Package ‘gnn’

Version 0.0-2
Title Generative Neural Networks
Description Tools to set up, train, store, load, investigate and analyze generative neural networks. In particular, functionality for generative moment matching networks is provided.
Maintainer Marius Hofert <marius.hofert@uwaterloo.ca>
Depends R (>= 3.5.0)
Imports keras, tensorflow, qrng, methods, tools
Suggests copula, qrmtools, qrmdata, latticeExtra, RnavGraphImageData
Enhances
License GPL (>= 3)
SystemRequirements TensorFlow (https://www.tensorflow.org/)
NeedsCompilation no
Repository CRAN
Encoding UTF-8
Date/Publication 2020-03-03 23:40:02 UTC
Author Marius Hofert [aut, cre] (<https://orcid.org/0000-0001-8009-4665>), Avinash Prasad [aut]

R topics documented:

GMMN_model ... 2
GMMN_trained .. 3
human_time ... 8
loss ... 8
rda ... 9
rm_ext ... 10
to_savable_callable ... 11
trafos_componentwise 12
Generative Moment Matching Network

Description

Setup of a generative moment matching network (GMMN) model.

Usage

GMMN_model(dim, activation = c(rep("relu", length(dim) - 2), "sigmoid"),
 batch.norm = FALSE, dropout.rate = 0, nGPU = 0, ...)

Arguments

- **dim**: numeric vector of length at least two, giving the dimensions of the input layer, the hidden layer(s) (if any) and the output layer (in this order).
- **activation**: character vector of length \(\text{length}(\text{dim}) - 1 \) specifying the activation functions for all hidden layers and the output layer (in this order); note that the input layer does not have an activation function.
- **batch.norm**: logical indicating whether batch normalization layers are to be added after each hidden layer.
- **dropout.rate**: numeric value in \([0,1]\) specifying the fraction of input to be dropped; see the rate parameter of layer_dropout(). Note that only if positive, dropout layers are added after each hidden layer.
- **nGPU**: non-negative integer specifying the number of GPUs available if the GPU version of TensorFlow is installed. If positive, a (special) multiple GPU model for data parallelism is instantiated. Note that for multi-layer perceptrons on a few GPUs, this model does not yet yield any scale-up computational factor (in fact, currently very slightly negative scale-ups are likely due to overhead costs).
- ... additional arguments passed to loss().

Value

GMMN_model() returns a list with components

- **model**: GMMN model (a keras object inheriting from the classes "keras.engine.training.Model", "keras.engine.network.Network", "keras.engine.base_layer.Layer" and "python.builtin.object").
- **type**: character string indicating the type of model ("GMMN").
- **dim**: see above.
- **activation**: see above.
batch.norm: see above.
dropout.rate: see above.
dim.train: dimension of the training data (NA unless trained).
batch.size: batch size (NA unless trained).
nepoch: number of epochs (NA unless trained).

Author(s)
Marius Hofert and Avinash Prasad

References

See Also
VAE_model()

Examples

```r
# to avoid win-builder error "Error: Installation of TensorFlow not found"
## Example model with a 5d input, 300d hidden and 4d output layer
str(GMMN_model(c(5, 300, 4)))
```

GMMN_trained

<table>
<thead>
<tr>
<th>GMMN_trained</th>
<th>Trained Generative Moment Matching Networks</th>
</tr>
</thead>
</table>

Description

Trained generative moment matching networks (GMMNs); see also the demo GMMN_QMC or the vignette GMMN_QMC.

