_log_lik = TRUE`, which is not the default.
- **...**
 - Arguments for `loo::relative_eff()` and `loo::loo.array()`.

Examples

```r
set.seed(1)
s <- sim_glmmfields(n_draws = 12, n_knots = 12, gp_theta = 1.5,
gp_sigma = 0.2, sd_obs = 0.2)
# options(mc.cores = parallel::detectCores()) # for parallel processing

# save_log_lik defaults to FALSE to save space but is needed for loo():
m <- glmmfields(y ~ 0, time = "time",
lat = "lat", lon = "lon", data = s$dat,
nknots = 12, iter = 1000, chains = 4, seed = 1,
save_log_lik = TRUE)
loo(m)
```

nbinom2

Negative binomial family

Description

This is the NB2 parameterization where the variance scales quadratically with the mean.

Usage

```r
nbinom2(link = "log")
```
plot.glmmfields

Arguments

- **link**
 The link (must be log)

Examples

nbinom2()

plot.glmmfields
Plot predictions from an glmmfields model

Description

Plot predictions from an glmmfields model

Usage

```r
## S3 method for class 'glmmfields'
plot(
  x,
  type = c("prediction", "spatial-residual", "residual-vs-fitted"),
  link = TRUE,
  ...
)
```

Arguments

- **x**
 An object returned by `glmmfields`
- **type**
 Type of plot
- **link**
 Logical: should the plots be made on the link scale or on the natural scale?
- **...**
 Other arguments passed to `predict.glmmfields`

Examples

```r
# Spatiotemporal example:
set.seed(1)
s <- sim_glmmfields(n_draws = 12, n_knots = 12, gp_theta = 1.5,
  gp_sigma = 0.2, sd_obs = 0.1)
# options(mc.cores = parallel::detectCores()) # for parallel processing
m <- glmmfields(y ~ 0, time = "time",
  lat = "lat", lon = "lon", data = s$dat,
  nknots = 12, iter = 600, chains = 1)
x <- plot(m, type = "prediction")
x
x + ggplot2::scale_color_gradient2()
plot(m, type = "spatial-residual")
plot(m, type = "residual-vs-fitted")
```
predict

Predict from a glmmfields model

Description

These functions extract posterior draws or credible intervals. The helper functions are named to match those in the *rstanarm* package and call the function `predict()` with appropriate argument values.

Usage

```r
## S3 method for class 'glmmfields'
predictive_interval(object, ...)

## S3 method for class 'glmmfields'
posterior_linpred(object, ...)

## S3 method for class 'glmmfields'
posterior_predict(object, ...)

## S3 method for class 'glmmfields'
predict(
  object,
  newdata = NULL,
  estimate_method = c("median", "mean"),
  conf_level = 0.95,
  interval = c("confidence", "prediction"),
  type = c("link", "response"),
  return_mcmc = FALSE,
  offset = NULL,
  iter = "all",
  ...
)
```

Arguments

- `object`: An object returned by `glmmfields()`.
- `...`: Ignored currently
- `newdata`: Optionally, a data frame to predict on
- `estimate_method`: Method for computing point estimate ("mean" or "median")
- `conf_level`: Probability level for the credible intervals.
- `interval`: Type of interval calculation. Same as for `stats::predict.lm()`.
- `type`: Whether the predictions are returned on "link" scale or "response" scale (Same as for `stats::predict.glm()`).
predict

return_mcmc Logical. Should the full MCMC draws be returned for the predictions?
offset Optional offset vector to be used in prediction.
iter Number of MCMC iterations to draw. Defaults to all.

Examples

library(ggplot2)

simulate:
set.seed(1)
s <- sim_glmmfields(
 n_draws = 12, n_knots = 12, gp_theta = 2.5,
 gp_sigma = 0.2, sd_obs = 0.1
)

fit:
options(mc.cores = parallel::detectCores()) # for parallel processing
m <- glmmfields(y ~ 0,
 data = s$dat, time = "time",
 lat = "lat", lon = "lon",
 nknots = 12, iter = 800, chains = 1
)

Predictions:
Link scale credible intervals:
p <- predict(m, type = "link", interval = "confidence")
head(p)

Prediction intervals on new observations (include observation error):
p <- predictive_interval(m)
head(p)

Posterior prediction draws:
p <- posterior_predict(m, iter = 100)
dim(p) # rows are iterations and columns are data elements

Draws from the linear predictor (not in link space):
p <- posterior_linpred(m, iter = 100)
dim(p) # rows are iterations and columns are data elements

Use the `tidy` method to extract parameter estimates as a data frame:
head(tidy(m, conf.int = TRUE, conf.method = "HPDinterval"))

