Package ‘gluvarpro’

March 19, 2020

Type Package

Title Glucose Variability Measures from Continuous Glucose Monitoring Data

Version 4.0

Imports ggplot2, graphics, gridExtra, pracma, scales, stats, tidydr, zoo

Author Sergio Contador

Maintainer Sergio Contador <scontador@ucm.es>

Description Calculate different glucose variability measures, including average measures of glycemia, measures of glycemic variability and measures of glycemic risk, from continuous glucose monitoring data.

License GPL-2
Encoding UTF-8
RoxygenNote 6.1.1
Depends R (>= 2.10)
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2020-03-18 23:10:07 UTC

R topics documented:

adrrgvp ... 3
aucgvp .. 4
avggvp .. 5
bgigvp ... 6
chargvp .. 7
conagvp ... 8
cvvgp ... 9
dtagvgp1 ... 10
dtagvgp2 ... 10
dtagvgp3 ... 11
dtagvgp4 ... 12
fillgvp ... 13
iqrgvp .. 14
jigvp .. 15
lvgp ... 16
magegvp ... 17
meangvp ... 18
mvgvp ... 19
plotboxgvp .. 20
plotboxmgvp ... 20
plotchargvp ... 21
plotgvp ... 22
plotmgvp ... 22
preprocessgvp ... 23
pstrgvp ... 24
adrrgvp

Description

Average daily risk range is a measure of glycemic risk that is based on risk values obtained from glucose levels that are mathematically transformed to give equal weight to hyperglycemic and hypoglycemic excursions. The *adrrgvp* is scored based on risk categories: Low risk, [0,20); moderate risk, [20,40); and high risk, 40 and above.

Usage

adrrgvp(x, t = 24)

Arguments

- **x**

 Data-set with data frame format containing three columns:

 - date: date of the observation with format yyyy/mm/dd.
 - time: time of the observation with 24 hour format hh:mm:ss.
 - glucose: glucose value of the observation in [mg/dl].

- **t**

 Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.

Value

A data frame containing the adrr values.

Author(s)

Sergio Contador.

References

See Also

bgigvp(x, t = 24)
Examples

data("datagvp1")
adrrgvp(datagvp1)

aucgvp

area under curve

Description

Area under curve is an average measure of glycemia that quantifies the average exposure to hypoglycemia and hyperglycemia events. The integral trapezoidal cumulative function is used to calculate the area. The area under a curve between two points can be found by doing a definite integral between the two points. To find the area under the curve \(y = f(x) \) between \(x = a \) and \(x = b \), integrate \(y = f(x) \) between the limits of \(a \) and \(b \).

Usage

aucgvp(x, t = 24, tdown = 70, tup = 180)

Arguments

- \(x \) Data-set with data frame format containing three columns:
 - date: date of the observation with format \(yyyy/mm/dd \).
 - time: time of the observation with 24 hour format \(hh:mm:ss \).
 - glucose: glucose value of the observation in [mg/dl].
- \(t \) Numeric value with interval for calculate measure. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.
- \(tdown \) Numeric value with target range low. Default value of 70 [mg/dl].
- \(tup \) Numeric value with target range high. Default value of 180 [mg/dl].

Value

A data frame containing the lauc, hauc and auc values.

Author(s)

Sergio Contador.

References

Examples

data("datagvp1")
aucgvp(datagvp1)
Description

Generic function for the arithmetic mean and the standard deviation.

Usage

`avggvp(x, var = "glucose", sd = FALSE)`

Arguments

- **x**: Data-set with data frame format containing three columns:
 - date: date of the observation with format `yyyy/mm/dd`.
 - time: time of the observation with 24 hour format `hh:mm:ss`.
 - glucose or variability measure: glucose value or glucose variability measure.
- **var**: Character value with variable to calculate the mean value and the standard deviation. Permitted values are `glucose`, `adrr`, `lauc`, `hauc`, `auc`, `lbgi`, `hbgi`, `bgi`, `conga`, `cv`, `iqr`, `ji`, `li`, `ge`, `lmage`, `hmage`, `mage`, `mean`, `mv`, `sd`, `lpstr`, `hpstr`, `npstr` and `pstr`. Default value is `glucose`.
- **sd**: Logical value to calculate the standard deviation. Default value is FALSE.

