Package ‘gnn’

February 28, 2024

Version 0.0-4
Title Generative Neural Networks
Description Tools to set up, train, store, load, investigate and analyze
generative neural networks. In particular, functionality for
generative moment matching networks is provided.
Maintainer Marius Hofert <mhofert@hku.hk>
Depends R (>= 3.5.0)
Imports keras, tensorflow, methods, R6, qrng, tools, copula
Suggests nvmix, qrmdata, RColorBrewer
Enhances
License GPL (>= 3)
SystemRequirements TensorFlow (https://www.tensorflow.org/)
NeedsCompilation no
Repository CRAN
Encoding UTF-8
Date/Publication 2024-02-28 08:30:11 UTC

Author Marius Hofert [aut, cre] (<https://orcid.org/0000-0001-8009-4665>),
Avinash Prasad [aut]

R topics documented:
catch ... 2
ffGNN .. 3
find_box .. 4
fitGNN .. 7
FNN ... 8
GNN_basics ... 11
loss ... 13
plot .. 14
raw_keras ... 15
rGNN .. 15
catch

Catching Results, Warnings and Errors Simultaneously

Description
Catches results, warnings and errors.

Usage
catch(expr)

Arguments
expr expression to be evaluated, typically a function call.

Details
This function is particularly useful for large(r) simulation studies to not fail until finished.

Value
list with components:

- value value of expr or NULL in case of an error.
- warning warning message (see simpleWarning or warning()) or NULL in case of no warning.
- error error message (see simpleError or stop()) or NULL in case of no error.

Author(s)
Marius Hofert (based on doCallWE() and tryCatch.W.E() in the R package simsalapar).

Examples
library(gnn) # for being standalone

catch(log(2))
catch(log(-1))
catch(log("a"))
Description

Feedforward method for objects of S3 class "gnn_GNN".

Usage

```r
## S3 method for class 'gnn_GNN'
ffGNN(x, data)
```

Arguments

- `x`: object of S3 class "gnn_GNN".
- `data`: matrix to be fed forward through `x`.

Value

The output matrix of `x` when fed with `data`.

Author(s)

Marius Hofert

Examples

```r
if(TensorFlow_available()) { 
  # rather restrictive (due to R-Forge, winbuilder)
  library(gnn) # for being standalone

  ## Define dummy model
  d <- 2 # bivariate case
  GMMN <- FNN(c(d, 300, d)) # Feedforward NN with MMD loss (a GMMN; random weights)

  ## Feedforward
  n <- 3
  set.seed(271)
  X <- ffGNN(GMMN, data = matrix(runif(n * d), ncol = d))
  stopifnot(dim(X) == c(n, d))
}
```
find_box

Box Numbers (Multivariate) Points Fall Into

Description

Finding the numbers of boxes that given (multivariate) points fall into (the default is similar to findInterval() but other methods are provided, too).

Usage

find_box(x, endpoints = NULL,
method = c("per.dim", "lexicographic", "nested", "diagonal"),
rightmost.closed = TRUE, left.open = TRUE, ...)

Arguments

x (n, d)-matrix containing n d-dimensional data points, n ≥ 1, d ≥ 1.
endpoints d-list containing numeric vectors of endpoints of the intervals in each dimension (each of the d elements is an argument vec as required by findInterval()).
method character string indicating the method to be used. Available are:
"per.dim" the default. Each row x[i,] of x produces d numbers, where the jth indicates in which interval x[i, j] falls. This is essentially findInterval() applied to the d coordinate samples (the columns of x).
"lexicographic" Each row x[i,] produces one number, indicating in which box x[i,] falls if all nonempty boxes are numbered consecutively in lexicographic order.
"nested" Each row x[i,] produces one number, indicating in which box x[i,] falls along the d-dimensional diagonal in a nested way, with a non-nested middle part if the number of interval endpoints per dimension is even (note that this method requires all elements of endpoints to have the same length, so that the diagonal is well-defined).
"diagonal" Each row x[i,] produces one number, indicating in which box x[i,] falls along the d-dimensional diagonal (note that this method requires all elements of endpoints to have the same length, so that the diagonal is well-defined).
rightmost.closed see findInterval() (note the different default here).
left.open see findInterval() (note the different default here).
... additional arguments passed to the underlying findInterval().

Details

The box numbers can be used, for example, to color points; see the examples below.
Value

"per.dim" \((n,d)\)-matrix of box numbers per dimension.

"lexicographic", "nested", "diagonal" \(n\)-vector with box numbers.

Note that, as \texttt{findInterval()}, 0 means 'in no box'.

