Package ‘gpindex’

November 15, 2023

Title Generalized Price and Quantity Indexes

Version 0.6.0

Depends R (>= 4.0)

Imports stats

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

License MIT + file LICENSE

Encoding UTF-8

BugReports https://github.com/marberts/gpindex/issues

LazyData true

Collate 'helpers.R' 'means.R' 'weights.R' 'contributions.R'
 'price_indexes.R' 'geks.R' 'operators.R' 'offset_prices.R'
 'outliers.R' 'price_data.R' 'gpindex-package.R'

Config/testthat/edition 3

VignetteBuilder knitr

RoxygenNote 7.2.3

NeedsCompilation no

Author Steve Martin [aut, cre, cph] (<https://orcid.org/0000-0003-2544-9480>)

Maintainer Steve Martin <stevemartin041@gmail.com>
Description

For each product, compute either the position of the previous period (back period), or the position of the first period (base period). Useful when price information is stored in a table.

Usage

```r
back_period(period, product = gl(1, length(period)), match_first = TRUE)

base_period(period, product = gl(1, length(period)), match_first = TRUE)
```

Arguments

- `period`: A factor, or something that can be coerced into one, that gives the time period for each transaction. The ordering of time periods follows the levels of `period` to agree with `cut()`.

- `product`: A factor, or something that can be coerced into one, that gives the product identifier for each transaction. The default is to assume that all transactions are for the same product.

- `match_first`: Should products in the first period match with themselves (the default)?
Value

Both functions return a numeric vector of indices for the back/base periods. With `back_period()`, for all periods after the first, the resulting vector gives the location of the corresponding product in the previous period. With `base_period()`, the resulting vector gives the location of the corresponding product in the first period. The locations are unchanged for the first time period if `match_first = TRUE`, NA otherwise.

Note

By definition, there must be at most one transaction for each product in each time period to determine a back/base period. If multiple transactions correspond to a period-product pair, then the back/base period at a point in time is always the first position for that product in the previous period.

See Also

`outliers` for common methods to detect outliers for price relatives.

`rs_pairs` in the `rsmatrix` package for making sales pairs.

Examples

df <- data.frame(
 price = 1:6,
 product = factor(c("a", "b")),
 period = factor(c(1, 1, 2, 2, 3, 3))
)

with(df, back_period(period, product))

Make period-over-period price relatives
with(df, price / price[back_period(period, product)])

Make fixed-base price relatives
with(df, price / price[base_period(period, product)])

Change the base period with relevel()
with(df, price / price[base_period(relevel(period, "2"), product)])

Warning is given if the same product has multiple prices
at any point in time
with(df, back_period(period))
Description

Makes a function balance the removal of NAs across multiple input vectors.

Usage

balanced(f, ...)

Arguments

f A function.
... Deprecated. Additional arguments to f that should not be balanced.

Value

A function like f with a new argument na.rm. If na.rm = TRUE then complete.cases() is used to remove missing values across all inputs prior to calling f.

See Also

Other operators: grouped(), quantity_index()

Examples

p1 <- price6[[3]]
p0 <- price6[[2]]
q1 <- quantity6[[3]]
q0 <- quantity6[[2]]

Balance missing values for a Fisher index

fisher <- balanced(fisher_index)
fisher(p1, p0, q1, replace(q0, 3, NA), na.rm = TRUE)
fisher_index(p1[-3], p0[-3], q1[-3], q0[-3])

Operators can be combined, but some care may be needed

x <- 1:6
w <- c(1:5, NA)

f <- factor(rep(letters[1:2], each = 3))

grouped(\(x, w\) balanced(fisher_mean)(x, w, na.rm = TRUE))(x, w, group = f)
balanced(grouped(fisher_mean))(x, w, group = f, na.rm = TRUE)
Description

Calculate additive percent-change contributions for generalized-mean price indexes, and indexes that nest two levels of generalized means consisting of an outer generalized mean and two inner generalized means (e.g., the Fisher index).

Usage

contributions(r)

arithmetic_contributions(x, w = NULL)

geometric_contributions(x, w = NULL)

harmonic_contributions(x, w = NULL)

nested_contributions(r1, r2, t = c(1, 1))

nested_contributions2(r1, r2, t = c(1, 1))

fisher_contributions(x, w1 = NULL, w2 = NULL)

Arguments

r A finite number giving the order of the generalized mean.

x A strictly positive numeric vector.

w, w1, w2 A strictly positive numeric vector of weights, the same length as x. The default is to equally weight each element of x.

r1 A finite number giving the order of the outer generalized mean.

r2 A pair of finite numbers giving the order of the inner generalized means.

t A pair of strictly positive weights for the inner generalized means. The default is equal weights.

Details

The function contributions() is a simple wrapper for transmute_weights(r, 1)() to calculate (additive) percent-change contributions for a price index based on a generalized mean of order r. It returns a function to compute a vector v(x, w) such that

generalized_mean(r)(x, w) - 1 == sum(v(x, w))
This generalizes the approach for calculating percent-change contributions in section 4.2 of Balk (2008) using the method by Martin (2021). The `arithmetic_contributions()`, `geometric_contributions()` and `harmonic_contributions()` functions cover the most important cases (i.e., $r = 1$, $r = 0$, and $r = -1$).