Value

A numeric value containing the mean value or a character value containing the mean value and the standard deviation.

Author(s)

Sergio Contador.

References

Examples

```r
data("datagvp1")
avggvp(datagvp1)
```
bgigvp

blood glucose index

Description

Blood glucose index is a measure of glycemic risk based on the same normalizing transformation as the *adrrgvp* measure but is specifically designed to be sensitive to hypoglycemia (*lbgi*) and hyperglycemia (*hbgi*), respectively, and to have zero correlation with their opposite ranges on the blood glucose scale. The *lbgi* and *hbgi* are scored based on risk categories: Low risk, [0,2.5); moderate risk, [2.5,5); and high risk, 5 and above.

Usage

```
bgigvp(x, t = 24)
```

Arguments

- **x**
 Data-set with data frame format containing three columns:
 - date: date of the observation with format `yyyy/mm/dd`.
 - time: time of the observation with 24 hour format `hh:mm:ss`.
 - glucose: glucose value of the observation in [mg/dl].

- **t**
 Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.

Value

A data frame containing the *lbgi*, *hbgi* and *bgi* values.

Author(s)

Sergio Contador.

References

See Also

adrrgvp(x, t = 24)

Examples

```r
data("datagvp1")
bgigvp(datagvp1)
```
Description

Generic function to calculate different glucose characterization measures. It calculates the average glucose, the standard deviation, and the percentages of time where the data has very low glucose levels (<54 [mg/dl]), low ([54,70] [mg/dl]), in range ([70,180] and [70,140] [mg/dl]), high (>180 [mg/dl]), and very high (>250 [mg/dl]), as defined in the recommendations of ADA (American Diabetes Association).

Usage

`chargvp(x)`

Arguments

- `x` Data-set with data frame format containing one column:

 glucose: glucose value of the observation in [mg/dl].

Value

A data frame containing glucose characterization measures.

Author(s)

Sergio Contador.

References

See Also

`plotchargvp(x, text = FALSE)`

Examples

```r
data("datagvp1")
chargvp(datagvp1)
```
conagvp

Description

Continuous overall net glycemic action is a measure of glycemic variability specifically developed for use on continuous glucose monitoring data. It is calculated as the standard deviation of the sum of the differences between a current observation and an observation n hours previously. Because conga does not require arbitrary glucose cutoffs or arbitrary defined rises and falls, it seems to be a more objective manner to define glucose variability than mgvp or magegvp.

Usage

conagvp(x, t = 24, ts = 5, h = 1)

Arguments

- **x**: Data-set with data frame format containing three columns:
 - date: date of the observation with format yyyy/mm/dd.
 - time: time of the observation with 24 hour format hh:mm:ss.
 - glucose: glucose value of the observation in [mg/dl].
- **t**: Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.
- **ts**: Numeric value with sampling time of glucose values. Permitted values are 5 and 15 minutes. Default value of 5 minutes.
- **h**: Numeric value with type of measure calculated. Permitted values are from 1 to 24 hours, with differences of 1 hour. Default value of 1 hour.

Value

A data frame containing the conga values.

Author(s)

Sergio Contador.

References

Examples

data("datagvp1")
conagvp(datagvp1)
Description

Percentage coefficient of variation is a measure of glycemic variability defined as the ratio of the standard deviation to the mean.

