Package ‘gorica’

September 3, 2023

Type Package

Title Evaluation of Inequality Constrained Hypotheses Using GORICA

Version 0.1.3

Description Implements the generalized order-restricted information criterion approximation (GORICA), an AIC-like information criterion that can be utilized to evaluate informative hypotheses specifying directional relationships between model parameters in terms of (in)equality constraints (see Altinisik, Van Lissa, Hoijtink, Oldehinkel, & Kuiper, 2021), <doi:10.31234/osf.io/t3c8g>. The GORICA is applicable not only to normal linear models, but also to generalized linear models (GLMs), generalized linear mixed models (GLMMs), structural equation models (SEMs), and contingency tables. For contingency tables, restrictions on cell probabilities can be non-linear.

License GPL (>= 3)

Encoding UTF-8

LazyData true

URL https://informative-hypotheses.sites.uu.nl/software/goric/

NeedsCompilation no

RoxygenNote 7.2.3

Depends R (>= 3.6), bain (>= 0.2.8), stats

Imports methods, MASS, mvtnorm, quadprog, lme4, lavaan, limSolve

Suggests testthat, FRACTION, matrixcalc

Author Rebecca M. Kuiper [aut],
Altinisik Yasin [aut],
Vanbrabant Leonard [ctb],
Caspar J. van Lissa [aut, cre]

Maintainer Caspar J. van Lissa <c.j.vanlissa@tilburguniversity.edu>

Repository CRAN

Date/Publication 2023-09-03 14:30:02 UTC
R topics documented:

- academic_awards
- gorica
- hox_2010
- nederhof_2014
- reading_ach
- school_admissions
- stevens_1999
- wechsler

Index

academic_awards
Academic awards data

Description

Simulated dataset based on the UCLA Statistical Consulting Group's website.

Usage

```r
data(academic_awards)
```

Format

A data frame with 200 rows and 4 variables.

Details

- **num_awards**
 integer
 Outcome variable; indicates the number of awards earned by students at a high school in a year

- **math**
 integer
 Continuous predictor variable; represents students’ scores on their math final exam

- **prog**
 factor
 Categorical predictor variable with three levels, indicating the type of program in which the student

References

gorica
Evaluate informative hypotheses using the GORICA
gorica

Description

GORICA is an acronym for "generalized order-restricted information criterion approximation". It can be utilized to evaluate informative hypotheses, which specify directional relationships between model parameters in terms of (in)equality constraints.

Usage

gorica(x, hypothesis, comparison = "unconstrained", iterations = 1e+05, ...)

S3 method for class 'lavaan'
gorica(
x,
hypothesis,
comparison = "unconstrained",
itervations = 1e+05,
..., standardize = FALSE)

S3 method for class 'table'
gorica(x, hypothesis, comparison = "unconstrained", ...)

Arguments

x An R object containing the outcome of a statistical analysis. Currently, the following objects can be processed:

- lm() objects (anova, ancova, multiple regression).
- t_test() objects.
- lavaan objects.
- lmerMod objects.
- A named vector containing the estimates resulting from a statistical analysis, when the argument Sigma is also specified. Note that, named means that each estimate has to be labeled such that it can be referred to in hypotheses.

hypothesis A character string containing the informative hypotheses to evaluate (see Details).

comparison A character string indicating what the hypothesis should be compared to. Defaults to comparison = "unconstrained": options include c("unconstrained", "complement", "none").

iterations Integer. Number of samples to draw from the parameter space when computing the gorica penalty.

... Additional arguments passed to the internal function compare_hypotheses.

standardize Logical. For lavaan objects, whether or not to extract the standardized model coefficients. Defaults to FALSE.
Details

The GORICA is applicable to not only normal linear models, but also applicable to generalized linear models (GLMs) (McCullagh & Nelder, 1989), generalized linear mixed models (GLMMs) (McCullagh & Searle, 2001), and structural equation models (SEMs) (Bollen, 1989). In addition, the GORICA can be utilized in the context of contingency tables for which (in)equality constrained hypotheses do not necessarily contain linear restrictions on cell probabilities, but instead often contain non-linear restrictions on cell probabilities.

hypotheses is a character string that specifies which informative hypotheses have to be evaluated. A simple example is hypotheses <- "a > b > c; a = b = c;" which specifies two hypotheses using three estimates with names "a", "b", and "c", respectively.