The `nested_contributions()` and `nested_contributions2()` functions are the analog of `contributions()` for an index based on a nested generalized mean with two levels, like a Fisher index. They return a function that calculates the contribution of each element of x when a generalized mean of order r_1 aggregates two generalized-mean indexes of x with orders r_2, and weights w_1 and w_2.

Unlike the case of a generalized-mean index, there are several ways to make contributions for an index based on nested generalized means. `nested_contributions()` uses a generalization of the algorithm in section 6 of Reinsdorf et al. (2002) by Martin (2021). `nested_contributions2()` generalizes the van IJzeren decomposition for the Fisher index (Balk, 2008, section 4.2.2) by constructing a weighted average of the contributions for both of the inner means with the approach by Martin (2021). In most cases the results are broadly similar.

The `fisher_contributions()` and `fisher_contributions2()` functions correspond to `nested_contributions(0, c(1, -1))()` and `nested_contributions2(0, c(1, -1))()`, and are appropriate for calculating percent-change contributions for a Fisher index.

Value

`contributions()` returns a function:

```r
def(x, w = NULL){...}
```

This computes the additive contribution for each element of x in an index based on the generalized mean of order r with weights w.

`nested_contributions()` and `nested_contributions2()` return a function:

```r
def(x, w1 = NULL, w2 = NULL){...}
```

This computes the additive contribution for each element of x when a generalized mean of order r_1 aggregates a generalized-mean index of order $r_2[1]$ with weights w_1 and a generalized-mean index of order $r_2[2]$ with weights w_2.

`arithmetic_contributions()`, `geometric_contributions()`, and `harmonic_contributions()` each return a numeric vector, the same length as x, giving the contribution of each element of x in an arithmetic, geometric, or harmonic index.

`fisher_contributions()` and `fisher_contributions2()` each return a numeric vector, the same length as x, giving the contribution of each element of x when a geometric mean aggregates an arithmetic mean of x with weights w_1 and a harmonic mean of x with weights w_2.

References

contributions

See Also

- `transmute_weights()` for the underlying implementation.

Examples

```r
x <- 2:3

#---- Contributions for a geometric index ----

geometric_mean(x) - 1 # percent change in the Jevons index

geometric_contributions(x)

all.equal(geometric_mean(x) - 1, sum(geometric_contributions(x)))

# This works by first transmuting the weights in the geometric mean
# into weights for an arithmetic mean, then finding the contributions
# to the percent change

scale_weights(transmute_weights(0, 1)(x)) * (x - 1)

# Not the only way to calculate contributions

transmute2 <- function(x) {
  m <- geometric_mean(x)
  (m - 1) / log(m) * log(x) / (x - 1) / length(x)
}

transmute2(x) * (x - 1) # not proportional to the method above
all.equal(sum(transmute2(x) * (x - 1)), geometric_mean(x) - 1)

# But these "transmuted" weights don't recover the geometric mean!
# Not a particularly good way to calculate contributions

isTRUE(all.equal(
  arithmetic_mean(x, transmute2(x)),
  geometric_mean(x)
))

# There are infinitely many ways to calculate contributions, but the
# weights from transmute_weights(0, 1)() are the *unique* weights that
# recover the geometric mean
```
perturb <- function(w, e) {
 w + c(e, -e) / (x - 1)
}

perturb(transmute2(x), 0.1) * (x - 1)
all.equal(
 sum(perturb(transmute2(x), 0.1) * (x - 1)),
 geometric_mean(x) - 1
)

isTRUE(all.equal(
 arithmetic_mean(x, perturb(transmute2(x), 0.1)),
 geometric_mean(x)
))

#---- Contributions for a Fisher index ----

p1 <- price6[[2]]
p0 <- price6[[1]]
q1 <- quantity6[[2]]
q0 <- quantity6[[1]]

Percent-change contributions for the Fisher index in section 6 of
Reinsdorf et al. (2002)

(con <- fisher_contributions(
 p1 / p0,
 index_weights("Laspeyres")(p0, q0),
 index_weights("Paasche")(p1, q1)
))

all.equal(sum(con), fisher_index(p1, p0, q1, q0) - 1)

Not the only way

(con2 <- fisher_contributions2(
 p1 / p0,
 index_weights("Laspeyres")(p0, q0),
 index_weights("Paasche")(p1, q1)
))

all.equal(sum(con2), fisher_index(p1, p0, q1, q0) - 1)

The same as the van IJzeren decomposition in section 4.2.2 of
Balk (2008)

Qf <- quantity_index(fisher_index)(q1, q0, p1, p0)
Ql <- quantity_index(laspeyres_index)(q1, q0, p0)
w1 <- scale_weights(index_weights("Laspeyres")(p0, q0))
w2 <- scale_weights(index_weights("HybridPaasche")(p0, q1))

(Qf / (Qf + Ql) * w1 + Ql / (Qf + Ql) * wp) * (p1 / p0 - 1)
Similar to the method in section 2 of Reinsdorf et al. (2002),
although those contributions aren't based on weights that sum to 1

Pf <- fisher_index(p1, p0, q1, q0)
P1 <- laspeyres_index(p1, p0, q0)

(1 / (1 + Pf) * w1 + P1 / (1 + Pf) * wp) * (p1 / p0 - 1)