Usage

\texttt{cvgvp(x, t = 24)}

Arguments

\begin{itemize}
\item \textbf{x} \hspace{1cm} Data-set with data frame format containing three columns:
\begin{itemize}
\item date: date of the observation with format \textit{yyyy/mm/dd}.
\item time: time of the observation with 24 hour format \textit{hh:mm:ss}.
\item glucose: glucose value of the observation.
\end{itemize}
\item \textbf{t} \hspace{1cm} Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.
\end{itemize}

Value

A data frame containing the cv values.

Author(s)

Sergio Contador.

References

See Also

\begin{itemize}
\item \texttt{meangvp(x, t = 24)}
\item \texttt{sdgvp(x, t = 24)}
\end{itemize}

Examples

\begin{itemize}
\item \texttt{data("datagvp1")}
\item \texttt{cvgvp(datagvp1)}
\end{itemize}
datagvp1
clean data-set from Abbott continuous glucose monitoring

Description

Data preprocessed from type 1 diabetic patient acquired through Abbott Freestyle Libre continuous glucose monitoring.

Usage

```r
data("datagvp1")
```

Format

Data-set with data frame format containing three columns:
- date: date of the observation with format `yyyy/mm/dd`.
- time: time of the observation with 24 hour format `hh:mm:ss`.
- glucose: glucose value of the observation in [mg/dl].

Details

Data-set with 6 complete days of data acquired with sampling time of 15 minutes. There are 576 observations in total, 7 with NA values of glucose.

Source

Hospital Universitario Principe de Asturias de Alcalá de Henares, Madrid, Spain.

Examples

```r
data("datagvp1")
datagvp1
```

datagvp2
clean data-set from Medtronic continuous glucose monitoring

Description

Data preprocessed from type 1 diabetic patient acquired through Medtronic 530-G with Enlite continuous glucose monitoring.

Usage

```r
data("datagvp2")
```
Format

Data-set with data frame format containing three columns:
- date: date of the observation with format \texttt{yyyy/mm/dd}.
- time: time of the observation with 24 hour format \texttt{hh:mm:ss}.
- glucose: glucose value of the observation in [mg/dl].

Details

Data-set with 36 complete days of data acquired with sampling time of 5 minutes. There are a total of 10368 observations, 10 with NA values of glucose.

Source

School of Electrical Engineering and Computer Science, Ohio University, Ohio, United States.

References

Cindy Marling and Razvan Bunescu. The OhioT1DM Dataset for Blood Glucose Level Prediction - DRAFT.

Examples

data("datagvp2")
datagvp2

datagvp3
clean data-set from Abbott continuous glucose monitoring

Description

Data preprocessed from type 1 diabetic patient acquired through Abbott Freestyle Libre continuous glucose monitoring.

Usage

data("datagvp3")

Format

Data-set with data frame format containing three columns:
- date: date of the observation with format \texttt{yyyy/mm/dd}.
- time: time of the observation with 24 hour format \texttt{hh:mm:ss}.
- glucose: glucose value of the observation in [mg/dl].
Details

Data-set with 476 complete days of data acquired with sampling time of 15 minutes. There are 45696 observations in total.

Source

Hospital Universitario Principe de Asturias de Alcala de Henares, Madrid, Spain.

Examples

data("datagvp3")
datagvp3

datagvp4

raw data-set from Medtronic continuous glucose monitoring

Description

Raw data from type 1 diabetic patient acquired through Medtronic Paradigm Veo-754 continuous glucose monitoring.

Usage

data("datagvp4")

Format

Data-set with data frame format containing forty seven columns:

Details

Data-set with 12 days of data acquired with sampling time of 5 minutes. There are 4004 observations in total, containing two parts: from observation 1 to 737 data from the insulin pump, and from 738 to 4004 data from the sensor.
fillgvp

Source
Hospital Universitario Principe de Asturias de Alcala de Henares, Madrid, Spain.

Examples
data("datagvp4")
datagvp4

fillgvp \textit{fill missing glucose values from continuous glucose monitoring}

Description
Generic function for replacing NA values (missing values) with interpolated values, performing linear or cubic spline interpolation of given data points.

