Package ‘gompertztrunc’

December 23, 2022

Type Package
Title Conducting Maximum Likelihood Estimation with Truncated Mortality Data
Version 0.1.1
Maintainer Maria Osborne <mariaosborne@berkeley.edu>
Description Estimates hazard ratios and mortality differentials for doubly-truncated data without population denominators.
License GPL (>= 3)
URL https://caseybreen.github.io/gompertztrunc/
Depends R (>= 3.5.0)
Imports broom, cowplot, data.table, dplyr, flexsurv, ggplot2, ggsci, grid, magrittr, modelr, rlang, stats, stringr, tibble, tidyr
Suggests knitr, rmarkdown, socviz, tidyverse
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
NeedsCompilation no
Author Casey Breen [aut] (<https://orcid.org/0000-0001-9114-981X>), Maria Osborne [aut, cre], Joshua R. Goldstein [aut]
Repository CRAN
Date/Publication 2022-12-23 19:20:02 UTC

R topics documented:

- bunmd_demo .. 2
- convert_hazards_to_ex .. 3
- diagnostic_plot ... 4
Demo BUNMD Data Set

Description

A data set containing a sample of the CenSoc Berkeley Unified Numident Mortality Database (BUNMD) file, including age at death and select covariates.

Usage

bunmd_demo

Format

A data frame with 81,002 rows and 6 variables:

- **ssn** Social Security number
- **bpl_string** Country of birth
- **death_age** Age at death (integer years)
- **byear** Calendar year of birth
- **dyear** Calendar year of death
- **age_first_application** Age at first Social Security application

Details

The Berkeley Unified Numident Mortality Database (BUNMD) is a cleaned and harmonized version of the NARA Numident file, consisting of the most informative parts of the 60+ application, claim, and death files released by the National Archives. The full data set of nearly 50 million records is available at https://censoc.berkeley.edu/data/.

Source

convert_hazards_to_ex
Convert hazard ratios to life expectancy

Description
Convert hazard ratios to differences in remaining life expectancy at a given age (defaults to age 65)

Usage

```r
convert_hazards_to_ex(
  df,
  age = 65,
  upper_age = 120,
  M = 80,
  b = 0.075,
  use_model_estimates = FALSE
)
```

Arguments
- `df`
 Dataframe of results given by `gompertz_mle()` function
- `age`
 Age at which to calculate remaining life expectancy
- `upper_age`
 Maximal age to use in life table calculation
- `M`
 Gompertz parameter modal age at death
- `b`
 Gompertz mortality slope parameter
- `use_model_estimates`
 Use estimates of the Gompertz Parameters from the model, rather than defaults

Value
A dataframe of hazards ratios and corresponding e(x) estimates and confidence intervals

Examples

```r
#model hazards as function of birthplace using bunmd_demo data
demo_dataset <- dplyr::filter(bunmd_demo, bpl_string %in% c("Poland", "England")) %>%
dplyr::sample_frac(0.1)

#run gompertz_mle()
bpl <- gompertz_mle(formula = death_age ~ bpl_string, left_trunc = 1988,
  right_trunc = 2005, data = demo_dataset)

#convert to difference in life expectancy
convert_hazards_to_ex(df = bpl$results, use_model_estimates = FALSE)
```
Create diagnostic plots

Description

Compare empirical and modeled distribution of ages of death within a cohort. Only works with a single discrete covariate and a single cohort.

Usage

diagnostic_plot(
data,
object,
covar,
death_var = "death_age",
byear_var = "byear",
xlim = c(65, 110)
)

Arguments

data data used to create gompertz_mle object
object gompertz_mle object
covar covariate of interest
death_var death age variable
byear_var birth year/cohort variable
xlim x-limits for figure

Value

a ggplot object

Examples

# Create a single-cohort data set	numident_c1920 <- numident_demo %>% dplyr::filter(byear == 1920) %>%
dplyr::mutate(finished_hs = as.factor(educ_yrs >= 12))

Run gompertz_mle()
gradient <- gompertztrunc::gompertz_mle(formula = death_age ~ finished_hs,
left_trunc = 1988, right_trunc = 2005, data = numident_c1920)

Create diagnostic histogram plot using model outcome
gompertztrunc::diagnostic_plot(object = gradient, data = numident_c1920,
covar = "finished_hs", xlim = c(60, 95))
diagnostic_plot_hazard

Create diagnostic plot (hazard scale)

Description

Compare empirical and model-based estimated hazard rates within a cohort. Only works with a single discrete covariate and a single cohort. Will plot hazards for to 9 levels/values of the discrete covariate.

