We provide an introductory demo of the usage for the glmtrans package. This package implements the transfer learning algorithms for high-dimensional generalized linear models (Tian and Feng (2021)).

Introduction
- Generalized linear models (GLMs)
- Two-step transfer learning algorithms
- Transferable source detection
- Implementation

Installation

Examples on Simulated Data
- Model fitting and prediction
- Plotting the source detection result

A Real Data Set: Micromass

Introduction

Generalized linear models (GLMs)
Given the predictor \mathbf{x}, if response y follows the generalized linear models (GLMs), then its distribution satisfies
\[y|\mathbf{x} \sim P(y|\mathbf{x}) = \rho(y) \exp\{y\mathbf{x}^T \mathbf{w} - \psi(\mathbf{x}^T \mathbf{w})\}, \]
where $\psi'(\mathbf{x}^T \mathbf{w}) = \mathbb{E}(y|\mathbf{x})$ is called the *inverse link function* (McCullagh and Nelder (1989)). Another important property is that $\text{Var}(y|\mathbf{x}) = \psi''(\mathbf{x}^T \mathbf{w})$, which is derived from the exponential family property. It is ψ which characterizes different GLMs. For example, in Gaussian model, we have the continuous response y and $\psi(u) = \frac{1}{2}u^2$; in the logistic model, y is binary and $\psi(u) = \log(1 + e^u)$; and in Poisson model, we have the integral response y and $\psi(u) = e^u$.

Two-step transfer learning algorithms
Consider the multi-source transfer learning problem. Suppose we have the target data $(X^{(0)}, Y^{(0)}) = \{(\mathbf{x}_i^{(0)}, y_i^{(0)})\}_{i=1}^{n_0}$ and source data $\{(X^{(k)}, Y^{(k)})\}_{k=1}^K = \\{(\mathbf{x}_i^{(k)}, y_i^{(k)})\}_{i=1}^{n_k}\}_{k=1}^K$ for $k = 1, \ldots, K$. Denote the target coefficient $\beta = \mathbf{w}^{(0)}$. Suppose target and source data follow the GLM as
\[y^{(k)}|x^{(k)} \sim P(y^{(k)}|x^{(k)}) = \rho(y^{(k)}) \exp\{y^{(k)}(\mathbf{x}^{(k)})^T \mathbf{w}^{(k)} - \psi((\mathbf{x}^{(k)})^T \mathbf{w}^{(k)})\}. \]
In order to borrow information from transferable sources, Bastani (2020) and Li, Cai, and Li (2020) developed *two-step transfer learning algorithms* for high-dimensional linear models. In the first step, an approximate
estimator is achieved via the information from the target data and useful source data. In the second step, the target data is used to debias the estimator obtained from the first step, leading to the final estimator. Tian and Feng (2021) extends the idea into GLM and proposes the corresponding oracle algorithm, which can be easily applied when transferable sources are known. It is proved to enjoy a sharper bound of ℓ_2-estimation error when the transferable source and target data are sufficiently similar.

Transferable source detection

In the multi-source transfer learning problem, some adversarial sources may share little similarity with the target, which can mislead the fitted model. We call this phenomenon as negative transfer (Pan and Yang (2009), Torrey and Shavlik (2010), Weiss, Khoshgoftaar, and Wang (2016)).

To detect which sources are transferable, Tian and Feng (2021) develops an algorithm-free detection approach. Simply speaking, it tries to compute the gain for transferring each single source and compare it with the baseline where only the target data is used. The sources enjoying significant performance gain compared with the baseline are regarded as transferable ones. Tian and Feng (2021) also proves the detection consistency property for this method under the high-dimensional GLM setting.

Implementation

The implementation of this package leverages on package glmnet, which applies the cyclic coordinate gradient descent and is very efficient (Friedman, Hastie, and Tibshirani (2010)). We use the argument `offset` provided by the function `glmnet` and `cv.glmnet` to implement our two-step algorithms. Besides Lasso (Tibshirani (1996)), this package can adapt the elastic net type penalty (Zou and Hastie (2005)).