Usage
fillgvp(x, method = "linear", n = 4)

Arguments
\begin{itemize}
\item \textbf{x} \hspace{1cm} Data-set with data frame format containing one column:
 \hspace{1cm} glucose: glucose value of the observation.
\item \textbf{method} \hspace{1cm} Character value to replace missing values (NAs) by linear interpolation via \textit{linear} or cubic spline interpolation via \textit{cubic}, respectively. Default value is \textit{linear}.
\item \textbf{n} \hspace{1cm} Numeric value with maximum number of consecutive NAs to fill. Any longer gaps will be left unchanged. Default value is 4.
\end{itemize}

Value
A data frame containing glucose values.

Author(s)
Sergio Contador.

References

Examples
data("datagvp1")
fillgvp(datagvp1)
Description

Inter-quartile range is a measure of glycemic variability defined as the difference between 75th and 25th percentiles.

Usage

```r
iqrgvp(x, t = 24)
```

Arguments

- `x`
 Data-set with data frame format containing three columns:
 - date: date of the observation with format `yyyy/mm/dd`.
 - time: time of the observation with 24 hour format `hh:mm:ss`.
 - glucose: glucose value of the observation.

- `t`
 Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.

Value

A data frame containing the iqr values.

Author(s)

Sergio Contador.

References

Examples

```r
data("datagvp1")
iqrgvp(datagvp1)
```
Description

J index is a measure of glycemic variability that combines information of the standard deviation and the mean, and excludes severe and persistent hypoglycemia.

Usage

\[\text{jigvp}(x, t = 24) \]

Arguments

- \(x \): Data-set with data frame format containing three columns:
 - date: date of the observation with format \(yyyy/mm/dd \).
 - time: time of the observation with 24 hour format \(hh:mm:ss \).
 - glucose: glucose value of the observation in \(\text{mg/dl} \).
- \(t \): Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.

Value

A data frame containing the \(ji \) values.

Author(s)

Sergio Contador.

References

Examples

```r
data("datagvp1")
jigvp(datagvp1)
```
Description

Lability index is a measure of glycemic variability that evaluates the metabolic lability and its possible improvement in patients candidates for islet transplantation.

Usage

`ligvp(x, t = 24, ts = 5)`

Arguments

- `x` Data-set with data frame format containing three columns:
 - `date`: date of the observation with format `yyyy/mm/dd`.
 - `time`: time of the observation with 24 hour format `hh:mm:ss`.
 - `glucose`: glucose value of the observation in [mg/dl].
- `t` Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.
- `ts` Numeric value with sampling time of glucose values. Permitted values are 5 and 15 minutes. Default value of 5 minutes.

Value

A data frame containing the li values.

Author(s)

Sergio Contador.

References

Examples

```r
data("datagvp1")
ligvp(datagvp1)
```
magegvp

Description

Mean amplitude of glycemic excursions is a measure of glycemic variability that calculates changes in blood glucose that exceed multiples of the standard deviation, and that are in hypoglycemic and hyperglycemic values. It is based on the number of glycemic excursions, using glucose values that are above or below the limits of hypoglycemia and hyperglycemia.

Usage

```r
magegvp(x, t = 24, n = 1)
```

Arguments

- **x**: Data-set with data frame format containing three columns:
 - date: date of the observation with format `yyyy/mm/dd`.
 - time: time of the observation with 24 hour format `hh:mm:ss`.
 - glucose: glucose value of the observation in [mg/dl].
- **t**: Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.
- **n**: Numeric value with number of multiple values of standard deviation. Default value of 1.

Value

A data frame containing the number of glycemic excursions `ge`, `Image`, `hmage` and `mage` values.

Author(s)

Sergio Contador.