Usage

data("GMMN_dim_2_300_2_ntrn_60000_nbat_50000_nepo_300_C_tau_0.25")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_50000_nepo_300_C_tau_0.5")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_50000_nepo_300_C_tau_0.75")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_50000_nepo_300_G_tau_0.25")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_50000_nepo_300_G_tau_0.5")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_50000_nepo_300_G_tau_0.75")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_C_tau_0.25")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_G_tau_0.25")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_MO_0.75_0.6")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_G_tau_0.5")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_G_tau_0.75")
data("GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC21_tau_0.25_0.5")
data("GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC21_tau_0.5")
data("GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC21_tau_0.75")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_MO_0.75_0.6")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_MO_0.75_0.75")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_MO_0.75")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_G_tau_0.25_0.5_0.75")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_G_tau_0.25_0.75")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_G_tau_0.75")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_G_tau_0.75")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_C_tau_0.25_0.5_0.75")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_C_tau_0.25_0.75")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_G_tau_0.25_0.5_0.75")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_G_tau_0.25_0.75")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_G_tau_0.75")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_G_tau_0.75")

Format

- **GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.25** raw R object representing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a bivariate Clayton copula (with parameter chosen such that Kendall’s tau equals 0.25).

- **GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5** raw R object representing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a bivariate Clayton copula (with parameter chosen such that Kendall’s tau equals 0.5).

- **GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.75** raw R object representing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a bivariate Clayton copula (with parameter chosen such that Kendall’s tau equals 0.75).

- **GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.25** raw R object representing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a bivariate Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.25).

- **GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5** raw R object representing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a bivariate Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.5).

- **GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.75** raw R object representing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a bivariate Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.75).
GMMN_trained

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_C_tau_0.5_rot90_t4_tau_0.5

raw R object representing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a bivariate half-half mixture of a Clayton copula (with parameter chosen such that Kendall’s tau equals 0.5) and a rotated (by 90 degree) t copula (with 4 degrees of freedom and correlation parameter chosen such that Kendall’s tau equals 0.5); see vignette("GMMN_QRNG",package = "gnn").

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_G_tau_0.5_rot90_t4_tau_0.5

raw R object representing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a bivariate half-half mixture of a Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.5) and a rotated (by 90 degree) t copula (with 4 degrees of freedom and correlation parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_MO_0.75_0.6_rot90_t4_tau_0.5

raw R object representing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a bivariate half-half mixture of a Marshall–Olkin copula ($\alpha_1 = 0.75$ and $\alpha_2 = 0.60$) and a rotated (by 90 degree) t copula (with 4 degrees of freedom and correlation parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC21_tau_0.5_rot90_t4_tau_0.5

raw R object representing a GMMN (input and output layer are three-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a three-dimensional nested Clayton copula (with sector dimensions 2 and 1, corresponding Kendall’s tau equals 0.5 within the first sector and Kendall’s tau 0.25 between the two sectors).
from a three-dimensional nested Gumbel copula (with sector dimensions 2 and 1, corresponding Kendall’s tau 0.5 within the first sector and Kendall’s tau 0.25 between the two sectors).

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5 raw R object representing a GMMN (input and output layer are five-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a five-dimensional Clayton copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5 raw R object representing a GMMN (input and output layer are five-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a five-dimensional Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_NC23_tau_0.25_0.5_0.75 raw R object representing a GMMN (input and output layer are five-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a five-dimensional nested Clayton copula (with sector dimensions 2 and 3, corresponding Kendall’s tau 0.5 and 0.75, and Kendall’s tau 0.25 between the two sectors).

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_NG23_tau_0.25_0.5_0.75 raw R object representing a GMMN (input and output layer are five-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a five-dimensional nested Gumbel copula (with sector dimensions 2 and 3, corresponding Kendall’s tau 0.5 and 0.75, and Kendall’s tau 0.25 between the two sectors); see vignette("GMMN_QRNG",package = "gnn").

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5 raw R object representing a GMMN (input and output layer are five-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a five-dimensional t copula (with 4 degrees of freedom and equi-correlation parameter chosen such that Kendall’s tau equals 0.5); see vignette("GMMN_QRNG",package = "gnn").

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5 raw R object representing a GMMN (input and output layer are 10-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a 10-dimensional Clayton copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5 raw R object representing a GMMN (input and output layer are 10-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a 10-dimensional Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_NC55_tau_0.25_0.5_0.75 raw R object representing a GMMN (input and output layer are 10-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a 10-dimensional nested Clayton copula (with sector dimensions 5 and 5, corresponding Kendall’s tau 0.5 and 0.75, and Kendall’s tau 0.25 between the two sectors).