Usage

diagnostic_plot_hazard(
 data,
 object,
 covar,
 death_var = "death_age",
 byear_var = "byear",
 xlim = c(65, 110)
)

Arguments

data data.frame of observed data for gompertz_mle
object gompertz_mle object
covar covariate of interest
death_var death age variable
byear_var birth year/cohort variable
xlim x-limits for figure

Details

This function assumes that no population denominators exist with which to calculate hazards. Therefore, the "observed" hazards produced are not truly empirical values. Instead, it relies partially on the modeled parameters to compute life table values.

To find these quasi-observed hazards, the modeled Gompertz distribution is used to calculate $l(x_{min})$; i.e., the number of survivors to the earliest observable age at death in the data. This is done for each category/level of the specified covariate. Then, the number of observed deaths at each age is used to infer the number of survivors to each subsequent age and the death rate at each age.

Value

a ggplot object
Examples

Create a single-cohort data set
numident_c1920 <- numident_demo %>% dplyr::filter(byear == 1920) %>%
dplyr::mutate(finished_hs = as.factor(educ_yrs >= 12))

Run gompertz_mle()
gradient <- gompertztrunc::gompertz_mle(formula = death_age ~ finished_hs,
left_trunc = 1988, right_trunc = 2005, data = numident_c1920)

Create diagnostic hazards plot using model outcome
gompertztrunc::diagnostic_plot_hazard(object = gradient, data = numident_c1920,
covar = "finished_hs", xlim = c(60, 95))

get.par.start Get starting values for parameters

Description

Uses linear modeling to compute initial values for MLE optimizer

Usage

g.get.par.start(formula, data)

Arguments

formula the estimation formula
data data matrix with y, u, l, and covariates, including cohort

Value

Named vector of initial parameter estimates

gompertztrunc_simu Simulate Gompertzian death distribution

Description

Simulate Gompertzian death distribution
Usage

gompertztrunc_simu(
 n,
 formula,
 coefs,
 dummy = NULL,
 sigma = NULL,
 seed = NULL,
 a0 = 10^-4,
 b = 1/10,
 verbose = FALSE
)

Arguments

 n sample size
 formula estimation formula
 coefs named vectors of coefficients and corresponding true values
 dummy vector flags for each coefficient
 sigma standard deviation for each variable
 seed random seed to duplicate data
 a0 Gompertz alpha parameter
 b Gompertz b parameter
 verbose print internal check if true

Value

dataframe of simulated death ages and covariate values

Examples

gompertztrunc_simu(n=1000, formula = death_age ~ sex + ambient_temp,
 coefs = c('sex'=-0.8, 'ambient_temp'=0.3), dummy=c(TRUE,FALSE))

Description

Fits a Gompertz distribution with proportional hazards to doubly-truncated mortality data using maximum likelihood estimation.
Usage

`gompertz_mle(
 formula,
 left_trunc = 1975,
 right_trunc = 2005,
 data,
 byear = byear,
 dyear = dyear,
 lower_age_bound = NULL,
 upper_age_bound = NULL,
 weights = NULL,
 start = NULL,
 death_age_data_type = "auto",
 maxiter = 10000
)

Arguments

formula the estimation formula
left_trunc left truncation year
right_trunc right truncation year
data a data frame containing variables in the model
byear vector of birth years
dyear vector of death years
lower_age_bound lowest age at death to include (optional)
upper_age_bound highest age at death to include (optional)
weights an optional vector of individual weights
start an optional vector of starting values for the optimizer. must be a numeric vector that exactly matches the output of `get.par.start(formula, data)` in length and element names.
deat_age_data_type option for handling of continuous and discrete death age variable (not yet implemented)
maxiter maximum number of iterations for optimizer

Value

Returns a named list consisting of the following components (See `stats::optim()` for additional details):

starting_values list of starting values of parameters
optim_fit A list consisting of:
 par best estimation of parameter values
hazard_ratio_to_le

value log likelihood
counts number of calls to function and gradient
convergence returns 0 if the model converged, for other values see stats::optim()
message any other information returned by optimizer
hessian Hessian matrix

results A table of estimates and upper/lower bounds of the 95 percent confidence interval for the estimates. Confidence interval computed as 1.96*standard_error.