Also similar to the decomposition by Hallerbach (2005), noting that
the Euler weights are close to unity

Pp <- paasche_index(p1, p0, q1)

(0.5 * sqrt(Pp / P1) * w1 + 0.5 * sqrt(P1 / Pp) * wp) * (p1 / p0 - 1)

#---- Contributions for other types of indexes ----

A function to get contributions for any superlative quadratic mean of
order 'r' index

superlative_contributions <- function(r) {
 nested_contributions(0, c(r / 2, -r / 2))
}

Works for other types of indexes, like the harmonic
Laspeyres Paasche index

hlp_contributions <- nested_contributions(-1, c(1, -1))
hlp_contributions(
 p1 / p0,
 index_weights("Laspeyres")(p0, q0),
 index_weights("Paasche")(p1, q1)
)

Or the AG mean index (tau = 0.25)

agmean_contributions <- nested_contributions(1, c(0, 1), c(0.25, 0.75))
agmean_contributions(
 p1 / p0,
 index_weights("Laspeyres")(p0, q0),
 index_weights("Laspeyres")(p0, q0)
)

Or the Balk-Walsh index

bw_contributions <- nested_contributions(0, c(0.5, -0.5))
bw_contributions(p1 / p0)
Description

Calculate a generalized logarithmic mean / extended mean.

Usage

extended_mean(r, s)
generalized_logmean(r)
logmean(a, b, tol = .Machine$double.eps^0.5)

Arguments

r, s A finite number giving the order of the generalized logarithmic mean / extended mean.
a, b A strictly positive numeric vector.
tol The tolerance used to determine if a == b.

Details

The function extended_mean() returns a function to compute the component-wise extended mean of a and b of orders r and s. See Bullen (2003, p. 393) for a definition. This is also called the difference mean, Stolarsky mean, or extended mean-value mean.

The function generalized_logmean() returns a function to compute the component-wise generalized logarithmic mean of a and b of order r. See Bullen (2003, p. 385) for a definition, or https://en.wikipedia.org/wiki/Stolarsky_mean. The generalized logarithmic mean is a special case of the extended mean, corresponding to extended_mean(r, 1)(), but is more commonly used for price indexes.

The function logmean() returns the ordinary component-wise logarithmic mean of a and b, and corresponds to generalized_logmean(1)().

Both a and b should be strictly positive. This is not enforced, but the results may not make sense when the generalized logarithmic mean / extended mean is not defined. The usual recycling rules apply when a and b are not the same length.

By definition, the generalized logarithmic mean / extended mean of a and b is a when a == b. The tol argument is used to test equality by checking if abs(a - b) <= tol. The default value is the same as all.equal(). Setting tol = 0 tests for exact equality, but can give misleading results when a and b are computed values. In some cases it's useful to multiply tol by a scale factor, such as max(abs(a), abs(b)). This often doesn't matter when making price indexes, however, as a and b are usually around 1.

Value

generalized_logmean() and extended_mean() return a function:

function(a, b, tol = .Machine$double.eps^0.5){...}
This computes the component-wise generalized logarithmic mean of order r, or the extended mean of orders r and s, of a and b.

`logmean()` returns a numeric vector, the same length as `max(length(a), length(b))`, giving the component-wise logarithmic mean of a and b.

Note

`generalized_logmean()` can be defined on the extended real line, so that $r = -\infty / \infty$ returns `pmin()` / `pmax()`, to agree with the definition in, e.g., Bullen (2003). This is not implemented, and r must be finite as in the original formulation by Stolarsky (1975).

References

See Also

`transmute_weights()` uses the extended mean to turn a generalized mean of order r into a generalized mean of order s.

Other means: `generalized_mean()`, `lehmer_mean()`, `nested_mean()`

Examples

```r
x <- 8:5
y <- 1:4

#---- Comparing logarithmic means and generalized means ----

# The arithmetic and geometric means are special cases of the
# generalized logarithmic mean

all.equal(generalized_logmean(2)(x, y), (x + y) / 2)
all.equal(generalized_logmean(-1)(x, y), sqrt(x * y))

# The logarithmic mean lies between the arithmetic and geometric means
# because the generalized logarithmic mean is increasing in $r$

all(logmean(x, y) < (x + y) / 2) &
  all(logmean(x, y) > sqrt(x * y))

# The harmonic mean cannot be expressed as a logarithmic mean, but can
# be expressed as an extended mean

all.equal(extended_mean(-2, -1)(x, y), 2 / (1 / x + 1 / y))

# The quadratic mean is also a type of extended mean
```
all.equal(extended_mean(2, 4)(x, y), sqrt(x^2 / 2 + y^2 / 2))

As are heronian and centroidal means

all.equal(
 extended_mean(0.5, 1.5)(x, y),
 (x + sqrt(x * y) + y) / 3
)

all.equal(
 extended_mean(2, 3)(x, y),
 2 / 3 * (x^2 + x * y + y^2) / (x + y)
)

#---- Approximating the logarithmic mean ----

The logarithmic mean can be approximated as a convex combination of
the arithmetic and geometric means that gives more weight to the
geometric mean

approx1 <- 1 / 3 * (x + y) / 2 + 2 / 3 * sqrt(x * y)
approx2 <- ((x + y) / 2)^((1 / 3) * (sqrt(x * y))^((2 / 3)

approx1 - logmean(x, y) # always a positive approximation error
approx2 - logmean(x, y) # a negative approximation error