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_NG55_tau_0.25_0.5_0.75 raw R object representing a GMMN (input and output layer are 10-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a 10-dimensional nested Gumbel copula (with sector dimensions 5 and 5, corresponding Kendall’s tau 0.5 and 0.75, and Kendall’s tau 0.25 between the two sectors).

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5 raw R object representing a GMMN (input and output layer are 10-dimensional, the single hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
10-dimensional tS copula (with 4 degrees of freedom and equi-correlation parameter chosen such that Kendall’s tau equals 0.5).

Author(s)

Marius Hofert and Avinash Prasad

Source

GPU server with NVIDIA Tesla P100 GPUs.

References

See Also

GMMN_model(), to_callable()

Examples

to avoid win-builder error "Error: Installation of TensorFlow not found"
Load a trained GMMN (see train_once())
NNname <- "GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_C_tau_0.5_rot90_t4_tau_0.5"
NN <- read_rda(NNname, package = "gnn")
GMMN1 <- to_callable(NN)
str(GMMN1)

Alternative
NNnm <- data(list = NNname)
GMMN2 <- to_callable(get(NNnm))
str(GMMN2)

Check (the check-able components)
stopifnot(identical(GMMN1[names(GMMN1) != "model"],
GMMN2[names(GMMN2) != "model"]))

Evaluate
set.seed(271)
N.prior <- matrix(rnorm(2000 * 2), ncol = 2)
X <- predict(GMMN1["model"], x = N.prior)
plot(X, xlab = expression(X[1]), ylab = expression(X[2]))
human_time

Time Measurement with Human-Readable Units

Description

`system.time()` with human-readable output.

Usage

`human_time(..., digits = 2)`

Arguments

- `...` arguments passed to the underlying `system.time()`.
- `digits` for rounding the output; see `round()`.

Value

Timings with units indicated.

Author(s)

Marius Hofert

Examples

`human_time(Sys.sleep(1))`

loss

Loss Function

Description

Implementation of various loss functions to measure statistical discrepancy between two datasets.

Usage

`loss(x, y, type = c("MSE", "binary.cross", "MMD"), ...)`

Arguments

- `x` 2d tensor with shape (batch size, dimension of input dataset).
- `y` 2d tensor with shape (batch size, dimension of input dataset).
- `type` `character` string indicating the type of loss used. Currently available are the mean squared error ("MSE"), binary cross entropy ("binary.cross") and (kernel) maximum mean discrepancy ("MMD").
- `...` additional arguments passed to the underlying loss function; at the moment, this is only affects `type = "MMD"` for which "bandwidth" can be provided.
Value
loss() returns a 0d tensor containing the loss.

Author(s)
Marius Hofert and Avinash Prasad

References

See Also
GMMN_model() and VAE_model() where loss() is used.

rda Check Existence, Read, Save and Rename .rda Files and their Objects

Description
Check Existence, Read, Save and Rename .rda Files and their Objects.

Usage
exists_rda(file, names, package = NULL)
read_rda(file, names, package = NULL)
save_rda(..., file, names = NULL)
rename_rda(oldname, oldfile = paste0(oldname, collapse = "-_"),
 newname, newfile = paste0(newname, collapse = "-_", ".rda"),
 package = NULL)

Arguments
file exists_rda() character string (with or without ending .rda) specifying the name of the file to check existence of (if package = NULL) or in (otherwise).
read_rda() character string (with or without ending .rda) specifying the file to read from.
save_rda() character string (with or without ending .rda) specifying the file to save to.

names exists_rda() character vector of names of objects to be checked for existence.
read_rda() character vector of names of objects to be read. If not provided, a name is constructed from file.
save_rda() character vector of names under which the objects in ... are saved in file. If NULL, the names of the objects provided by ... are taken as default values.
package \texttt{exists_rda}() package name in which to check or \texttt{NULL} (the default) in which case the current working directory is checked.

\texttt{read_rda()}, \texttt{rename_rda}() package name from which to load the objects or \texttt{NULL} (the default) in which case the current working directory is searched.