The hypotheses specified have to adhere to the following rules:

1. Parameters are referred to using the names specified in names().
2. Linear combinations of parameters must be specified adhering to the following rules:
 (a) Each parameter name is used at most once.
 (b) Each parameter name may or may not be pre-multiplied with a number.
 (c) A constant may be added or subtracted from each parameter name.
 (d) A linear combination can also be a single number.
 Examples are: 3 * a + 5; a + 2 * b + 3 * c - 2; a - b; and 5.
3. (Linear combinations of) parameters can be constrained using <, >, and =. For example, a > 0 or a > b = 0 or 2 * a < b + c > 5.
4. The ampersand & can be used to combine different parts of a hypothesis. For example, a > b & b > c which is equivalent to a > b > c or a > 0 & b > 0 & c > 0.
5. Sets of (linear combinations of) parameters subjected to the same constraints can be specified using (). For example, a > (b,c) which is equivalent to a > b & a > c.
6. The specification of a hypothesis is completed by typing ; For example, hypotheses <- "a > b > c; a = b = c;" specifies two hypotheses.
7. Hypotheses have to be compatible, non-redundant and possible. What these terms mean will be elaborated below.

The set of hypotheses has to be compatible. For the statistical background of this requirement see Gu, Mulder, Hoijtink (2018). Usually the sets of hypotheses specified by researchers are compatible, and if not, gorica will return an error message. The following steps can be used to determine if a set of hypotheses is compatible:

1. Replace a range constraint, e.g., 1 < a1 < 3, by an equality constraint in which the parameter involved is equated to the midpoint of the range, that is, a1 = 2.
2. Replace in each hypothesis the < and > by =. For example, a1 = a2 > a3 > a4 becomes a1 = a2 = a3 = a4.
3. The hypotheses are compatible if there is at least one solution to the resulting set of equations. For the two hypotheses considered under 1. and 2., the solution is a1 = a2 = a3 = a4 = 2. An example of two non-compatible hypotheses is hypotheses <- "a = 0; a > 2;" because there is no solution to the equations a=0 and a>2.
Each hypothesis in a set of hypotheses has to be non-redundant. A hypothesis is redundant if it can also be specified with fewer constraints. For example, \(a = b \ & \ a > 0 \ & \ b > 0 \) is redundant because it can also be specified as \(a = b \ & \ a > 0 \). \texttt{gorica} will work correctly if hypotheses specified using only < and > are redundant. \texttt{gorica} will return an error message if hypotheses specified using at least one = are redundant.

Each hypothesis in a set of hypotheses has to be possible. An hypothesis is impossible if estimates in agreement with the hypothesis do not exist. For example: values for \(a \) in agreement with \(a = \theta \ & \ a > 2 \) do not exist. It is the responsibility of the user to ensure that the hypotheses specified are possible. If not, \texttt{gorica} will either return an error message or render an output table containing Inf’s.

Value

An object of class \texttt{gorica}, containing the following elements:

- **fit** A data.frame containing the loglikelihood, penalty (for complexity), the GORICA value, and the GORICA weights. The GORICA weights are calculated by taking into account the misfits and complexities of the hypotheses under evaluation. These weights are used to quantify the support in the data for each hypothesis under evaluation. By looking at the pairwise ratios between the GORICA weights, one can determine the relative importance of one hypothesis over another hypothesis.

- **call** The original function call.

- **model** The original model object (x).

- **estimates** The parameters extracted from the model.

- **Sigma** The asymptotic covariance matrix of the estimates.

- **comparison** Which alternative hypothesis was used.

- **hypotheses** The hypotheses evaluated in fit.

- **relative_weights** The relative weights of each hypothesis (rows) versus each other hypothesis in the set (cols). The diagonal is equal to one, as each hypothesis is equally likely as itself. A value of, e.g., 6, means that the hypothesis in the row is 6 times more likely than the hypothesis in the column.