A better approximation

correction <- (log(x / y) / pi)^4 / 32
approx1 / (1 + correction) - logmean(x, y)

#---- Some identities ----

A useful identity for turning an additive change into a proportionate
change

all.equal(logmean(x, y) * log(x / y), x - y)

Works for other orders, too

r <- 2

all.equal(
 generalized_logmean(r)(x, y)^(r - 1) * (r * (x - y)),
 (x^r - y^r)
)

Some other identities

all.equal(
 generalized_logmean(-2)(1, 2),
 (harmonic_mean(1:2) * geometric_mean(1:2)^2)^((1 / 3)
)
\begin{verbatim}
all.equal(
 generalized_logmean(0.5)(1, 2),
 (arithmetic_mean(1:2) + geometric_mean(1:2)) / 2
)

all.equal(
 logmean(1, 2),
 geometric_mean(1:2)^2 * logmean(1, 1 / 2)
)

#---- Integral representations of the logarithmic mean ----
logmean(2, 3)

integrate(function(t) 2^(1 - t) * 3^t, 0, 1)$value
1 / integrate(function(t) 1 / (2 * (1 - t) + 3 * t), 0, 1)$value
\end{verbatim}

factor_weights
Factor weights

Description

Factor weights to turn the generalized mean of a product into the product of generalized means. Useful for price-updating the weights in a generalized-mean index.

Usage

```r
factor_weights(r)
update_weights(x, w = NULL)
```

Arguments

- `r`
 A finite number giving the order of the generalized mean.
- `x`
 A strictly positive numeric vector.
- `w`
 A strictly positive numeric vector of weights, the same length as `x`. The default is to equally weight each element of `x`.

Details

The function `factor_weights(r)` returns a function to compute weights `u(x, w)` such that

```r
generalized_mean(r)(x * y, w) ==
generalized_mean(r)(x, w) * generalized_mean(r)(y, u(x, w))
```
This generalizes the result in section C.5 of Chapter 9 of the PPI Manual for chaining the Young index, and gives a way to chain generalized-mean price indexes over time.

Factoring weights with \(r = 1 \) sometimes gets called price-updating weights; `update_weights()` simply calls `factor_weights(1)`.

Factoring weights return a value that is the same length as `x`, so any missing values in `x` or the weights will return `NA`. Unless all values are `NA`, however, the result for will still satisfy the above identity when `na.rm = TRUE`.

Value

`factor_weights()` return a function:

```r
function(x, w = NULL){...}
```

`update_weights()` returns a numeric vector the same length as `x`.

References

See Also

`generalized_mean()` for the generalized mean.

`grouped()` to make these functions operate on grouped data.

Other weights: `scale_weights()`, `transmute_weights()`

Examples

```r
x <- 1:3
y <- 4:6
w <- 3:1

# Factor the harmonic mean by chaining the calculation
harmonic_mean(x * y, w)
harmonic_mean(x, w) * harmonic_mean(y, factor_weights(-1)(x, w))

# The common case of an arithmetic mean
arithmetic_mean(x * y, w)
arithmetic_mean(x, w) * arithmetic_mean(y, update_weights(x, w))

# In cases where x and y have the same order, Chebyshev's
# inequality implies that the chained calculation is too small
arithmetic_mean(x * y, w) >
arithmetic_mean(x, w) * arithmetic_mean(y, w)
```
Description

Calculate an inter-temporal GEKS price index over a rolling window, as described in chapter 7 of Balk (2008), by Ivancic et al. (2011), and in chapter 10 of the CPI manual (2020).

Usage

```r
geks(f)
```

```r
tornqvist_geks(p, q, period, product, window = nlevels(period), n = window - 1L, na.rm = FALSE)
```

```r
fisher_geks(p, q, period, product, window = nlevels(period), n = window - 1L, na.rm = FALSE)
```

```r
walsh_geks(p, q, period, product, window = nlevels(period), n = window - 1L, na.rm = FALSE)
```

Arguments

- `f`
 A price index function that uses information on both base and current-period prices and quantities, and satisfies the time-reversal test. Usually a Törqvist, Fisher, or Walsh index.
geks(p, q, period, product, window = nlevels(period), n = window - 1, na.rm = FALSE)

This calculates a period-over-period GEKS index with the desired index-number formula, returning a list for each window with a named numeric vector of index values.
tornqvist_geks(), fisher_geks(), and walsh_geks() each return a list with a named numeric vector giving the value of the respective period-over-period GEKS index for each window.

Note
Like back_period(), if multiple prices correspond to a period-product pair, then the back price at a point in time is always the first price for that product in the previous period. Unlike a bilateral index, however, duplicated period-product pairs can have more subtle implications for a multilateral index.