... any number of \texttt{R} objects.

\texttt{oldname} \texttt{character} string specifying the object to be read.

\texttt{oldfile} file name (with or without ending .rda) specifying from which the object named \texttt{oldname} is read.

\texttt{newname} \texttt{character} string specifying the new name under which the object is to be saved.

\texttt{newfile} file name (with ending .rda) specifying where the object named \texttt{oldname} is saved under the name \texttt{newname}.

\textbf{Value}

\texttt{exists_rda}() \texttt{logical} indicating whether the .rda file file exists (if names is not provided) or whether the objects with names names exist inside file (if names is provided).

\texttt{read_rda}() the object read from the .rda.

\texttt{save_rda}() nothing (generated an .rda by side-effect).

\texttt{rename_rda}() nothing (generated an .rda by side-effect).

\textbf{Author(s)}

Marius Hofert

\textbf{See Also}

See the underlying functions \texttt{load()}, \texttt{data()} and \texttt{save()} (among others).

\texttt{rm_ext} \textit{Remove a File Extension}

\textbf{Description}

Fixes the removal of file extensions of \texttt{file_path_sans_ext()} in the case where file names contain digits after the last dot (which is often used to incorporate numeric numbers into file names).

\textbf{Usage}

\texttt{rm_ext(x)}

\textbf{Arguments}

\texttt{x} file name(s) with extension(s) to be stripped off.
Value

The file name without its extension (if the file name had an extension).

Author(s)

Marius Hofert

Examples

```r
myfilepath1 <- "myusername/my_filename_with_dots_0.25_0.50_0.75.rda"
myfilepath2 <- "myusername/my_filename_with_dots_0.25_0.50_0.75"
myfilepath3 <- "myusername/my_filename_with_dots_0.25_0.50_0.75."
myfilepath4 <- "myusername/my_filename_with_dots_0.25_0.50_0.75._"
myfilepath5 <- "myusername/my_filename_with_dots_0.25_0.50_0.75._*.rda"
library(tools)
file_path_sans_ext(myfilepath2) # fails (only case)
```

```r
stopifnot(rm_ext(myfilepath1) == file_path_sans_ext(myfilepath1))
stopifnot(rm_ext(myfilepath2) == myfilepath2)
stopifnot(rm_ext(myfilepath3) == file_path_sans_ext(myfilepath3))
stopifnot(rm_ext(myfilepath4) == file_path_sans_ext(myfilepath4))
stopifnot(rm_ext(myfilepath5) == file_path_sans_ext(myfilepath5))
```

Description

Keras objects cannot be saved like other R objects. The auxiliary functions `to_savable()` and `to_callable()` address this issue.

Usage

```r
to_savable(gnn)
to_callable(gnn)
```

Arguments

- `gnn` GNN object.

Details

For GMMNs, `to_savable()` calls `serialize_model()` and `to_callable()` calls `unserialize_model()`.

For VAEs, `to_savable()` is (indirectly) based on `save_model_weights_hdf5()` and `to_callable()` on `load_model_weights_hdf5()`: one cannot work with `serialize_model()` or `unserialize_model()` in this case because of the involved `layer_lambda()`.

See the source code for more details.
trafos_componentwise

Value

`to_savable()`: The GNN object with keras components replaced by savable ones.

`to_callable()`: The GNN object with certain components replaced by keras objects.

Author(s)

Marius Hofert

trafos_componentwise Data Transformations for Training or Sampling

Description

Transformations applied to each marginal component sample to map given data to a different range.

Usage

```r
range_trafo(x, lower, upper, inverse = FALSE)
logis_trafo(x, mean = 0, sd = 1, slope = 1, intercept = 0, inverse = FALSE)
```

Arguments

- `x` *(n, d)*-matrix of data (typically before training or after sampling).
- `lower` value or `d`-vector typically containing the smallest value of each column of `x`.
- `upper` value or `d`-vector typically containing the largest value of each column of `x`.
- `mean` value or `d`-vector.
- `sd` value or `d`-vector.
- `slope` value or `d`-vector of slopes of the linear transformations applied after applying `plogis()` (before applying `qlogis()` if `inverse = TRUE`).
- `intercept` value or `d`-vector of intercepts of the linear transformations applied after applying `plogis()` (before applying `qlogis()` if `inverse = TRUE`).
- `inverse` logical indicating whether the inverses of the respective transformations are to be computed (typically used after generating data from a neural network trained on data transformed with the respective transformation and `inverse = FALSE`).