Author(s)

Marius Hofert

Examples

```r
## Example data
define endpoints and evaluate for different methods
epts <- seq(0, 1, by = 1/5) # 5 boxes per dimension
find_box(U, endpoints = epts)[1:10,] # default "per.dim" (first 10 points only)
boxes.lexi <- find_box(U, endpoints = epts, method = "lexicographic")
boxes.nest <- find_box(U, endpoints = epts, method = "nested")
boxes.diag <- find_box(U, endpoints = epts, method = "diagonal")

## Special cases
## First row of U (n = 1)
U[1,] # ~= (0.25, 0.14)
stopifnot(find_box(U[1, 1:2], endpoints = epts) == c(2, 1))
stopifnot(find_box(U[1, 1:2], endpoints = epts, method = "lexicographic") == 1)
## Note concerning the last line: It's 1 because all other boxes are empty
stopifnot(find_box(U[1, 1:2], endpoints = epts, method = "nested") == 2)
stopifnot(find_box(U[1, 1:2], endpoints = epts, method = "diagonal") == 0)

## Single number U[1,1] (d = 1)
U[1,1] # ~= 0.25
stopifnot(find_box(U[1,1], endpoints = epts) == 2)
stopifnot(find_box(U[1,1], endpoints = epts, method = "lexicographic") == 1)
stopifnot(find_box(U[1,1], endpoints = epts, method = "nested") == 2)
stopifnot(find_box(U[1,1], endpoints = epts, method = "diagonal") == 2)
```
ncols <- diff(range(boxes.lexi)) + 1 # maximal number of colors needed
palette(mypal(ncols)) # set palette according to maximum number of colors needed

Boxes of equal size
boxes.lexi <- find_box(U, endpoints = epts, method = "lexicographic")
cols <- if(min(boxes.lexi) == 0) boxes.lexi + 1 else boxes.lexi
plot(U, pch = 20, xlab = expression(U[1]), ylab = expression(U[2]), col = cols)
abline(v = epts, h = epts, col = "gray50") # guides

Boxes of different sizes and numbers
epts. <- list(seq(0.2, 1, by = 1/5), seq(1/3, 1, by = 1/3))
boxes.lexi <- find_box(U, endpoints = epts., method = "lexicographic")
cols <- if(min(boxes.lexi) == 0) boxes.lexi + 1 else boxes.lexi
plot(U, pch = 20, xlab = expression(U[1]), ylab = expression(U[2]), col = cols)
abline(v = epts.[[1]], h = epts.[[2]], col = "gray50")

3 Coloring points along the diagonal in a nested way

Boxes of equal size (with 'middle' part)
boxes.nest <- find_box(U, endpoints = epts, method = "nested")
cols <- if(min(boxes.nest) == 0) boxes.nest + 1 else boxes.nest # color numbers
plot(U, pch = 20, xlab = expression(U[1]), ylab = expression(U[2]), col = cols)
abline(v = epts, h = epts, col = "gray50") # guides

Boxes of different sizes (without 'middle' part; have to be the same number of
boxes per dimension, otherwise there is no obvious 'diagonal')
epts. <- lapply(1:d, function(j) c(0, 0.1, 0.3, 0.6, 1)) # 4 boxes per dimension
boxes.nest <- find_box(U, endpoints = epts., method = "nested")
cols <- if(min(boxes.nest) == 0) boxes.nest + 1 else boxes.nest # color numbers
plot(U, pch = 20, xlab = expression(U[1]), ylab = expression(U[2]), col = cols)
abline(v = epts.[[1]], h = epts.[[2]], col = "gray50") # guides

4 Coloring points along the diagonal

Boxes of equal size
boxes.diag <- find_box(U, endpoints = epts, method = "diagonal")
cols <- if(min(boxes.diag) == 0) boxes.diag + 1 else boxes.diag # color numbers
plot(U, pch = 20, xlab = expression(U[1]), ylab = expression(U[2]), col = cols)
abline(v = epts, h = epts, col = "gray50") # guides

Boxes of different sizes (have to be the same number of
boxes per dimension, otherwise there is no obvious 'diagonal')
epts. <- lapply(1:d, function(j) c(0, 0.05, 0.1, 0.3, 0.6, 1))
boxes.diag <- find_box(U, endpoints = epts., method = "diagonal")
cols <- if(min(boxes.diag) == 0) boxes.diag + 1 else boxes.diag # color numbers
plot(U, pch = 20, xlab = expression(U[1]), ylab = expression(U[2]), col = cols)
abline(v = epts.[[1]], h = epts.[[2]], col = "gray50") # guides
fitGNN

Functions and Methods for Training of Generative Neural Networks

Description

Functions and methods for training generative neural networks.

Usage

```r
## S3 method for class 'gnn_GNN'
fitGNN(x, data, batch.size = nrow(data), n.epoch = 100,
       prior = NULL, max.n.prior = 5000, verbose = 2, ...)
## S3 method for class 'gnn_GNN'
fitGNNonce(x, data, batch.size = nrow(data), n.epoch = 100,
           prior = NULL, verbose = 2, file = NULL, name = NULL, ...)
## S3 method for class 'gnn_GNN'
is.trained(x)
## S3 method for class 'list'
is.trained(x)
```