References

See Also
GEKSIIndex() in the indexNumR package for an implementation of the GEKS index with more options.
Other price-indexes: index_weights(), price_indexes
generalized_mean

Examples

```r
data <- c(1:6, 6:1)
period <- rep(1:3, 2)
product <- rep(letters[1:2], each = 3)

tornqvist_geks(data, quantity, period, product)
tornqvist_geks(data, quantity, period, product, window = 2)

# Missing data
quantity[2] <- NA

# Use all non-missing data
fisher_geks(data, quantity, period, product, na.rm = TRUE)

# Remove records with any missing data
fg <- geks(balanced(fisher_index))
fg(data, quantity, period, product, na.rm = TRUE)

# Make a Jevons GEKS index
jevons_geks <- geks(\(p1, p0, ..., na.rm) jevons_index(p1, p0, na.rm))
jevons_geks(data, quantity, period, product)
```

generalized_mean

Generalized mean

Description

Calculate a weighted generalized mean.

Usage

```r
generalized_mean(r)

arithmetic_mean(x, w = NULL, na.rm = FALSE)
geometric_mean(x, w = NULL, na.rm = FALSE)
harmonic_mean(x, w = NULL, na.rm = FALSE)
```

Arguments

- `r` A finite number giving the order of the generalized mean.
- `x` A strictly positive numeric vector.
Details

The function `generalized_mean()` returns a function to compute the generalized mean of `x` with weights `w` and exponent `r` (i.e., $\prod_{i=1}^{n} x_i^{w_i}$ when $r = 0$ and $(\sum_{i=1}^{n} w_i x_i^r)^{1/r}$ otherwise). This is also called the power mean, Hölder mean, or l_p mean. See Bullen (2003, p. 175) for a definition, or https://en.wikipedia.org/wiki/Generalized_mean. The generalized mean is the solution to the optimal prediction problem: choose m to minimize $\sum_{i=1}^{n} w_i [\log(x_i) - \log(m)]^2$ when $r = 0$, $\sum_{i=1}^{n} w_i [x_i^r - m^r]^2$ otherwise.

The functions `arithmetic_mean()`, `geometric_mean()`, and `harmonic_mean()` compute the arithmetic, geometric, and harmonic (or subcontrary) means, also known as the Pythagorean means. These are the most useful means for making price indexes, and correspond to setting $r = 1$, $r = 0$, and $r = -1$ in `generalized_mean()`.

Both `x` and `w` should be strictly positive (and finite), especially for the purpose of making a price index. This is not enforced, but the results may not make sense if the generalized mean is not defined. There are two exceptions to this.

1. The convention in Hardy et al. (1952, p. 13) is used in cases where `x` has zeros: the generalized mean is 0 whenever `w` is strictly positive and $r < 0$. (The analogous convention holds whenever at least one element of `x` is `Inf`: the generalized mean is `Inf` whenever `w` is strictly positive and $r > 0$.)

2. Some authors let `w` be non-negative and sum to 1 (e.g., Sydsaeter et al., 2005, p. 47). If `w` has zeros, then the corresponding element of `x` has no impact on the mean whenever `x` is strictly positive. Unlike `weighted.mean()`, however, zeros in `w` are not strong zeros, so infinite values in `x` will propagate even if the corresponding elements of `w` are zero.

The weights are scaled to sum to 1 to satisfy the definition of a generalized mean. There are certain price indexes where the weights should not be scaled (e.g., the Vartia-I index); use `sum()` for these cases.

The underlying calculation returned by `generalized_mean()` is mostly identical to `weighted.mean()`, with one important exception: missing values in the weights are not treated differently than missing values in `x`. Setting `na.rm` = `TRUE` drops missing values in both `x` and `w`, not just `x`. This ensures that certain useful identities are satisfied with missing values in `x`. In most cases `arithmetic_mean()` is a drop-in replacement for `weighted.mean()`.

Value

`generalized_mean()` returns a function:

```r
function(x, w = NULL, na.rm = FALSE){...}
```

This computes the generalized mean of order `r` of `x` with weights `w`. `arithmetic_mean()`, `geometric_mean()`, and `harmonic_mean()` each return a numeric value for the generalized means of order 1, 0, and -1.
Note
generalized_mean() can be defined on the extended real line, so that $r = -\infty / \infty$ returns $\min() / \max()$, to agree with the definition in, e.g., Bullen (2003). This is not implemented, and r must be finite.

There are a number of existing functions for calculating unweighted geometric and harmonic means, namely the geometric.mean() and harmonic.mean() functions in the psych package, the geomean() function in the FSA package, the GMean() and HMean() functions in the DescTools package, and the geoMean() function in the EnvStats package. Similarly, the ci_generalized_mean() function in the Compind package calculates an unweighted generalized mean.

References

See Also
transmute_weights() transforms the weights to turn a generalized mean of order r into a generalized mean of order s.
factor_weights() calculates the weights to factor a mean of products into a product of means.
price_indexes and quantity_index() for simple wrappers that use generalized_mean() to calculate common indexes.
back_period()/base_period() for a simple utility function to turn prices in a table into price relatives.
Other means: extended_mean(), lehmer_mean(), nested_mean()

Examples
```r
x <- 1:3
w <- c(0.25, 0.25, 0.5)

#---- Common generalized means ----

# Arithmetic mean
arithmetic_mean(x, w) # same as weighted.mean(x, w)
```
Geometric mean

generalized_mean(x, w) # same as prod(x^w)

Harmonic mean

harmonic_mean(x, w) # same as 1 / weighted.mean(1 / x, w)