References

Seniz Sevimer Tuncan, Mehmet Uzunlulu, Ozge telci caklili, Hasan Huseyin Mutlu, and Aytekin Oguz. Evaluation of the glycemic fluctuation as defined as the mean amplitude of glycemic excursion in hospitalized patients with type 2 diabetes. 1, 11 2016.

Examples

```r
data("datagvp1")
magegvp(datagvp1)
```
Description

Arithmetic mean is an average measure of glycemia that calculates the sum of a set of data values divided by the number of data values in the data-set.

Usage

\[\text{meangvp}(x, t = 24) \]

Arguments

- **x**: Data-set with data frame format containing three columns:
 - date: date of the observation with format *yyyy/mm/dd*.
 - time: time of the observation with 24 hour format *hh:mm:ss*.
 - glucose: glucose value of the observation.
- **t**: Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.

Value

A data frame containing the mean values.

Author(s)

Sergio Contador.

References

See Also

- cvgvp(x, t = 24)

Examples

\[\text{data("datagvp1")} \]
\[\text{meangvp(datagvp1)} \]
Description

M value is a measure of glycemic variability that quantifies the glycemic control of diabetic patients. It is a measure of the stability of the glucose excursions in comparison with an ideal glucose default value of 6.6 [mmol/l]-120 [mg/dl]. The m value is zero in healthy controls, rising with increasing glycemic variability or poorer glycemic control, making it difficult to distinguish between patients with either high mean glucose or high glucose variability. Moreover, because hypoglycemia has a greater impact on the m value than hyperglycemia, it is more a clinical than a mathematical indicator of glycemic control.

Usage

mvgvp(x, t = 24, gi = 120)

Arguments

x
Data-set with data frame format containing three columns:
date: date of the observation with format yyyy/mm/dd.
time: time of the observation with 24 hour format hh:mm:ss.
glucose: glucose value of the observation in [mg/dl].

 t
Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.

gi
Numeric value with ideal glucose value. Default value of 120 [mg/dl].

Value

A data frame containing the mv values.

Author(s)

Sergio Contador.

References

Examples

data("datagvp1")
mvgvp(datagvp1)
plotboxgvp

box plot of glucose values and glucose variability measures

Description
Generic function for create box plot of given data points, plotting the inter-quartile range in a blue box with the median value as a horizontal line and the mean value as a red point.

Usage
```
plotboxgvp(x, var = "glucose")
```

Arguments
- **x**: Data-set with data frame format containing three columns:
 - date: date of the observation with format `yyyy/mm/dd`.
 - time: time of the observation with 24 hour format `hh:mm:ss`.
 - glucose or variability measure: glucose value [mg/dl] or glucose variability measure.
- **var**: Character value with variable for plotting. Permitted values are `glucose`, `adrr`, `lauc`, `hauv`, `auc`, `lbgi`, `hbgi`, `bgi`, `conga`, `cv`, `iqr`, `ji`, `li`, `ge`, `limage`, `himage`, `mage`, `mean`, `mv`, `sd`, `lpstr`, `hpstr`, `npstr` and `pstr`. Default value is `glucose`.

Author(s)
Sergio Contador.

Examples
```
data("datagvp1")
plotboxgvp(datagvp1)
```

plotboxmgvp

box plot of multiple glucose variability measures

Description
Function for create box plots of given data points arranging multiple grobs on a draw, plotting the inter-quartile range in a blue box with the median value as a horizontal line and the mean value as a red point.

Usage
```
plotboxmgvp(x, var = "auc")
```
plotchargvp

Arguments

x Data-set with data frame format containing five or six columns:
 date: date of the observation with format yyyy/mm/dd.
 time: time of the observation with 24 hour format hh:mm:ss.
 variability measure: glucose variability measure.

var Character value with variable for plotting. Permitted values are auc, bgi, mage, and pstr. Default value is auc.

Author(s)

Sergio Contador.