Value

An object as `x` containing the componentwise transformed data.

Author(s)

Marius Hofert
Examples

```r
## Generate data
n <- 100
set.seed(271)
x <- cbind(rnorm(n), (1-runif(n))^-1/2-1) # normal and Pareto(2) margins
plot(x)

## Range transformation
ran <- apply(x, 2, range) # column j = range of the jth column of x
x.ran <- range_trafo(x, lower = ran[1,], upper = ran[2,]) # marginally transform to [0,1]
plot(x.ran) # => now range [0,1] but points a bit clustered around small y-values
x. <- range_trafo(x.ran, lower = ran[1,], upper = ran[2,], inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Logistic transformation
x.logis <- logis_trafo(x) # marginally transform to [0,1] via plogis()
plot(x.logis) # => y-range is [1/2, 1] which can be harder to train
x. <- logis_trafo(x.logis, inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Logistic transformation with scaling to all of [0,1] in the second coordinate
x.logis.scale <- logis_trafo(x, slope = 2, intercept = -1)
plot(x.logis.scale) # => now y-range is scaled to [0,1]
x. <- logis_trafo(x.logis.scale, slope = 2, intercept = -1, inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Logistic transformation with sample mean and standard deviation and then
## transforming the range to [0,1] with a range transformation (note that
## slope = 2, intercept = -1 would not help here as the y-range is not [1/2, 1])
mu <- colMeans(x)
sig <- apply(x, 2, sd)
x.logis.fit <- logis_trafo(x, mean = mu, sd = sig) # marginally plogis(), location, scale
plot(x.logis.fit) # => y-range is not [1/2, 1] => use range transformation
ran <- apply(x.logis.fit, 2, range)
x.logis.fit.ran <- range_trafo(x.logis.fit, lower = ran[1,], upper = ran[2,])
plot(x.logis.fit.ran) # => now y-range is [1/2, 1]
x. <- logis_trafo(x.logis.fit.ran, lower = ran[1,], upper = ran[2,],
    inverse = TRUE),
    mean = mu, sd = sig, inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Note that for heavy-tailed data, plogis() can fail to stay inside (0,1)
## even with adapting to sample mean and standard deviation. We now present
## a case where we see that using a fitted logistic distribution function
## is *just* good enough to numerically keep the data inside (0,1).
set.seed(271)
x <- cbind(rnorm(n), (1-runif(n))^(-2)-1) # normal and Pareto(1/2) margins
plot(x) # => heavy-tailed in y-coordinate

## Transforming with standard logistic distribution function
x.logis <- logis_trafo(x)
stopifnot(any(x.logis[,2] == 1))
## => There is value numerically indistinguishable from 1 to which applying
```
the inverse transform will lead to Inf
stopifnot(any(is.infinite(logis_trafo(x.logis, inverse = TRUE))))
Now adapt the logistic distribution to share the mean and standard deviation
with the data
mu <- colMeans(x)
sig <- apply(x, 2, sd)
x.logis.scale <- logis_trafo(x, mean = mu, sd = sig)
stopifnot(all(x.logis.scale[,2] != 1)) # => no values equal to 1 anymore

Alternatively, log() the data first, thus working with a log-logistic
distribution as transformation
lx <- cbind(x[,1], log(x[,2])) # 2nd coordinate only
lmu <- c(mu[1], mean(lx[,2]))
lsig <- c(sig[1], sd(lx[,2]))
x.llogis <- logis_trafo(lx, mean = lmu, sd = lsig)
x. <- logis_trafo(x.llogis, mean = lmu, sd = lsig, inverse = TRUE)
x. <- cbind(x.[,1], exp(x.[,2])) # undo log()
stopifnot(all.equal(x., x))

Description

Dimension-reduction transformations applied to an input data matrix. Currently on the principal component transformation and its inverse.