Quadratic mean / root mean square

generalized_mean(2)(x, w)

Cubic mean

Notice that this is larger than the other means so far because
the generalized mean is increasing in r

generalized_mean(3)(x, w)

#---- Comparing the Pythagorean means ----

The dispersion between the arithmetic, geometric, and harmonic
mean usually increases as the variance of 'x' increases

x <- c(1, 3, 5)
y <- c(2, 3, 4)

var(x) > var(y)
arithmetic_mean(x) - geometric_mean(x)
arithmetic_mean(y) - geometric_mean(y)
geometric_mean(x) - harmonic_mean(x)
geometric_mean(y) - harmonic_mean(y)

But the dispersion between these means is only bounded by the
variance (Bullen, 2003, p. 156)

arithmetic_mean(x) - geometric_mean(x) >= 2 / 3 * var(x) / (2 * max(x))
arithmetic_mean(x) - geometric_mean(x) <= 2 / 3 * var(x) / (2 * min(x))

Example by Lord (2002) where the dispersion decreases as the variance
increases, counter to the claims by Fisher (1922, p. 108) and the
CPI manual (par. 1.14)

x <- (5 + c(sqrt(5), -sqrt(5), -3)) / 4
y <- (16 + c(7 * sqrt(2), -7 * sqrt(2), 0)) / 16

var(x) > var(y)
arithmetic_mean(x) - geometric_mean(x)
arithmetic_mean(y) - geometric_mean(y)
geometric_mean(x) - harmonic_mean(x)
geometric_mean(y) - harmonic_mean(y)

The "bias" in the arithmetic and harmonic indexes is also smaller in
this case, counter to the claim by Fisher (1922, p. 108)

arithmetic_mean(x) * arithmetic_mean(1 / x) - 1
arithmetic_mean(y) * arithmetic_mean(1 / y) - 1

harmonic_mean(x) * harmonic_mean(1 / x) - 1
harmonic_mean(y) * harmonic_mean(1 / y) - 1

#---- Missing values ----

w[2] <- NA

arithmetic_mean(x, w, na.rm = TRUE) # drop the second observation
weighted.mean(x, w, na.rm = TRUE) # still returns NA

grouped

Grouped operator

Description

Make a function applicable to grouped data.

Usage

```r
grouped(f, ...)
```

Arguments

- **f**
 - A function.
- **...**
 - Deprecated. Additional arguments to `f` that should *not* be treated as grouped.

Value

A function like `f` with a new argument `group`. This accepts a factor to split all other arguments in `f` into groups before applying `f` to each group and combining the results. It is similar to `ave()`, but more general.

See Also

Other operators: `balanced()`, `quantity_index()`
Examples

```r
p1 <- price6[[3]]
p0 <- price6[[2]]
q1 <- quantity6[[3]]
q0 <- quantity6[[2]]

# Calculate Tornqvist weights for two groups
f <- factor(rep(letters[1:2], each = 3))
tornqvist_weights <- grouped(index_weights("Tornqvist"))
tornqvist_weights(p1, p0, q1, q0, group = f)

# Calculate a mean like ave(), but with weights
x <- 1:6
w <- c(1:5, NA)
grouped_mean <- grouped(g(mean(x, w, na.rm = TRUE))
grouped_mean(x, w, group = f)

# Redistribute weights
w1 <- c(2, 4)
w2 <- 1:6
harmonic_mean(mapply(harmonic_mean, split(x, f), split(w2, f)), w1)
wr <- grouped(scale_weights)(w2, group = f) * w1[f]
harmonic_mean(x, wr)
```

index_weights

Index weights

Description

Calculate weights for a variety of different price indexes.

Usage

```r
index_weights(
  type = c("Carli", "Jevons", "Coggshall", "Dutot", "Laspeyres", "HybridLaspeyres", 
            "LloydMoulton", "Palgrave", "Paasche", "HybridPaasche", "Drobisch", "Unnamed", 
            "MontgomeryVartia", "Vartia2", "SatoVartia", "Theil", "Rao", "Lowe", "Young")
)
```

Arguments

`type` The name of the index. See details for the possible types of indexes.
index_weights

Details

The `index_weights()` function returns a function to calculate weights for a variety of price indexes. Weights for the following types of indexes can be calculated:

- Carli / Jevons / Coggeshall
- Dutot
- Laspeyres / Lloyd-Moulton
- Hybrid Laspeyres (for use in a harmonic mean)
- Paasche / Palgrave
- Hybrid Paasche (for use in an arithmetic mean)
- Törnqvist / Unnamed
- Drobisch
- Walsh-I (for an arithmetic Walsh index)
- Walsh-II (for a geometric Walsh index)
- Marshall-Edgeworth
- Geary-Khamis
- Montgomery-Vartia / Vartia-I
- Sato-Vartia / Vartia-II
- Theil
- Rao
- Lowe
- Young

The weights need not sum to 1, as this normalization isn’t always appropriate (i.e., for the Vartia-I weights).

Value

A function of current and base period prices/quantities that calculates the relevant weights.

Note

Naming for the indexes and weights generally follows the CPI manual (2020), Balk (2008), and Selvanathan and Rao (1994). In several cases two or more names correspond to the same weights (e.g., Paasche and Palgrave, or Sato-Vartia and Vartia-II). The calculations are given in the examples.