Arguments

- `x`: object of class "gnn_GNN" to be trained.
- `is.trained.gnn_GNN()`: object of class "gnn_GNN" to be trained or a list of such.
- `data`: \((n, d)\)-matrix containing the \(n \times d\)-dimensional observations of the training data.
- `batch.size`: number of samples used per stochastic gradient step.
- `n.epoch`: number of epochs (one epoch equals one pass through the complete training dataset while updating the GNN’s parameters through stochastic gradient steps).
- `prior`: \((n, d)\)-matrix of prior samples; see also `rPrior()`. If `prior = NULL` a sample of independent \(N(0,1)\) random variates is generated.
- `max.n.prior`: maximum number of prior samples stored in \(x\) after training.
- `verbose`: integer verbose level. Choices are:
 0: silent (no output).
 1: progress bar (via `txtProgressBar()`).
 2: output after each block of epochs (block size is `ceiling(n.epoch/10)` if \(n.e\)
 epoch \(<= 100\) and `ceiling(\sqrt{n.epoch})` if \(n.e\)
 epoch > 100).
 3: output after each epoch.
- `file`: NULL or a character string specifying the file in which the trained GNN(s) is (are) saved. If `file` is provided and the specified file exists, it is loaded and returned via `load_gnn()`.
- `name`: character string giving the name under which the fitted \(x\) is saved (if NULL the fitted \(x\) is saved under the name "\(x\)").
- `...`: additional arguments passed to the underlying `fit()` (which is `keras::fit.keras.engine.training.Model()`).
Value

- `fitGNN()`: the trained x.
- `fitGNNonce()`: object of class as x with the trained GNN.
- `is.trained.gnn_GNN()`: logical indicating whether x is trained.
- `is.trained.list()`: logical of length `length(x)` indicating, for each component, whether it is trained.

Author(s)

Marius Hofert

See Also

- `FNN()`, `save_gnn()`, `load_gnn()`.

FNN

Generative Moment Matching Network

Description

Constructor for a generative feedforward neural network (FNN) model, an object of S3 class "gnn_FNN".

Usage

```r
FNN(dim = c(2, 2), activation = c(rep("relu", length(dim) - 2), "sigmoid"),
    batch.norm = FALSE, dropout.rate = 0, loss.fun = "MMD", n.GPU = 0, ...)
```

Arguments

- `dim`: integer vector of length at least two, giving the dimensions of the input layer, the hidden layer(s) (if any) and the output layer (in this order).
- `activation`: character vector of length `length(dim) - 1` specifying the activation functions for all hidden layers and the output layer (in this order); note that the input layer does not have an activation function.
- `loss.fun`: loss function specified as character or function.
- `batch.norm`: logical indicating whether batch normalization layers are to be added after each hidden layer.
- `dropout.rate`: numeric value in [0,1] specifying the fraction of input to be dropped; see the rate parameter of `layer_dropout()`. Note that only if positive, dropout layers are added after each hidden layer.
- `n.GPU`: non-negative integer specifying the number of GPUs available if the GPU version of TensorFlow is installed. If positive, a (special) multiple GPU model for data parallelism is instantiated. Note that for multi-layer perceptrons on a few GPUs, this model does not yet yield any scale-up computational factor (in fact, currently very slightly negative scale-ups are likely due to overhead costs).
- ... additional arguments passed to `loss()`.
Details

The `S3` class "gnn_FNN" is a subclass of the `S3` class "gnn_GNN" which in turn is a subclass of "gnn_Model".

Value

`FNN()` returns an object of `S3` class "gnn_FNN" with components

- **model**: FNN model (a `keras` object inheriting from the R6 classes "keras.engine.training.Model", "keras.engine.network.Network", "keras.engine.base_layer.Layer" and "python.builtin.object", or a raw object).
- **type**: character string indicating the type of model.
- **dim**: see above.
- **activation**: see above.
- **batch.norm**: see above.
- **dropout.rate**: see above.
- **n.param**: number of trainable, non-trainable and total number of parameters.
- **loss.type**: type of loss function (character).
- **n.train**: number of training samples (`NA_integer_` unless trained).
- **batch.size**: batch size (`NA_integer_` unless trained).
- **n.epoch**: number of epochs (`NA_integer_` unless trained).
- **loss**: numeric(n.epoch) containing the loss function values per epoch.
- **time**: object of S3 class "proc.time" containing the training time (if trained).
- **prior**: matrix containing a (sub-)sample of the prior (if trained).

Author(s)

Marius Hofert and Avinash Prasad

References

Examples

```r
if(TensorFlow_available()) { # rather restrictive (due to R-Forge, winbuilder)
library(gnn) # for being standalone

## Training data
D <- 2 # bivariate case
P <- matrix(0.9, nrow = D, ncol = D); diag(P) <- 1 # correlation matrix
ntrn <- 60000 # training data sample size
set.seed(271)
library(nvmix)
X <- abs(rNorm(ntrn, scale = P)) # componentwise absolute values of N(0,P) sample

## Plot a subsample
m <- 2000 # subsample size for plots
opar <- par(pty = "s")
plot(X[1:m,], xlab = expression(X[1]), ylab = expression(X[2])) # plot |X|
U <- apply(X, 2, rank) / (ntrn + 1) # pseudo-observations of |X|
plot(U[1:m,], xlab = expression(U[1]), ylab = expression(U[2])) # visual check

## Model 1: A basic feedforward neural network (FNN) with MSE loss function
fnn <- FNN(c(D, 300, D), loss.fun = "MSE") # define the FNN
fnn <- fitGNN(fnn, data = U, n.epoch = 40) # train with batch optimization
plot(fnn, kind = "loss") # plot the loss after each epoch

## Model 2: A GMMN (FNN with MMD loss function)
gmmn <- FNN(c(D, 300, D)) # define the GMMN (initialized with random weights)
for training we need to use a mini-batch optimization (batch size < nrow(U)).
for a fair comparison (same number of gradient steps) to NN, we use 500
samples (25% = 4 gradient steps/epoch) for 10 epochs for GMMN.
library(keras) # for callback_early_stopping()
we monitor the loss function and stop earlier if the loss function
over the last patience-many epochs has changed by less than min_delta
in absolute value. Then we keep the weights that led to the smallest
loss seen throughout training.
gmmn <- fitGNN(gmmn, data = U, batch.size = 500, n.epoch = 10,
callbacks = callback_early_stopping(monitor = "loss",
min_delta = 1e-3, patience = 3,
restore_best_weights = TRUE))
plot(gmmn, kind = "loss") # plot the loss after each epoch

## Note:
- Obviously, in a real-world application, batch.size and n.epoch
  should be (much) larger (e.g., batch.size = 5000, n.epoch = 300).
- Training is not reproducible (due to keras).

## Model 3: A FNN with CvM loss function
fnnCvM <- FNN(c(D, 300, D), loss.fun = "CvM")
fnnCvM <- fitGNN(fnnCvM, data = U, batch.size = 500, n.epoch = 10,
callbacks = callback_early_stopping(monitor = "loss",
min_delta = 1e-3, patience = 3,
restore_best_weights = TRUE))
plot(fnnCvM, kind = "loss") # plot the loss after each epoch
```

```
## Sample from the different models