Examples

data("datagvp1")
x <- aucgvp(datagvp1)
plotboxmgvp(x)

plotchargvp bar plot of glucose characterization measures

Description

Generic function for create bar plot of glucose characterization measures.

Usage

plotchargvp(x, text = FALSE)

Arguments

x Data-set with data frame format containing one column:
 glucose: glucose value in [mg/dl].

text Logical value for plotting glucose characterization measures inside the bar plot.
 Default value is FALSE.

Author(s)

Sergio Contador.

See Also

chargvp(x)

Examples

data("datagvp1")
plotchargvp(datagvp1)
plotgvp

plot glucose values and glucose variability measures

Description

Generic function for plotting given data points.

Usage

plotgvp(x, col = FALSE, var = "glucose")

Arguments

x
Data-set with data frame format containing three columns:
date: date of the observation with format yyyy/mm/dd.
time: time of the observation with 24 hour format hh:mm:ss.
glucose or variability measure: glucose value [mg/dl] or glucose variability measure.

col
Logical value for plotting data points with different colours. If data-set contains more than one day, it can be selected different colors (TRUE) for each day of data or one color (FALSE). Default value is FALSE.

var
Character value with variable for plotting. Permitted values are glucose, adrr, lauc, hauc, auc, lbgi, hbgi, bgi, conga, cv, iqr, ji, li, ge, mage, mean, mv, sd, lpstr, hpstr, npstr and pstr. Default value is glucose.

Author(s)

Sergio Contador.

Examples

data("datagvp1")
plotgvp(datagvp1)

plotmgvp

plot multiple glucose variability measures

Description

Function for plotting given data points arranging multiple grobs on a draw.

Usage

plotmgvp(x, col = FALSE, var = "auc")
Arguments

x
Data-set with data frame format containing five or six columns:
date: date of the observation with format \texttt{yyyy/mm/dd}.
time: time of the observation with 24 hour format \texttt{hh:mm:ss}.
variability measure: glucose variability measure.

col
Logical value for plotting data points with different colours. If data-set contains
more than one day, it can be selected different colors (TRUE) for each day of
data or one color (FALSE). Default value is FALSE.

var
Character value with variable for plotting. Permitted values are \texttt{auc}, \texttt{bgi}, \texttt{mage},
and \texttt{pstr}. Default value is \texttt{auc}.

Author(s)
Sergio Contador.

Examples

data("datagvp1")
x <- aucgvp(datagvp1)
plotmgvp(x)

Description

Generic function for preprocessing raw data from continuous glucose monitoring with glucose val-
ues collected with sampling time of 5 or 15 minutes each. The function is specially designed for
preprocessing data from \textit{Medtronic} and \textit{Abbott} continuous glucose monitoring.

Usage

preprocessgvp(x, dp = 2, tp = 3, gp = 31, ts = 5, df = "yyyy/mm/dd",
 tf = "hh:mm:ss", all = FALSE, type = "normal")

Arguments

x
Data-set with data frame format containing at least two or three columns:
date: date of the observation with only the date or the date plus the time.
time: time of the observation with 24 hour format.
glucose: glucose value of the observation.

dp
Numeric value with column position where the variable date is. Default value
of 2.

tp
Numeric value with column position where the variable time is. Default value
of 3.
gp

Numeric value with column position where the variable glucose is. Default value of 31.

ts

Numeric value with sampling time of glucose values. Permitted values are 5 and 15 minutes. Default value of 5 minutes.

df

Character value with the format of variable date. Permitted values are yyyy/mm/dd and dd/mm/yyyy. Default value is yyyy/mm/dd.

tf

Character value with the format of variable time. Permitted values are hh:mm:ss and hh:mm. Default value is hh:mm:ss.

all

Logical value for showing all columns of data frame (TRUE) or only columns for variables date, time and glucose (FALSE). Default value is FALSE.

type

Character value to control the different types of preprocessing. To preserve time slots use normal. For round time slots to 5 or 15 minutes between registers use round. For round time to slots 5 or 15 minutes between registers and complete missing time slots use complete. Default value is normal.