See Also

- `update_weights()` for price-updating weights.
- `quantity_index()` to remap the arguments in these functions for a quantity index.

Other price-indexes: `geks()`, `price_indexes`
Examples

\begin{verbatim}
p0 <- price6[[2]]
p1 <- price6[[3]]
q0 <- quantity6[[2]]
q1 <- quantity6[[3]]
pb <- price6[[1]]
qb <- quantity6[[1]]

#---- Making the weights for different indexes ----
Explicit calculation for each of the different weights
Carli/Jevons/Coggeshall
all.equal(index_weights("Carli")(p1), rep(1, length(p0)))

Dutot
all.equal(index_weights("Dutot")(p0), p0)

Laspeyres / Lloyd-Moulton
all.equal(index_weights("Laspeyres")(p0, q0), p0 * q0)

Hybrid Laspeyres
all.equal(index_weights("HybridLaspeyres")(p1, q0), p1 * q0)

Paasche / Palgrave
all.equal(index_weights("Paasche")(p1, q1), p1 * q1)

Hybrid Paasche
all.equal(index_weights("HybridPaasche")(p0, q1), p0 * q1)

Tornqvist / Unnamed
all.equal(
 index_weights("Tornqvist")(p1, p0, q1, q0),
 0.5 * p0 * q0 / sum(p0 * q0) + 0.5 * p1 * q1 / sum(p1 * q1)
)

Drobisch
all.equal(
 index_weights("Drobisch")(p1, p0, q1, q0),
 0.5 * p0 * q0 / sum(p0 * q0) + 0.5 * p0 * q1 / sum(p0 * q1)
)

Walsh-I
all.equal(

\end{verbatim}
index_weights

index_weights("Walsh1") (p0, q1, q0),
p0 * sqrt(q0 * q1)
)

Marshall-Edgeworth

all.equal(
 index_weights("MarshallEdgeworth") (p0, q1, q0),
p0 * (q0 + q1)
)

Geary-Khamis

all.equal(
 index_weights("GearyKhamis") (p0, q1, q0),
p0 / (1 / q0 + 1 / q1)
)

Montgomery-Vartia / Vartia-I

all.equal(
 index_weights("MontgomeryVartia") (p1, p0, q1, q0),
 logmean(p0 * q0, p1 * q1) / logmean(sum(p0 * q0), sum(p1 * q1))
)

Sato-Vartia / Vartia-II

all.equal(
 index_weights("SatoVartia") (p1, p0, q1, q0),
 logmean(p0 * q0 / sum(p0 * q0), p1 * q1 / sum(p1 * q1))
)

Walsh-II

all.equal(
 index_weights("Walsh2") (p1, p0, q1, q0),
sqrt(p0 * q0 * p1 * q1)
)

Theil

all.equal(index_weights("Theil") (p1, p0, q1, q0), {
 w0 <- scale_weights(p0 * q0)
 w1 <- scale_weights(p1 * q1)
 (w0 * w1 * (w0 + w1) / 2)^((1 / 3)
})

Rao

all.equal(index_weights("Rao") (p1, p0, q1, q0), {
 w0 <- scale_weights(p0 * q0)
 w1 <- scale_weights(p1 * q1)
 w0 * w1 / (w0 + w1)
lehmer_mean

Description

Calculate a weighted Lehmer mean.

Usage

```r
lehmer_mean(r)
```

```r
contraharmonic_mean(x, w = NULL, na.rm = FALSE)
```

Arguments

- `r`: A finite number giving the order of the Lehmer mean.
- `x`: A strictly positive numeric vector.
- `w`: A strictly positive numeric vector of weights, the same length as `x`. The default is to equally weight each element of `x`.
- `na.rm`: Should missing values in `x` and `w` be removed? By default missing values in `x` or `w` return a missing value.

Details

The function `lehmer_mean()` returns a function to compute the Lehmer mean of order `r` of `x` with weights `w`, which is calculated as the arithmetic mean of `x` with weights `w x^{r-1}`. This is also called the counter-harmonic mean or generalized anti-harmonic mean. See Bullen (2003, p. 245) for a definition, or https://en.wikipedia.org/wiki/Lehmer_mean.

The Lehmer mean of order 2 is sometimes called the contraharmonic (or anti-harmonic) mean. The function `contraharmonic_mean()` simply calls `lehmer_mean(2)()`. Like the generalized mean, the contraharmonic mean is the solution to an optimal prediction problem: choose `m` to minimize \(\sum_{i=1}^{n} w_i (\frac{x_i}{m} - 1)^2 \). The Lehmer mean of order -1 has a similar interpretation, replacing \(\frac{x_i}{m} \) with \(m x_i \), and together these bound the harmonic and arithmetic means.

The Lehmer mean is an alternative to the generalized mean that generalizes the Pythagorean means. The function `lehmer_mean(1)()` is identical to `arithmetic_mean()`, `lehmer_mean(0)()` is identical to `harmonic_mean()`, and `lehmer_mean(0.5)()` is identical to `geometric_mean()` with two
values and no weights. See von der Lippe (2015) for more details on the use of these means for making price indexes.

Value

`lehmer_mean()` returns a function:

```r
function(x, w = NULL, na.rm = FALSE){...}
```

This computes the Lehmer mean of order r of `x` with weights `w`.