```r
set.seed(271)
V.fnn <- rGNN(fnn, size = m)
set.seed(271)
V.gmmn <- rGNN(gmmn, size = m)
set.seed(271)
V.fnnCvM <- rGNN(fnnCvM, size = m)
```

## Joint plot of training subsample with GMMN PRNs. Clearly, the MSE
## cannot be used to learn the distribution correctly.
```r
layout(matrix(1:4, ncol = 2, byrow = TRUE))
plot(U[1:m,], xlab = expression(U[1]), ylab = expression(U[2]), cex = 0.2)
mtext("Training subsample", side = 4, line = 0.4, adj = 0)
plot(V.fnn, xlab = expression(V[1]), ylab = expression(V[2]), cex = 0.2)
mtext("Trained NN with MSE loss", side = 4, line = 0.4, adj = 0)
plot(V.gmmn, xlab = expression(V[1]), ylab = expression(V[2]), cex = 0.2)
mtext("Trained NN with MMD loss", side = 4, line = 0.4, adj = 0)
plot(V.fnnCvM, xlab = expression(V[1]), ylab = expression(V[2]), cex = 0.2)
mtext("Trained NN with CvM loss", side = 4, line = 0.4, adj = 0)
```

## Joint plot of training subsample with GMMN QRNs
library(qrng) # for sobol()
```r
V.fnn. <- rGNN(fnn, size = m, method = "sobol", randomize = "Owen")
V.gmmn. <- rGNN(gmmn, size = m, method = "sobol", randomize = "Owen")
V.fnnCvM. <- rGNN(fnnCvM, size = m, method = "sobol", randomize = "Owen")
plot(U[1:m,], xlab = expression(U[1]), ylab = expression(U[2]), cex = 0.2)
mtext("Training subsample", side = 4, line = 0.4, adj = 0)
plot(V.fnn., xlab = expression(V[1]), ylab = expression(V[2]), cex = 0.2)
mtext("Trained NN with MSE loss", side = 4, line = 0.4, adj = 0)
plot(V.gmmn., xlab = expression(V[1]), ylab = expression(V[2]), cex = 0.2)
mtext("Trained NN with MMD loss", side = 4, line = 0.4, adj = 0)
plot(V.fnnCvM., xlab = expression(V[1]), ylab = expression(V[2]), cex = 0.2)
mtext("Trained NN with CvM loss", side = 4, line = 0.4, adj = 0)
layout(1)
par(opar)
```
## S3 method for class 'gnn_GNN'
summary(object, ...)
## S3 method for class 'gnn_GNN'
dim(x)
## S3 method for class 'gnn_GNN'
is.GNN(x)
## S3 method for class 'list'
is.GNN(x)

### Arguments

- **x**
  - `print()`, `dim()` object of S3 class "gnn_GNN".
  - `is.GNN()` object of S3 class "gnn_GNN" or a list of such.
- **object**
  - object of S3 class "gnn_GNN".
- **...** currently not used.

### Value

- `print()` return value of the `print()` method for objects of class "list".
- `str()` nothing, as `str()` returns nothing when applied to objects of class "list".
- `summary()` return value of the `summary()` method for objects of class "list".
- `dim()` slot `dim` of `x`, so a vector of dimensions of input, hidden and output layers.
- `is.GNN()` logical of length equal to the length of `x` indicating, for each component, whether it is an object of class "gnn_GNN".

### Author(s)

Marius Hofert

### Examples

```r
if(TensorFlow_available()) { # rather restrictive (due to R-Forge, winbuilder)
 library(gnn) # for being standalone

 d <- 2
 dim <- c(d, 300, d) # dimensions of the input, hidden and output layers
 GMMN <- FNN(dim) # define the GMMN model
 stopifnot(is.GNN(GMMN)) # check for being a GNN
 GMMN # print() method
 str(GMMN) # str() method
 summary(GMMN) # summary() method
 stopifnot(dim(GMMN) == c(d, 300, d)) # dim() method
}
```
Description

Implementation of various loss functions to measure statistical discrepancy between two datasets.

Usage