Usage

```r
PCA_trafo(x, mu, Gamma, inverse = FALSE, ...)
```

Arguments

- **x** (n,d)-matrix of data (typically before training or after sampling). If `inverse = FALSE`, then, conceptually, an (n,d)-matrix with $1 \leq k \leq d$, where d is the dimension of the original data whose dimension was reduced to k.
- **mu** if `inverse = TRUE`, a d-vector of centers, where d is the dimension to transform x to.
- **Gamma** if `inverse = TRUE`, a (d,k)-matrix with k at least as large as `ncol(x)` containing the k orthonormal eigenvectors of a covariance matrix sorted in decreasing order of their eigenvalues; in other words, the columns of Gamma contain principal axes or loadings. If a matrix with k greater than `ncol(x)` is provided, only the first k-many are considered.
- **inverse** `logical` indicating whether the inverse transformation of the principal component transformation is applied.
- **...** additional arguments passed to the underlying `prcomp()`.
Details

Conceptually, the principal component transformation transforms a vector X to a vector Y where $Y = \Gamma^T(X - \mu)$, where μ is the mean vector of X and Γ is the (d,d)-matrix whose columns contain the orthonormal eigenvectors of $\text{cov}(X)$.

The corresponding (conceptual) inverse transformation is $X = \mu + \Gamma Y$.

See McNeil et al. (2015, Section 6.4.5).

Value

If `inverse = TRUE`, the transformed data whose rows contain $X = \mu + \Gamma Y$, where Y is one row of x. See the details below for the notation.

If `inverse = FALSE`, a list containing:

- **PCs**: (n,d)-matrix of principal components.
- **cumvar**: cumulative variances; the jth entry provides the fraction of the explained variance of the first j principal components.
- **sd**: sample standard deviations of the transformed data.
- **lambda**: eigenvalues of $\text{cov}(x)$.
- **mu**: d-vector of centers of x (see also above) typically provided to `PCA_trafo(,inverse = TRUE)`.
- **Gamma**: (d,d)-matrix of principal axes (see also above) typically provided to `PCA_trafo(,inverse = TRUE)`.

Author(s)

Marius Hofert

References

Examples

```r
## Generate data
library(copula)
set.seed(271)
X <- qt(rCopula(1000, gumbelCopula(2, dim = 10)), df = 3.5)
pairs(X, gap = 0, pch = ".")

## Principal component transformation
PCA <- PCA_trafo(X)
Y <- PCA$PCs
PCA$cumvar[3] # fraction of variance explained by the first 3 principal components
which.max(PCA$cumvar > 0.9) # number of principal components it takes to explain 90%

## Biplot (plot of the first two principal components = data transformed with
## the first two principal axes)
plot(Y[,1:2])
```
Transform back and compare
X. <- PCA_trafo(Y, mu = PCA$mu, Gamma = PCA$Gamma, inverse = TRUE)
stopifnot(all.equal(X., X))

Note: One typically transforms back with only some of the principal axes
X. <- PCA_trafo(Y[,1:3], mu = PCA$mu, # mu determines the dimension to transform to
 Gamma = PCA$Gamma, # must be of dim. (length(mu), k) for k >= ncol(x)
 inverse = TRUE)
stopifnot(dim(X.) == c(1000, 10))
Note: We (typically) transform back to the original dimension.
pairs(X., gap = 0, pch = ",") # pairs of back-transformed first three PCs

training

Functions for Training of Generative Neural Networks

Description

Functions for training generative neural networks.