Contingency tables

When specifying hypotheses about contingency tables, the asymptotic covariance matrix of the model estimates is derived by means of bootstrapping. This makes it possible for users to define derived parameters: For example, a ratio between cell probabilities. For this purpose, the \texttt{bain} syntax has been enhanced with the command :=. Thus, the syntax “\(a := x[1,1] / (x[1,1] + x[1,2]) \)” defines a new parameter \(a \) by reference to specific cells of the table \(x \). This new parameter can now be named in hypotheses.

Author(s)

Caspar van Lissa, Yasin Altinisik, Rebecca Kuiper
References

Examples

EXAMPLE 1. One-sample t test
ttest1 <- t_test(iris$Sepal.Length,mu=5)
gorica(ttest1,"x<5.8")

EXAMPLE 2. ANOVA
aov1 <- aov(yield ~ block-1 + N * P + K, npk)
gorica(aov1,hypothesis="block1=block5; K1<0")

EXAMPLE 3. glm
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
fit <- glm(counts ~ outcome-1 + treatment, family = poisson())
gorica(fit, "outcome1 > (outcome2, outcome3)")

EXAMPLE 4. ANOVA
res <- lm(Sepal.Length ~ Species-1, iris)
est <- get_estimates(res)
est
gor <- gorica(res, "Speciessetosa < (Speciesversicolor, Speciesvirginica)", comparison = "complement")
gor
Description

Synthetic data based on Hox (2010, p. 16). In the study, the outcome variable popular represents the popularity score of pupils, ranging from 0 (very unpopular) to 10 (very popular), for pupils nested in 100 classes of varying size. The popularity scores are predicted by pupil level predictors gender (G) and pupil extraversion scores (PE) that range from 1 (introversion) to 10 (extraversion), a class-level predictor teacher experience (TE), and the cross-level interactions between G and TE as well as PE and TE. Since standardization is recommended when the model contains interactions, we standardize PS, PE and TE by means of grand mean centering. That is, we first subtract the overall means of the continuous variables PS, PE, and TE from each of their values, before dividing these values by their standard deviations.

Usage

data(hox_2010)

Format

A data frame with 2000 rows and 6 variables.

Details

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>integer</td>
<td>Pupil ID</td>
</tr>
<tr>
<td>class</td>
<td>integer</td>
<td>Class ID</td>
</tr>
<tr>
<td>PE</td>
<td>numeric</td>
<td>Pupil extraversion, standardized</td>
</tr>
<tr>
<td>G</td>
<td>factor</td>
<td>Pupil sex</td>
</tr>
<tr>
<td>PS</td>
<td>numeric</td>
<td>Popularity scores, standardized</td>
</tr>
<tr>
<td>TE</td>
<td>integer</td>
<td>Teacher experience, standardized</td>
</tr>
</tbody>
</table>

References

Description

Synthetic data, (N = 310) based on Nederhof, Ormel, and Oldehinkel (2014). The 11 years old participants are divided into three groups: Sustainers, Shifters, and Comparison group, based on their performance on a sustained-attention task and on a shifting-set task. The outcome depressive episode (D: no depressive episode, versus experienced an episode) is predicted by the categorical variable early life stress (ES: Low versus High), the standardized continuous variable recent stress, RS, and the interaction between both predictors. The continuous variable recent stress, RS, is standardized to improve the interpretation of main effects when interactions exist.

Usage

data(nederhof_2014)

Format

A data frame with 310 rows and 4 variables.

Details

<table>
<thead>
<tr>
<th>Groups</th>
<th>factor</th>
<th>Group membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>numeric</td>
<td>Recent stress</td>
</tr>
<tr>
<td>ES</td>
<td>Factor</td>
<td>Early life stress</td>
</tr>
<tr>
<td>D</td>
<td>Factor</td>
<td>Experienced a depressive episode</td>
</tr>
</tbody>
</table>

References

Description

Usage

data(reading_ach)

Format

A data frame with 10320 rows and 5 variables.
reading_ach

Details
The dataset, provided by the UCLA Statistical Consulting Group (2021), contains information on factors that influence whether or not a high school senior is admitted into a very competitive engineering school. The dataset includes the following variables:

Description

This dataset, provided by the UCLA Statistical Consulting Group (2021), contains information on factors that influence whether or not a high school senior is admitted into a very competitive engineering school. The dataset includes the following variables:

Usage

```r
data(school_admissions)
```

Format

A data frame with 30 rows and 3 variables.