```r
loss(x, y, type = c("MMD", "CvM", "MSE", "BCE"), ...)
MMD(x, y, ...)
CvM(x, y)
```

Arguments

- `x`: 2d-tensor or \((n, d)\)-matrix (during training, \(n\) is the batch size and \(d\) is the dimension of the input dataset).
- `y`: 2d-tensor or \((m, d)\)-matrix (during training, \(m\) is the batch size (and typically equal to \(n\)) and \(d\) is the dimension of the input dataset).
- `type`: character string indicating the type of loss used. Currently available are the (kernel) maximum mean discrepancy ("MMD", calling `MMD()`), the Cramer-von Mises statistic ("CvM", calling `CvM()`) of Rémillard and Scaillet (2009), the mean squared error ("MSE") and the binary cross entropy ("BCE").
- `...`: additional arguments passed to the underlying functions, most notably bandwidth (a number or numeric vector of bandwidths for the radial basis function kernels) in case `type = "MMD"`.

Value

- `loss()` returns a 0d tensor containing the loss.
- `MMD()` and `CvM()` return a 0d tensor (if \(x\) and \(y\) are tensors) or `numeric(1)` (if \(x\) or \(y\) are R matrices).

Author(s)

Marius Hofert and Avinash Prasad

References


See Also

`FNN()` where `loss()` is used.
Functions for Plotting

Description

Functions for plotting.

Usage

```r
S3 method for class 'gnn_GNN'
plot(x, kind = c("scatter", "loss"), max.n.samples = NULL,
type = NULL, xlab = NULL, ylab = NULL,
y2lab = NULL, labels = "X", pair = NULL, ...)
```

Arguments

- `x` trained object of class "gnn_GNN" whose loss function (loss per epoch of training) is to be plotted.
- `kind` character() indicating the type of plot.
- `max.n.samples` maximal number of samples to be plotted.
- `type` line type; see `plot()`.
- `xlab` x-axis label; see `plot()`.
- `ylab` y-axis label; see `plot()`.
- `y2lab` secondary y-axis label.
- `labels` character() vector indicating the labels to be used; if of length 1, then the base label to be used.
- `pair` numeric(2) containing the indices of the pair to be plotted.
- `...` additional arguments passed to the underlying `plot()`.

Value

Plot by side-effect.

Author(s)

Marius Hofert

See Also

`fitGNN()`.
Description

Keras objects cannot be saved like other R objects. The methods as.raw() and as.keras() can be used to convert the model slots of objects of S3 class "gnn_GNN" to "raw" objects (which can be saved) or "keras.engine.training.Model" objects (which can be trained).

Usage

## S3 method for class 'gnn_GNN'
as.raw(x)
## S3 method for class 'gnn_GNN'
as.keras(x)

Arguments

x object of S3 class "gnn_GNN".

Value

object of S3 class "gnn_GNN" with slot method converted by the respective method if necessary.

Author(s)

Marius Hofert

rGNN

Sampling from a Generative Neural Network

Description

Sampling method for objects of S3 class "gnn_GNN".

Usage

## S3 method for class 'gnn_GNN'
rGNN(x, size, prior = NULL, pobs = FALSE, ...)

rGNN
Arguments

- **x** object of S3 class "gnn_GNN".
- **size** sample size, a positive integer. Ignored if prior is a matrix.
- **prior** one of
  - NULL the default, generates independent N(0,1) realizations as prior sample.
  - matrix passes the given sample through the GNN x. Such a matrix is internally (if prior = NULL) and typically obtained via rPrior().
- **pobs** logical indicating whether the pseudo-observations of the generated samples should be returned.
- ... additional arguments passed to the underlying rPrior() if prior = NULL.

Value

(size, dim(x)[1])-matrix of samples.

Author(s)

Marius Hofert

Examples

```r
if(TensorFlow_available()) { # rather restrictive (due to R-Forge, winbuilder)
 library(gnn) # for being standalone

 ## Define dummy model
 d <- 2 # bivariate case
 GMMN <- FNN(c(d, 300, d)) # Feedforward NN with MMD loss (a GMMN; random weights)

 ## Sampling
 n <- 3
 (X1 <- rGNN(GMMN, size = n)) # default (independent N(0,1) samples as prior)
 (X2 <- rGNN(GMMN, size = n, # passing additional arguments to rPrior()
 qmargins = qexp, method = "sobol", seed = 271))
 (X3 <- rGNN(GMMN, prior = matrix(rexp(n * d), ncol = d))) # providing 'prior'
 stopifnot(dim(X1) == c(n, d), dim(X2) == c(n, d), dim(X3) == c(n, d))
}
```

---