Examples

```r
#model hazards as function of birthplace using bunmd_demo file
demo_dataset <- dplyr::filter(bunmd_demo, bpl_string %in% c("Cuba", "England"))

gompertz_mle(formula = death_age ~ bpl_string, left_trunc = 1988, right_trunc = 2005, data = demo_dataset)
```

hazard_ratio_to_le Translate a single hazard ratio to remaining life expectancy

Description

Translate a single hazard ratio to effect on remaining life expectancy at a specified age, using a Gompertz mortality schedule as the baseline

Usage

```
hazard_ratio_to_le(lower, upper, hr, M = 80, b = 0.1)
```

Arguments

- `lower`: age at which to compute change in remaining life expectancy
- `upper`: upper age bound for life table calculations
- `hr`: hazard ratio
- `M`: Gompertz modal age at death parameter
- `b`: Gompertz mortality slope parameter

Value

hazard ratio converted to effect on life expectancy
negLL_function

Gompertz Negative Log Likelihood Function

Description

Computes negative log likelihood for optimizer

Usage

\[
\text{negLL}_\text{function}(\text{par}, \text{y}, \text{X}, \text{y}.\text{left}, \text{y}.\text{right}, \text{wt})
\]

Arguments

- `par`: a vector of parameter estimates
- `y`: a vector of death ages
- `X`: a model matrix
- `y.left`: left truncation age
- `y.right`: right truncation age
- `wt`: weight

Value

The negative log likelihood of parameter estimates given observed data

numident_demo

Demo Numident Data Set

Description

A data set containing a sample of the CenSoc-Numident file, including age at death and select covariates.

Usage

numident_demo
Format

A data frame with 62,899 rows and 30 variables:

- **histid** Historical unique identifier
- **byear** Year of birth
- **bmonth** Month of birth
- **dyear** Year of death
- **dmonth** Month of death
- **death_age** Age at death (years)
- **weight** CenSoc weight
- **zip_residence** ZIP Code of residence at time of death
- **pernum** Person number in sample unit
- **perwt** IPUMS person weight
- **age** Age in 1940
- **sex** Sex in 1940
- **bpl** Place of birth
- **mbpl** Mother’s place of birth
- **fbpl** Father’s place of birth
- **educd** Educational attainment (detailed)
- **empstatd** Employment status (detailed)
- **hispan** Hispanic/Spanish/Latino origin
- **incnonwg** Had non-wage/salary income over $50
- **incwage** Wage and salary income
- **marst** Marital status
- **nativity** Foreign birthplace or parentage
- **occ** Occupation
- **occscore** Occupational income score
- **ownership** Ownership of dwelling (tenure)
- **race** Race
- **rent** Monthly contract rent
- **serial** Household serial number
- **statefip** State of residence 1940
- **urban** Urban/rural status
- **educ_yrs** Years of education attained

Details

The CenSoc-Numident dataset links the 1940 census to the National Archives’ public release of the Social Security Numident file. The prelinked demo version of the file has 63 thousand mortality records and 20 mortality covariates from the 1940 census (~1 percent of the complete CenSoc-Numident dataset). Both demo and full versions of the data are available at https://censoc.berkeley.edu/data/.
sim_data

Simulated mortality data set

Source

Description

A data set containing simulated age at death and covariates according to a truncated Gompertz distribution with proportional hazards.

Usage

```r
sim_data
```

Format

A data frame with 6732 rows and 6 variables:

- **aod** Age at death, in integer years
- **byear** Calendar year of birth
- **dyear** Calendar year of death
- **temp** Temperature
- **sex** Sex (0 = male, 1 = female)
- **isSouth** Live in south (0 = FALSE, 1 = TRUE)
Index

* datasets
 bunmd_demo, 2
 numident_demo, 10
 sim_data, 12

bunmd_demo, 2

convert_hazards_to_ex, 3

diagnostic_plot, 4
 diagnostic_plot_hazard, 5

gompertz_mle, 7
 gompertztrunc_simu, 6

hazard_ratio_to_le, 9

negLL_function, 10
 numident_demo, 10

sim_data, 12

stats::optim(), 8, 9