Usage

```r
train(gnn, data, batch.size, nepoch, verbose = 3, ...)
train_once(gnn, data, batch.size, nepoch,
    file, name = rm_ext(basename(file)), package = NULL, ...)
```

Arguments

- **gnn**: GNN object as created by `GMMN_model()` or `VAE_model()`.
- **data**: \((n, d)\)-matrix containing the \(n\) \(d\)-dimensional observations of the training data.
- **batch.size**: number of samples used per stochastic gradient step.
- **nepoch**: number of epochs (one epoch equals one pass through the complete training dataset while updating the GNN’s parameters through stochastic gradient steps).
- **verbose**: see `fit.keras.engine.training.Model()`.
- **file**: character string (with or without ending .rda) specifying the file to save the trained GNN to.
- **name**: name under which the trained GNN is saved in file.
- **package**: name of the package from which to read the trained GNN; if `NULL` (the default) the current working directory is used.
- **...**: additional arguments passed to the underlying `train()` for `train_once()` and `fit()` (which is `keras:::fit.keras.engine.training.Model()`) for `train()`.
Value

train(): The trained GNN object.

train_once(): If object name exists in file, train_once() reads it, converts it to a callable GNN object via to_callable() and returns it. Otherwise, train_once() calls train() to train the GNN, converts it to a savable GNN object via to_savable(), saves it and returns the trained GNN.

Author(s)

Marius Hofert

See Also

GMMN_model(), VAE_model(), to_savable(), to_callable().

Examples

```r
## Training data
ntrn <- 60000
set.seed(271)
library(gnn)

## Define the model and 'train' it
GMMN.mod <- GMMN_model(dim)
GMMN.trained <- train(GMMN.mod, data = U, batch.size = 500, nepoch = 2)

## Evaluate (roughly picks up the shape even with our bad choices of
## batch.size and nepoch)
N.prior <- matrix(rnorm(2000 * d), ncol = d)
V <- predict(GMMN.trained[["model"]], x = N.prior)

## Convert the trained neural network to one that can be saved
## and save it (here: to some temporary file)
GMMN.savable <- to_savable(GMMN.trained)
file <- tempfile("trained_GMMN", fileext = ".rda")
save_rda(GMMN.savable, file = file, names = "GMMN")
```

```r
## Training data
ntrn <- 60000
set.seed(271)
library(gnn)

## Define the model and 'train' it
GMMN.mod <- GMMN_model(dim)
GMMN.trained <- train(GMMN.mod, data = U, batch.size = 500, nepoch = 2)

## Evaluate (roughly picks up the shape even with our bad choices of
## batch.size and nepoch)
N.prior <- matrix(rnorm(2000 * d), ncol = d)
V <- predict(GMMN.trained[["model"]], x = N.prior)

## Convert the trained neural network to one that can be saved
## and save it (here: to some temporary file)
GMMN.savable <- to_savable(GMMN.trained)
file <- tempfile("trained_GMMN", fileext = ".rda")
save_rda(GMMN.savable, file = file, names = "GMMN")
```
VAE_model

Variational Autoencoder

Description

Setup of a variational autoencoder (VAE) model.

Usage

```r
VAE_model(dim, activation = c(rep("relu", length(dim) - 2), "sigmoid"),
    batch.norm = FALSE, dropout.rate = 0,
    sd = 1, loss.type = c("MSE", "binary.cross", "MMD"), nGPU = 0, ...)
```

Arguments

- **dim** numeric vector of length at least two, giving the dimensions of the input layer (equal to the dimension of the output layer), the hidden layer(s) (if any) and the latent layer (in this order).
- **activation** character vector of length length(dim) -1 specifying the activation functions for all hidden layers and the output layer (in this order); note that the input layer does not have an activation function.
- **batch.norm** logical indicating whether batch normalization layers are to be added after each hidden layer.
- **dropout.rate** numeric value in [0,1] specifying the fraction of input to be dropped; see the rate parameter of `layer_dropout()`. Note that only if positive, dropout layers are added after each hidden layer.
- **sd** positive numeric value giving the standard deviation of the normal distribution used as prior.
- **loss.type** character string indicating the type of reconstruction loss. Currently available are the mean squared error ("MSE"), binary cross entropy ("binary.cross") and (kernel) maximum mean discrepancy ("MMD").
- **nGPU** non-negative integer specifying the number of GPUs available if the GPU version of TensorFlow is installed. If positive, a (special) multiple GPU model for data parallelism is instantiated. Note that for multi-layer perceptrons on a few GPUs, this model does not yet yield any scale-up computational factor (in fact, currently very slightly negative scale-ups are likely due to overhead costs).