```
rm_ext
 Remove a File Extension
```

Description

Fixes the removal of file extensions of file_path_sans_ext() in the case where file names contain digits after the last dot (which is often used to incorporate numeric numbers into file names).
rPrior

Usage

rm_ext(x)

Arguments

x file name(s) with extension(s) to be stripped off.

Value

The file name without its extension (if the file name had an extension).

Author(s)

Marius Hofert

Examples

library(gnn) # for being standalone

myfilepath1 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75.rda"
myfilepath2 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75"
myfilepath3 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75."
myfilepath4 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75._"
myfilepath5 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75._*.rda"
library(tools)
file_path_sans_ext(myfilepath2) # fails (only case)

stopifnot(rm_ext(myfilepath1) == file_path_sans_ext(myfilepath1))
stopifnot(rm_ext(myfilepath2) == myfilepath2)
stopifnot(rm_ext(myfilepath3) == file_path_sans_ext(myfilepath3))
stopifnot(rm_ext(myfilepath4) == file_path_sans_ext(myfilepath4))
stopifnot(rm_ext(myfilepath5) == file_path_sans_ext(myfilepath5))

rPrior

Sampling from a Prior Distribution

Description

Sampling from a prior distribution.

Usage

rPrior(n, copula, qmargins = qnorm, method = c("pseudo", "sobol"), ...)

Arguments

n  sample size, a positive integer.
copula  object of S4 class "Copula" for which the method rCopula() is available; see the R package copula.
qmargins  marginal quantile function or a list of length dim(x)\[1\] of such.
method  character string indicating the sampling method. If "sobol", then randomization "digital.shift" is used (pass seed via \ldots for reproducibility; see the R package qrng).

Value

(n, dim(copula))-matrix of samples.

Author(s)

Marius Hofert

Examples

library(gnn) # for being standalone

n <- 5
d <- 3
library(copula)
cop <- claytonCopula(2, dim = d)
X1 <- rPrior(n, copula = cop) # Clayton copula and N(0,1) margins
X2 <- rPrior(n, copula = cop, qmargins = qexp) # Exp(1) margins
X3 <- rPrior(n, copula = cop, qmargins = qexp, method = "sobol", seed = 271)
stopifnot(dim(X1) == c(n, d), dim(X2) == c(n, d), dim(X3) == c(n, d))

Description

Save and load .rda files with conversion to objects of class raw (for save_gnn()) or "keras.engine.training.Model" (for load_gnn()).

Usage

save_gnn(..., file, name = NULL)
load_gnn(file)
**Arguments**

objects to be saved in file (under the provided names if name was provided). Those objects which are of class "gnn_GNN" are converted with `as.raw()` before they are saved.

- **file**
  - file name; see the underlying `save()` and `load()`.

- **name**
  - character (vector) of name(s) under which the objects in ... are to be saved in file. If **NULL**, the names of the objects provided by ... are taken as name.

**Value**

- **save_gnn()** nothing (generates an .rda by side-effect).
- **load_gnn()** the loaded object(s). Those of class "gnn_GNN" are converted with `as.keras()` before they are returned; this also applies to a component of a loaded object of class **list**.

**Author(s)**

Marius Hofert

**See Also**

See the underlying functions **load()** and **save()** (among others).

**Examples**

```r
if(TensorFlow_available()) {
 # rather restrictive (due to R-Forge, winbuilder)
 library(gnn) # for being standalone

