Package ‘glmpca’

September 27, 2019

Title Dimension Reduction of Non-Normally Distributed Data
Version 0.1.0
Description Implements a generalized version of principal components analysis
 (GLM-PCA) for dimension reduction of non-normally distributed data such as
 counts or binary matrices.
License Artistic-2.0
Depends R (>= 3.6), stats
Imports
Suggests knitr, MASS, testthat, covr, ggplot2
URL https://github.com/willtownes/glmpca
BugReports https://github.com/willtownes/glmpca/issues
VignetteBuilder knitr
LazyData false
RoxygenNote 6.1.1
Encoding UTF-8
NeedsCompilation no
Author F. William Townes [aut, cre, cph],
 Kelly Street [aut],
 Jake Yeung [ctb]
Maintainer F. William Townes <will.townes@gmail.com>
Repository CRAN
Date/Publication 2019-09-27 10:50:05 UTC

R topics documented:

 glmpca ... 2

Index 4
Description

This function implements the GLM-PCA dimensionality reduction method for high-dimensional count data.

Usage

```r
glmpca(Y, L, fam = c("poi", "nb", "mult", "bern"), ctl = list(maxIter = 1000, eps = 1e-04), penalty = 1, verbose = FALSE, init = list(factors = NULL, loadings = NULL), nb_theta = 100, X = NULL, Z = NULL, sz = NULL)
```

Arguments

- **Y**: matrix of count data with features as rows and observations as columns.
- **L**: the desired number of latent dimensions (integer).
- **fam**: character describing the likelihood to use for the data (poisson, negative binomial, binomial approximation to multinomial, bernoulli).
- **ctl**: a list of control parameters for optimization.
- **penalty**: the L2 penalty for the latent factors (default = 1). Regression coefficients are not penalized.
- **verbose**: logical value indicating whether the current deviance should be printed after each iteration (default = FALSE).
- **init**: a list containing initial estimates for the factors (V) and loadings (V) matrices.
- **nb_theta**: see `negative.binomial` (nb_theta->∞ equivalent to Poisson).
- **X**: a matrix of column (observations) covariates. Any column with all same values (eg. 1 for intercept) will be removed. This is because we force the intercept and want to avoid collinearity.
- **Z**: a matrix of row (feature) covariates, usually not needed.
- **sz**: numeric vector of size factors to use in place of total counts.

Details

The basic model is \(R = AX' + ZG' + VU' \), where \(E[Y] = M = \text{linkinv}(R) \). Regression coefficients are \(A \) and \(G \), latent factors are \(U \) and loadings are \(V \). The objective function being optimized is the deviance between \(Y \) and \(M \), plus an L2 (ridge) penalty on \(U \) and \(V \).
Value

A list containing:

- **factors** a matrix U whose rows match the columns (observations) of Y. It is analogous to the principal components in PCA. Each column of the factors matrix is a different latent dimension.

- **loadings** a matrix V whose rows match the rows (features/dimensions) of Y. It is analogous to loadings in PCA. Each column of the loadings matrix is a different latent dimension.

- **coefX** a matrix A of coefficients for the observation-specific covariates matrix X. Each row of coefX corresponds to a row of Y and each column corresponds to a column of X. The first column of coefX contains feature-specific intercepts which are included by default.

- **coefZ** a matrix G of coefficients for the feature-specific covariates matrix Z. Each row of coefZ corresponds to a column of Y and each column corresponds to a column of Z. By default no such covariates are included and this is returned as NULL.

- **dev** a vector of deviance values. The length of the vector is the number of iterations it took for GLM-PCA’s optimizer to converge. The deviance should generally decrease over time. If it fluctuates wildly, this often indicates numerical instability, which can be improved by increasing the penalty parameter.

- **family** an S3 object of class glmpca_family. This is a minor extension to the family or negative.binomial object used by functions like glm and glm.nb. It is basically a list with various internal functions and parameters needed to optimize the GLM-PCA objective function. For the negative binomial case, it also contains the final estimated value of the dispersion parameter (nb_theta).

References

See Also

- [prcomp](https://cran.r-project.org/web/packages/prcomp/prcomp.pdf)

Examples

```r
# create a simple dataset with two clusters
mu<-rep(c(.5,3),each=10)
mu<-matrix(exp(rnorm(100*20)),nrow=100)
mu[,1:10]<-mu[,1:10]*exp(rnorm(100))
clust<-rep(c("red","black"),each=10)
Y<-matrix(rpois(prod(dim(mu)),mu),nrow=nrow(mu))
# visualize the latent structure
res<-glmpca(Y, 2)
Factors<-res$Factors
plot(Factors[,1],Factors[,2],col=clust,pch=19)
```
Index

family, 3

glm, 3
glm.nb, 3
glmpca, 2

negative.binomial, 2, 3

prcomp, 3