... additional arguments passed to `loss()`.

Value

`VAE_model()` returns a list with components

- **model**: VAE model (a `keras` object inheriting from the classes "keras.engine.training.Model", "keras.engine.network.Network", "keras.engine.base_layer.Layer" and "python.builtin.object").
- **encoder**: the encoder (a `keras` object as model).
VAE_model

generator: the generator (a **keras** object as model).
type: **character** string indicating the type of model ("VAE").
dim: see above.
activation: see above.
batch.norm: see above.
dropout.rate: see above.
sd: see above.
loss.type: see above.
dim.train: dimension of the training data (NA unless trained).
batch.size: batch size (NA unless trained).
nepoch: number of epochs (NA unless trained).

Author(s)

Marius Hofert and Avinash Prasad

References

Second International Conference on Learning Representations (ICLR). See https://keras.rstudio.com/articles/examples/variational_autoencoder.html

See Also

GMMN_model()

Examples

```r
# to avoid win-builder error "Error: Installation of TensorFlow not found"
## Example model with a 5d input, 300d hidden and 4d output layer
str(VAE_model(c(5, 300, 4)))
```
Index

*Topic datagen
 GMMN_model, 2
 VAE_model, 18
*Topic datasets
 GMMN_trained, 3
*Topic manip
 rda, 9
 trafos_componentwise, 12
 trafos_dimreduction, 14
*Topic optimize
 training, 16
*Topic univar
 loss, 8
*Topic utilities
 human_time, 8
 rm_ext, 10
 to_savable_callable, 11
character, 2, 8–10, 16, 18, 19
data, 10
exists_rda (rda), 9
fit.keras.engine.training.Model, 16

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.75
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_C_tau_0.75
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_G_tau_0.75
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_MO_0.75_0.6
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.75
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_MO_0.75_0.6
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.25
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.75
 (GMMN_trained), 3
GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC21_tau_0.25_0.5
 (GMMN_trained), 3
GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NG21_tau_0.25_0.5
 (GMMN_trained), 3
GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_NC23_tau_0.25_0.5_0.75
 (GMMN_trained), 3
GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_NG23_tau_0.25_0.5_0.75
 (GMMN_trained), 3
GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5
 (GMMN_trained), 3
GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_MO_0.75_0.6
 (GMMN_trained), 3
GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC21_tau_0.25
 (GMMN_trained), 3
GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC21_tau_0.5
 (GMMN_trained), 3
GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC23_tau_0.5
 (GMMN_trained), 3
GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC23_tau_0.75
 (GMMN_trained), 3
GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_G_tau_0.25
 (GMMN_trained), 3
GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5
 (GMMN_trained), 3
human_time, 8

20
INDEX

integer, 2, 18
layer_dropout, 2, 18
layer_lambda, 11
list, 15
load, 10
load_model_weights_hdf5, 11
logical, 2, 10, 12, 14, 18
logis_trafo (trafos_componentwise), 12
loss, 2, 8, 18
NULL, 9, 10, 16
numeric, 2, 18
PCA_trafo (trafos_dimreduction), 14
plogis, 12
prcomp, 14
qlogis, 12
range_trafo (trafos_componentwise), 12
raw, 4–6
rda, 9
read_rda (rda), 9
rename_rda (rda), 9
rm_ext, 10
round, 8
save, 10
save_model_weights_hdf5, 11
save_rda (rda), 9
serialize_model, 11
system.time, 8
to_callable, 7, 17
to_callable (to_savable_callable), 11
to_savable, 17
to_savable (to_savable_callable), 11
to_savable_callable, 11
trafos_componentwise, 12
trafos_dimreduction, 14
train (training), 16
train_once (training), 16
training, 16
unserialize_model, 11
VAE_model, 3, 9, 16, 17, 18