 file <- tempfile("foo", fileext = ".rda")
 GMMN1 <- FNN()
 save_gnn(GMMN1, file = file) # converts GMMN via as.raw()
 GMMN2 <- load_gnn(file) # converts loaded object via as.keras()
 stopifnot(is.GNN(GMMN2), inherits(GMMN2[['model']], "keras.engine.training.Model"))
 rm(GMMN1, GMMN2) # clean-up
 stopifnot(file.remove(file))
}
```
Details

Essentially calls "pip list | grep tensorflow" via \texttt{system()}. Only available on non-Windows operating systems; returns \texttt{FALSE} on Windows.

Value

\texttt{logical} indicating whether TensorFlow was found.

Author(s)

Marius Hofert

Examples

\begin{verbatim}
library(gnn) # for being standalone

TensorFlow_available()
\end{verbatim}

Description

Functions and methods for extracting and printing timings in human-readable format.

Usage

\begin{verbatim}
as.human(x, \texttt{fmt = "%.2f"})
human.time(expr, \texttt{print = TRUE, ...})
## S3 method for class 'gnn_GNN'
time(x, \texttt{human = FALSE, ...})
## S3 method for class 'gnn_proc_time'
print(x, ...) \end{verbatim}

Arguments

\begin{verbatim}
x \hfill \texttt{as.human()} object of class "proc_time" as returned by \texttt{system.time()}.
\texttt{time.gnn_GNN()} object of class "gnn_GNN".
\texttt{print.gnn_proc_time()} object of class "gnn_proc_time" as returned by \texttt{time()}.

\texttt{fmt} \hfill format string as required by \texttt{sprintf()}.
\texttt{expr} \hfill see \texttt{system.time()}.
\texttt{print} \hfill \texttt{logical} indicating whether to print the result; either way, it is returned (invisibly if \texttt{print = TRUE}).

\texttt{human} \hfill \texttt{logical} indicating whether the result is to be returned in human-readable format.

\ldots \hfill for \texttt{human.time()} and \texttt{time.gnn_GNN()} additional arguments passed to the underlying \texttt{as.human()}; unused for \texttt{print.gnn_proc_time()}.\end{verbatim}
Val

as.human(), human.time() named character(3) providing user, system and elapsed time in human-readable format.

time.gnn_GNN() object of class "gnn_proc_time".

print.gnn_proc_time() x (invisibly).

Author(s)

Marius Hofert

Examples

if(TensorFlow_available()) { # rather restrictive (due to R-Forge, winbuilder)
  library(gnn) # for being standalone

  human.time(Sys.sleep(0.1)) # print human-readable time
  (proc.obj <- human.time(Sys.sleep(0.1), print = FALSE)) # save the timing (character(3))
  fnn <- FNN()
  time(fnn) # default print method for objects of class "gnn_proc_time"
  time(fnn, human = TRUE) # human-readable print method for such objects
}

---

trafos_dimreduction  Dimension-Reduction Transformations for Training or Sampling

Description

Dimension-reduction transformations applied to an input data matrix. Currently on the principal component transformation and its inverse.

Usage

PCA_trafo(x, mu, Gamma, inverse = FALSE, ...)

Arguments

x  

(n, d)-matrix of data (typically before training or after sampling). If inverse = FALSE, then, conceptually, an (n, d)-matrix with 1 ≤ k ≤ d, where d is the dimension of the original data whose dimension was reduced to k.

mu  

if inverse = TRUE, a d-vector of centers, where d is the dimension to transform x to.

Gamma  

if inverse = TRUE, a (d, k)-matrix with k at least as large as ncol(x) containing the k orthonormal eigenvectors of a covariance matrix sorted in decreasing order of their eigenvalues; in other words, the columns of Gamma contain principal axes or loadings. If a matrix with k greater than ncol(x) is provided, only the first k-many are considered.
inverse logical indicating whether the inverse transformation of the principal component transformation is applied.

... additional arguments passed to the underlying prcomp().

Details

Conceptually, the principal component transformation transforms a vector $X$ to a vector $Y$ where $Y = \Gamma^T (X - \mu)$, where $\mu$ is the mean vector of $X$ and $\Gamma$ is the $(d, d)$-matrix whose columns contain the orthonormal eigenvectors of $\text{cov}(X)$.

The corresponding (conceptual) inverse transformation is $X = \mu + \Gamma Y$.

See McNeil et al. (2015, Section 6.4.5).

Value

If inverse = TRUE, the transformed data whose rows contain $X = \mu + \Gamma Y$, where $Y$ is one row of $X$. See the details below for the notation.

If inverse = FALSE, a list containing:

- PCs: $(n, d)$-matrix of principal components.
- cumvar: cumulative variances; the $j$th entry provides the fraction of the explained variance of the first $j$ principal components.
- sd: sample standard deviations of the transformed data.
- lambda: eigenvalues of $\text{cov}(x)$.
- mu: $d$-vector of centers of $x$ (see also above) typically provided to PCA_trafo(), inverse = TRUE).
- Gamma: $(d, d)$-matrix of principal axes (see also above) typically provided to PCA_trafo(), inverse = TRUE).

Author(s)

Marius Hofert

References


Examples

library(gnn) # for being standalone

## Generate data
library(copula)
set.seed(271)
X <- qt(rCopula(1000, gumbelCopula(2, dim = 10)), df = 3.5)
pairs(X, gap = 0, pch = ".")

## Principal component transformation
PCA <- PCA_trafo(X)
trafos_margins

Data Transformations for Training or Sampling

Description

Transformations applied to each marginal component sample to map given data to a different range.

Usage

range_trafo(x, lower, upper, inverse = FALSE)
logis_trafo(x, mean = 0, sd = 1, slope = 1, intercept = 0, inverse = FALSE)

Arguments

x
lower
upper
mean
sd
slope
intercept
inverse
(n, d)-matrix of data (typically before training or after sampling).
value or d-vector typically containing the smallest value of each column of x.
value or d-vector typically containing the largest value of each column of x.
value or d-vector.
value or d-vector.
value or d-vector of slopes of the linear transformations applied after applying plogis() (before applying qlogis() if inverse = TRUE).
value or d-vector of intercepts of the linear transformations applied after applying plogis() (before applying qlogis() if inverse = TRUE).
logical indicating whether the inverses of the respective transformations are to be computed (typically used after generating data from a neural network trained on data transformed with the respective transformation and inverse = FALSE).
Value

An object as x containing the componentwise transformed data.

Author(s)

Marius Hofert

Examples

library(gnn) # for being standalone

## Generate data
n <- 100
set.seed(271)
x <- cbind(rnorm(n), (1-runif(n))^{(-1/2)}-1) # normal and Pareto(2) margins
plot(x)

## Range transformation
ran <- apply(x, 2, range) # column j = range of the jth column of x
x.ran <- range_trafo(x, lower = ran[1,], upper = ran[2,]) # marginally transform to [0,1]
plot(x.ran) # => now range [0,1] but points a bit clustered around small y-values
x. <- range_trafo(x.ran, lower = ran[1,], upper = ran[2,], inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Logistic transformation
x.logis <- logis_trafo(x) # marginally transform to [0,1] via plogis()
plot(x.logis) # => y-range is [1/2, 1] which can be harder to train
x. <- logis_trafo(x.logis, inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Logistic transformation with scaling to all of [0,1] in the second coordinate
x.logis.scale <- logis_trafo(x, slope = 2, intercept = -1)
plot(x.logis.scale) # => now y-range is scaled to [0,1]
x. <- logis_trafo(x.logis.scale, slope = 2, intercept = -1, inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Logistic transformation with sample mean and standard deviation and then
## transforming the range to [0,1] with a range transformation (note that
## slope = 2, intercept = -1 would not help here as the y-range is not [1/2, 1])
mu <- colMeans(x)
sig <- apply(x, 2, sd)
x.logis.fit <- logis_trafo(x, mean = mu, sd = sig) # marginally plogis(), location, scale
plot(x.logis.fit) # => y-range is not [1/2, 1] => use range transformation
ran <- apply(x.logis.fit, 2, range)
x.logis.fit.ran <- range_trafo(x.logis.fit, lower = ran[1,], upper = ran[2,])
plot(x.logis.fit.ran) # => now y-range is [1/2, 1]
x. <- range_trafo(x.logis.fit.ran, lower = ran[1,], upper = ran[2,],
                   inverse = TRUE),
       mean = mu, sd = sig, inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Note that for heavy-tailed data, plogis() can fail to stay inside (0,1)
## even with adapting to sample mean and standard deviation. We now present
## a case where we see that using a fitted logistic distribution function
## is *just* good enough to numerically keep the data inside \((0,1)\).