Details

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>school</td>
<td>integer</td>
<td>Clustering variable representing the school a given participant was enrolled in</td>
</tr>
<tr>
<td>gender</td>
<td>factor</td>
<td>Binary factor variable representing participants’ assigned sex</td>
</tr>
<tr>
<td>age</td>
<td>integer</td>
<td>Participants’ age in months</td>
</tr>
<tr>
<td>gread</td>
<td>numeric</td>
<td>Reading achievement</td>
</tr>
<tr>
<td>gevocab</td>
<td>numeric</td>
<td>Vocabulary</td>
</tr>
</tbody>
</table>

The dataset is used for exact logistic regression analysis due to the binary outcome variable. It aims to identify the factors that contribute to admission decisions in a highly competitive engineering school. Since the dataset has a small sample size, specialized procedures are required for accurate estimation.

References

Sesame Street data based on Stevens (1999)

Description

Synthetic data based Stevens (1999, p. 596). This study evaluates the effects of the first year of the Sesame Street television series in a sample of 3-5 years old children in the USA (N = 240).

Usage

data(stevens_1999)

Format

A data frame with 240 rows and 14 variables.

Details

- **age** numeric Age in months
- **prebody** numeric Pretest on knowledge of body parts
- **prelet** numeric Pretest on knowledge of letters
- **preform** numeric Pretest on knowledge of forms
- **prenumb** numeric Pretest on knowledge of numbers
- **prerelat** numeric Pretest on knowledge of relational terms
- **preclas** numeric Pretest on classification skills
- **postbody** numeric Posttest on knowledge of body parts
- **postlet** numeric Posttest on knowledge of letters
- **postform** numeric Posttest on knowledge of forms
- **postnumb** numeric Posttest on knowledge of numbers
- **postrelat** numeric Posttest on knowledge of relational terms
- **postclas** numeric Posttest on classification skills
- **peabody** numeric Mental age score obtained from the Peabody Picture Vocabulary test

References

Wechsler intelligence test data

- **wechsler** verbal Wechsler intelligence test data
Description

Dataset based on McArdle and Prescott (1992, p.90). This study evaluates intelligence and cognitive ability in a sample of individuals over 18 years of age (N = 1680) using the IQ test Wechsler Adult Intelligence Scale-Revised (WAIS-R) (Wechsler, 1981).

Usage

data(wechsler)

Format

A data frame with 1680 rows and 10 variables.

Details

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>integer</td>
<td>Participants’ age (recoded)</td>
</tr>
<tr>
<td>edc</td>
<td>factor</td>
<td>Whether a participant graduated high school or not (1 = not graduated, 2 = graduated)</td>
</tr>
<tr>
<td>y1</td>
<td>integer</td>
<td>information; general knowledge of participants</td>
</tr>
<tr>
<td>y2</td>
<td>integer</td>
<td>comprehension; ability of abstract reasoning or judgment</td>
</tr>
<tr>
<td>y3</td>
<td>integer</td>
<td>similarities; unifying a theme</td>
</tr>
<tr>
<td>y4</td>
<td>integer</td>
<td>vocabulary; verbal definition</td>
</tr>
<tr>
<td>y5</td>
<td>integer</td>
<td>picture completion; perceiving visual images with missing features</td>
</tr>
<tr>
<td>y6</td>
<td>integer</td>
<td>block design; arranging blocks to match a design</td>
</tr>
<tr>
<td>y7</td>
<td>integer</td>
<td>picture arrangement; ordering cards with true story lines</td>
</tr>
<tr>
<td>y8</td>
<td>integer</td>
<td>object assembly; reassembling puzzles</td>
</tr>
</tbody>
</table>

References

Index

* datasets
 academic_awards, 2
 hox_2010, 7
 nederhof_2014, 7
 reading_ach, 8
 school_admissions, 10
 stevens_1999, 11
 wechsler, 11

academic_awards, 2
bain, 5
gorica, 2
hox_2010, 7
nederhof_2014, 7
reading_ach, 8
school_admissions, 10
stevens_1999, 11
wechsler, 11