Installation

`glmtrans` is now available on CRAN and can be easily installed by one-line code.

```r
install.packages("glmtrans", repos = "http://cran.us.r-project.org")
```

Then we can load the package:

```r
library(glmtrans)
```

Example Codes on Simulated Data

In this section, we show the user how to use the provided functions to fit the model, make predictions and visualize the results. We take logistic data as an example.

Model fitting and prediction

We first generate some logistic data through function `models`. For target data, we set the coefficient vector $\beta = (0.5 \cdot 1_s, 0_{p-s})$, where $p = 1000$ and $s = 15$. For k in transferable source index set A, let $w_{i(k)} = \beta + h/p \cdot R_p^{(k)}$, where $h = 5$ and $R_p^{(k)}$ are p independent Rademacher variables (being -1 or 1 with equal probability) for any k. $R_p^{(k)}$ is independent with $R_p^{(k')}$ for any $k \neq k'$. The coefficient of non-transferable sources is set to be $\xi + h/p \cdot R_p^{(k)}$. And $\xi_{S'} = 0.5 \cdot 1_{2s}$, $\xi_{(S')^c} = 0_{p-2s}$, where $S' = S'_1 \cup S'_2$ and $|S'_1| = |S'_2| = s = 15$. $S'_1 = \{s+1, \ldots, 2s\}$, and S'_2 is randomly sampled from $\{2s+1, \ldots, p\}$. We also add an intercept 0.5. The generating procedure of each non-transferable source data is independent. Predictors from target and source $x_i^{(k)} \sim N(0, \Sigma)$, where $\Sigma = (0.5|i-j|)_{p \times p}$. The target sample size $n_0 = 100$ and each source sample size $n_k = 150$ for any $k = 1, \ldots, K$. Let $K = 5$, $A = \{1, 2, 3\}$.

We generate the training data as follows.
```r
set.seed(1, kind = "L'Ecuyer-CMRG")
D.training <- models(family = "binomial", type = "all", Ka = 3, K = 5,
  n.target = 150, n.source = rep(150, 5))
```

Then suppose we know \(\mathcal{A} \), let’s fit an “oracle” GLM transfer learning model on the target data and source data in \(\mathcal{A} \) by the oracle algorithm. We denote this procedure as Oralce-Trans-GLM.

```r
fit.oracle <- glmtrans(target = D.training$target, source = D.training$source, 
  family = "binomial", transfer.source.id = 1:3, cores = 2)
```

Notice that we set the argument `transfer.source.id` equal to \(\mathcal{A} = \{1, 2, 3\} \) to transfer only the first three sources.

And the output of `glmtrans` function is an object belonging to S3 class “glmtrans”. It contains:

- **beta**: the estimated coefficient vector.
- **family**: the response type.
- **transfer.source.id**: the transferable source index. If in the input, `transfer.source.id = 1:length(source)` or `transfer.source.id = "all"`, then the outputed `transfer.source.id = 1:length(source)`. If the inputed `transfer.source.id = "auto"`, only transferable source detected by the algorithm will be outputed.
- **fitting.list**:
 - `w_a`: the estimator obtained from the transferring step.
 - `delta_a`: the estimator obtained from the debiasing step.
 - `target.valid.loss`: the validation (or cross-validation) loss on target data. Only available when `transfer.source.id = "auto"`.
 - `source.loss`: the loss on each source data. Only available when `transfer.source.id = "auto"`.
 - `epsilon0`: the threshold to determine transferability will be set as \((1+\epsilon_0)\cdot\text{loss of validation (cv) target data}\). Only available when `transfer.source.id = "auto"`.
 - `threshold`: the threshold to determine transferability. Only available when `transfer.source.id = "auto"`.