```r
context
```

```r
set.seed(271)
x <- cbind(rnorm(n), (1-runif(n))^-2-1) # normal and Pareto(1/2) margins
plot(x) # => heavy-tailed in y-coordinate

Transforming with standard logistic distribution function

```r
x.logis <- logis_trafo(x)
```

```r
stopifnot(any(x.logis[,2] == 1))
```

=> There is value numerically indistinguishable from 1 to which applying
the inverse transform will lead to Inf

```r
stopifnot(any(is.infinite(logis_trafo(x.logis, inverse = TRUE))))
```

Now adapt the logistic distribution to share the mean and standard deviation
with the data

```r
mu <- colMeans(x)
sig <- apply(x, 2, sd)
x.logis.scale <- logis_trafo(x, mean = mu, sd = sig)
```

```r
stopifnot(all(x.logis.scale[,2] != 1)) # => no values equal to 1 anymore
```

Alternatively, log() the data first, thus working with a log-logistic
distribution as transformation

```r
lx <- cbind(x[,1], log(x[,2])) # 2nd coordinate only
lmu <- c(mu[1], mean(lx[,2]))
lsig <- c(sig[1], sd(lx[,2]))
x.llogis <- logis_trafo(lx, mean = lmu, sd = lsig)
x. <- logis_trafo(x.llogis, mean = lmu, sd = lsig, inverse = TRUE)
x.. <- cbind(x.[,1], exp(x.[,2])) # undo log()
```

```r
stopifnot(all.equal(x.., x))
```
Index

* **hplot**
 plot, 14
* **manip**
 save_load_rda, 18
 trafos_dimreduction, 21
 trafos_margins, 23
* **methods**
 ffGNN, 3
 GNN_basics, 11
 raw_keras, 15
 rGNN, 15
 rPrior, 17
* **models**
 FNN, 8
* **optimize**
 fitGNN, 7
* **programming**
 catch, 2
 find_box, 4
 TensorFlow_available, 19
* **univar**
 loss, 13
* **utilities**
 rm_ext, 16
 time, 20

as.human (time), 20
as.keras, 19
as.keras (raw_keras), 15
as.raw, 19
as.raw.gnn_GNN (raw_keras), 15

catch, 2
color, 4, 7–9, 13, 14, 18, 19, 21
CvM (loss), 13

dim.gnn_GNN (GNN_basics), 11
FALSE, 20
ffGNN, 3

find_box, 4
findInterval, 4, 5
fitGNN, 7, 14
fitGNNNonce (fitGNN), 7
FNN, 8, 8, 13
function, 8, 18

GNN_basics, 11
human.time (time), 20
integer, 7, 8, 16, 18
is.GNN (GNN_basics), 11
is.trained (fitGNN), 7

layer_dropout, 8
list, 2, 4, 12, 18, 19, 22
load, 19
load_gnn, 7, 8
load_gnn (save_load_rda), 18
logical, 8, 12, 16, 20, 22, 23
logis_trafo (trafos_margins), 23
loss, 8, 13

matrix, 3, 9, 16, 18
MMD (loss), 13

NA_integer_, 9
NULL, 2, 19
numeric, 8, 9, 13, 14

PCA_trafo (trafos_dimreduction), 21
plogis, 23
plot, 14, 14
prcomp, 22
print, 12
print.gnn_GNN (GNN_basics), 11
print.gnn_proc_time (time), 20
qlogis, 23

range_trafo (trafos_margins), 23
INDEX

raw, 9, 15
raw_keras, 15
rCopula, 18
rGNN, 15
rm_ext, 16
rPrior, 7, 16, 17
S3, 3, 8, 9, 11, 12, 15, 16
S4, 18
save, 19
save_gnn, 8
save_gnn (save_load_rda), 18
save_load_rda, 18
simpleError, 2
simpleWarning, 2
sprintf, 20
stop, 2
str, 12
str.gnn_GNN (GNN_basics), 11
summary, 12
summary.gnn_GNN (GNN_basics), 11
system, 20
system.time, 20
TensorFlow_available, 19
time, 20
time.gnn_GNN (time), 20
trafos_dimreduction, 21
trafos_margins, 23
txtProgressBar, 7

warning, 2