Value

A data frame containing date, time, glucose values and all other variables from the original data-set.

Author(s)
Sergio Contador.

See Also
datagvp4

Examples

data("datagvp4")
preprocessgvp(datagvp4)

pstrgvp

percentage spent below/above the target range

Description

Percentage spent below/above the target range is an average measure of glycemia that calculates the percentage of average time that the patient is in hypoglycemic and hyperglycemic ranges. This measure calculates the time-in-range measure (npstr) but does not give more weight to extremely low values (lpstr) nor to high values (hpstr). Arbitrary target range may not be optimal, so the ranges must to be chosen careful.

Usage

pstrgvp(x, t = 24, tdown = 70, tup = 180)
sdgvp

Arguments

- **x**
 Data-set with data frame format containing three columns:
 - date: date of the observation with format **yyyy/mm/dd**.
 - time: time of the observation with 24 hour format **hh:mm:ss**.
 - glucose: glucose value of the observation in [mg/dl].

- **t**
 Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.

- **tdown**
 Numeric value with target range low. Default value of 70 [mg/dl].

- **tup**
 Numeric value with target range high. Default value of 180 [mg/dl].

Value

A data frame containing the lpstr, hpstr, npstr and pstr values.

Author(s)

Sergio Contador.

References

Examples

```r
data("datagvp1")
pstrgvp(datagvp1)
```

sdgvp

standard deviation

Description

Standard deviation is a measure of glycemic variability that quantify the amount of variation or dispersion of a set of data values.

Usage

```r
sdgvp(x, t = 24)
```
Arguments

- Data-set with data frame format containing three columns:
 - `date`: date of the observation with format `yyyy/mm/dd`.
 - `time`: time of the observation with 24 hour format `hh:mm:ss`.
 - `glucose`: glucose value of the observation.
- Numeric value with interval for calculating the measurement. Permitted values are 4, 6, 8, 12 and 24 hours. Default value of 24 hours.

Value

A data frame containing the sd values.

Author(s)

Sergio Contador.

References

See Also

cvgvp(x, t = 24)

Examples

data("datagvp1")
sdgvp(datagvp1)

Description

Generic function for printing information about data-set. Includes information about number of days of data, number of registers, number of glucose values, number of glucose values with NA (missing values) and range of glucose values. It shows the absolute values and the relative values for each day, containing the year, month, day and time.

Usage

strgvp(x)
Arguments

x Data-set with data frame format containing three columns:
date: date of the observation with format yyyy/mm/dd.
time: time of the observation with 24 hour format hh:mm:ss.
glucose: glucose value of the observation.

Value

A list containing the absolute values and the relative values for each day with the information of the
data-set.

Author(s)

Sergio Contador.

Examples

data("datagvp1")
strgvp(datagvp1)

unitsgvp change units of glucose values

Description

Generic function for changing units of glucose values from [mmol/l] to [mg/dl].

Usage

unitsgvp(x)

Arguments

x Data-set with data frame format containing one column:
glucose: glucose value in [mmol/l].

Value

A data frame containing glucose values.

Author(s)

Sergio Contador.
Index

adrrgvp, 3
aucgvp, 4
avggvp, 5
bgigvp, 6
chargvp, 7
congagvp, 8
cvgvp, 9
datagvp1, 10
datagvp2, 10
datagvp3, 11
datagvp4, 12
fillgvp, 13
iqrgvp, 14
jigvp, 15
ligvp, 16
magegvp, 17
meangvp, 18
mvgvp, 19
plotboxgvp, 20
plotboxmgvp, 20
plotchargvp, 21
plotgvp, 22
plotmgvp, 22
preprocessgvp, 23
pstrgvp, 24
sdgvp, 25
strgvp, 26
unitsgvp, 27