Then suppose we do not know \(\mathcal{A} \), let’s set `transfer.source.id = "auto"` to apply the transferable source detection algorithm to get estimate \(\hat{\mathcal{A}} \). After that, `glmtrans` will automatically run the oracle algorithm on \(\hat{\mathcal{A}} \) to fit the model. We denote the approach as Trans-GLM.

```r
fit.detection <- glmtrans(target = D.training$target, source = D.training$source, 
  family = "binomial", transfer.source.id = "auto", cores = 2)
```

Loss difference between source data and the threshold: (negative to be transferable)
Source 1: -0.084813
Source 2: -0.108527
Source 3: -0.101900
Source 4: 0.113946
Source 5: 0.155109
##
Source data set(s) 1, 2, 3 are transferable!

From the results, we could see that \(\mathcal{A} = \{1, 2, 3\} \) is successfully detected via the detection algorithm. Next, to demonstrate the effectiveness of GLM transfer learning algorithm and the transferable source detection algorithm, we also fit the naive Lasso on target data (Lasso) and transfer learning model using all source data (Pooled-Trans-GLM) as baselines.

```r
library(glmnet)
fit.lasso <- cv.glmnet(x = D.training$target$x, y = D.training$target$y,
```
family = "binomial")
fit.pooled <- glmtrans(target = D.training$target, source = D.training$source,

family = "binomial", transfer.source.id = "all", cores = 2)

Finally, we compare the ℓ_2-estimation errors of the target coefficient β by different methods.

beta <- c(0, rep(0.5, 15), rep(0, 1000 - 15))
er <- numeric(4)
names(er) <- c("Lasso", "Pooled-Trans-GLM", "Trans-GLM", "Oracle-Trans-GLM")
er["Lasso"] <- sqrt(sum((coef(fit.lasso) - beta)^2))
er["Pooled-Trans-GLM"] <- sqrt(sum((fit.pooled$beta - beta)^2))
er["Trans-GLM"] <- sqrt(sum((fit.detection$beta - beta)^2))
er["Oracle-Trans-GLM"] <- sqrt(sum((fit.oracle$beta - beta)^2))

er
Lasso Pooled-Trans-GLM Trans-GLM Oracle-Trans-GLM
1.593721 1.454193 1.029472 1.005001

Note that the transfer learning models outperform the classical Lasso fitted on target data. And due to negative transfer, Pooled-Trans-GLM performs worse than Oracle-Trans-GLM. By correctly detecting A, the behavior of Trans-GLM mimics the oracle.

Plotting the source detection result

We could visualize the transferable source detection results by applying `plot` function on objects in class “glmtrans” or “glmtrans_source_detection”. Loss of each source and the transferability threshold will be drawed. Function `glmtrans` outputs objects in class “glmtrans”, while function `source_detection` outputs objects in class “glmtrans_source_detection”. The function `source_detection` detects A without the post-detecting model fitting step.

Call `plot` function to visualize the results as follows.

plot(fit.detection)
A Real Data Set: Micromass

This package includes a real-data set about bacterial categorization. The information about 9 genera of gram, including 12 positive and 8 negative bacterial species are available in the data set Micromass (Mahe et al. (2014)). There are 541 observations and 1300 variables in total. Each variable records some feature of the gram. The original data MicroMass is available on UCI machine learning repository (https://archive.ics.uci.edu/ml/datasets/MicroMass).

In Tian and Feng (2021), 10 groups are constructed from the original 20 species and each group consists of two different species of gram. Here the data included is the preprocessed one. The data is a list of length 10, and each of the components is a group with two species. The list name records the species. After loading the package glmtrans, the transformed data set will be loaded as a list micromass.

The list of species’ names in each group:

- “QBG.CRP-JNH.ZIJ”
- “AUG.AEX-RTO.JFR”
- “QWP.LRO-RTO.TQH”
- “AUG.HSS-QWP.DRH”
- “QBG.KGI-JNH.FLH”
- “VVJ.KWJ-BUT.DNW”
- “VVJ.KSF-BUT.TRH”
- “NYV.VCE-EMD.FZO”
- “NYV.XSY-EMD.WXC”
“BUT.BIK-BUT.YZE”

Reference