Make predictions on a fine-scale spatial grid:
pred_grid <- expand.grid(
 lat = seq(min(sdatlat), max(sdatlat), length.out = 25),
 lon = seq(min(sdatlon), max(sdatlon), length.out = 25),
 time = unique(sdattime)
)
pred_grid$predicted <- predict(m,
 newdata = pred_grid, type = "response", iter = 100,
estimatemethod = "median", offset = rep(0, nrow(pred_grid))

$estimate

ggplot(pred_grid, aes(lon, lat, fill = prediction)) +
 facet_wrap(~time) +
 geom_raster() +
 scale_fill_gradient2()

sim_glmmfields

Simulate a random field with a MVT distribution

Description
Simulate a random field with a MVT distribution

Usage

sim_glmmfields(
 n_knots = 15,
 n_draws = 10,
 gp_theta = 0.5,
 gp_sigma = 0.2,
 mvt = TRUE,
 df = 1e+06,
 seed = NULL,
 n_data_points = 100,
 sd_obs = 0.1,
 covariance = c("squared-exponential", "exponential", "matern"),
 matern_kappa = 0.5,
 obs_error = c("normal", "gamma", "poisson", "nb2", "binomial", "lognormal"),
 B = c(0),
 phi = 0,
 X = rep(1, n_draws * n_data_points),
 g = data.frame(lon = runif(n_data_points, 0, 10), lat = runif(n_data_points, 0, 10))
)

Arguments

n_knots The number of knots
n_draws The number of draws (for example, the number of years)
gp_theta The Gaussian Process scale parameter
gp_sigma The Gaussian Process variance parameter
mvt Logical: MVT? (vs. MVN)
df The degrees of freedom parameter for the MVT distribution
seed The random seed value
stan_pars

n_data_points The number of data points per draw
sd_obs The observation process scale parameter
covariance The covariance function of the Gaussian process ("squared-exponential", "exponential", "matern")
matern_kappa The optional matern parameter. Can be 1.5 or 2.5. Values of 0.5 equivalent to exponential model.
obs_error The observation error distribution
B A vector of parameters. The first element is the intercept
phi The auto regressive parameter on the mean of the random field knots
X The model matrix
g Grid of points

Examples
s <- sim_glmmfields(n_draws = 12, n_knots = 12, gp_theta = 1.5,
gp_sigma = 0.2, sd_obs = 0.2)
names(s)

stan_pars Return a vector of parameters

Description
Return a vector of parameters

Usage
stan_pars(
 obs_error, estimate_df = TRUE,
est_temporalRE = FALSE,
estimate_ar = FALSE,
 fixed_intercept = FALSE,
save_log_lik = FALSE
)

Arguments
obs_error The observation error distribution
estimate_df Logical indicating whether the degrees of freedom parameter should be estimated
est_temporalRE Logical: estimate a random walk for the time variable?
estimate_ar Logical indicating whether the ar parameter should be estimated
fixed_intercept
Should the intercept be fixed?

save_log_lik
Logical: should the log likelihood for each data point be saved so that information criteria such as LOOIC or WAIC can be calculated? Defaults to FALSE so that the size of model objects is smaller.

student_t
Student-t and half-t priors

Description

Student-t and half-t priors. Note that this can be used to represent an effectively normal distribution prior by setting the first argument (the degrees of freedom parameter) to a large value (roughly 50 or above).

Usage

```r
student_t(df = 3, location = 0, scale = 1)
```

```r
half_t(df = 3, location = 0, scale = 1)
```

Arguments

- `df` Degrees of freedom parameter
- `location` Location parameter
- `scale` Scale parameter

Examples

```r
student_t(3, 0, 1)
```

```r
half_t(3, 0, 1)
```

tidy
Tidy model output

Description

Tidy model output

Usage

```r
tidy(x, ...)
```

```r
## S3 method for class 'glmmfields'
tidy(x, ...)
```
tidy

Arguments

x \hspace{1cm} \text{Output from \texttt{glmmfields()}}

\ldots \hspace{1cm} \text{Other arguments}
Index

cluster::pam(), 6

family, 5

format_data, 3

glmmfields, 4, 9
glmmfields(), 8, 10, 15
glmmfields-package, 2

half_t(student_t), 14
half_t(), 5

lognormal, 7
lognormal(), 5

loogloo.glmmfields(), 8
loo.glmmfields, 8

loos::loo(), 8
loos::loo.array(), 8
loos::relative_eff(), 8

nbinom2, 8
nbinom2(), 5

pam, 3
plot.glmmfields, 9
posterior_linpred(predict), 10
posterior_predict(predict), 10
predict, 10
predict.glmmfields, 9
predictive_interval(predict), 10

rstan::sampling(), 6
rstan::vb(), 6

sim_glmmfields, 12
stan_pars, 13
stats::predict.glm(), 10
stats::predict.lm(), 10
student_t, 14
student_t(), 5

tidy, 14