`contraharmonic_mean()` returns a numeric value for the Lehmer mean of order 2.

Note

`lehmer_mean()` can be defined on the extended real line, so that $r = \frac{-\infty}{\infty}$ returns $\min() / \max()$, to agree with the definition in, e.g., Bullen (2003). This is not implemented, and r must be finite.

References

See Also

Other means: `extended_mean()`, `generalized_mean()`, `nested_mean()`

Examples

```r
x <- 2:3
w <- c(0.25, 0.75)

#---- The Pythagorean means are special cases of the Lehmer mean ----
all.equal(lehmer_mean(1)(x, w), arithmetic_mean(x, w))
all.equal(lehmer_mean(0)(x, w), harmonic_mean(x, w))
all.equal(lehmer_mean(0.5)(x), geometric_mean(x))

#---- Comparing Lehmer means and generalized means ----
# When r < 1, the generalized mean is larger than the corresponding Lehmer mean
lehmer_mean(-1)(x, w) < generalized_mean(-1)(x, w)

# The reverse is true when r > 1
```
lehmer_mean(3)(x, w) > generalized_mean(3)(x, w)

This implies the contraharmonic mean is larger than the quadratic
mean, and therefore the Pythagorean means

contraharmonic_mean(x, w) > arithmetic_mean(x, w)
contraharmonic_mean(x, w) > geometric_mean(x, w)
contraharmonic_mean(x, w) > harmonic_mean(x, w)

... and the logarithmic mean

contraharmonic_mean(2:3) > logmean(2, 3)

The difference between the arithmetic mean and contraharmonic mean
is proportional to the variance of x

weighted_var <- function(x, w) {
 arithmetic_mean(x^2, w) - arithmetic_mean(x, w)^2
}

arithmetic_mean(x, w) + weighted_var(x, w) / arithmetic_mean(x, w)
contraharmonic_mean(x, w)

#---- Changing the order of the mean ----

It is easy to modify the weights to turn a Lehmer mean of order r
into a Lehmer mean of order s because the Lehmer mean can be
expressed as an arithmetic mean

r <- 2
s <- -3
lehmer_mean(r)(x, w)
lehmer_mean(s)(x, w * x^(r - 1) / x^(s - 1))

The weights can also be modified to turn a Lehmer mean of order r
into a generalized mean of order s

lehmer_mean(r)(x, w)
generalized_mean(s)(x, transmute_weights(1, s)(x, w * x^(r - 1)))

... and vice versa

lehmer_mean(r)(x, transmute_weights(s, 1)(x, w) / x^(r - 1))
generalized_mean(s)(x, w)

#---- Percent-change contributions ----

Percent-change contributions for a price index based on the Lehmer
mean are easy to calculate

scale_weights(w * x^(r - 1)) * (x - 1)
Description
Calculate the (outer) generalized mean of two (inner) generalized means (i.e., crossing generalized means).

Usage
nested_mean(r1, r2, t = c(1, 1))

fisher_mean(x, w1 = NULL, w2 = NULL, na.rm = FALSE)

Arguments
r1 A finite number giving the order of the outer generalized mean.
r2 A pair of finite numbers giving the order of the inner generalized means.
t A pair of strictly positive weights for the inner generalized means. The default is equal weights.
x A strictly positive numeric vector.
w1, w2 A strictly positive numeric vector of weights, the same length as x. The default is to equally weight each element of x.
na.rm Should missing values in x, w1, and w2 be removed? By default missing values in x, w1, or w2 return a missing value.

Value
nested_mean() returns a function:

function(x, w1 = NULL, w2 = NULL, na.rm = FALSE){...}

This computes the generalized mean of order r1 of the generalized mean of order r2[1] of x with weights w1 and the generalized mean of order r2[2] of x with weights w2.

fisher_mean() returns a numeric value for the geometric mean of the arithmetic and harmonic means (i.e., r1 = 0 and r2 = c(1, -1)).

Note
There is some ambiguity about how to remove missing values in w1 or w2 when na.rm = TRUE. The approach here is to remove missing values when calculating each of the inner means individually, rather than removing all missing values prior to any calculations. This means that a different number of data points could be used to calculate the inner means. Use the balanced() operator to balance missing values across w1 and w2 prior to any calculations.
References

See Also

nested_contributions() for percent-change contributions for indexes based on nested generalized means, like the Fisher index.

Other means: *extended_mean()*, *generalized_mean()*, *lehmer_mean()*

Examples

```r
x <- 1:3
w1 <- 4:6
w2 <- 7:9

#---- Making superlative indexes ----
# A function to make the superlative quadratic mean price index by
# Diewert (1976) as a product of generalized means
quadratic_mean_index <- function(x, w0, w1, r) {
  x <- sqrt(x)
  generalized_mean(r)(x, w0) * generalized_mean(-r)(x, w1)
}

quadratic_mean_index(x, w1, w2, 2)
# Same as the nested generalized mean (with the order halved)
quadratic_mean_index2 <- function(r) nested_mean(0, c(r / 2, -r / 2))
quadratic_mean_index2(2)(x, w1, w2)
# The arithmetic AG mean index by Lent and Dorfman (2009)
agmean_index <- function(tau) nested_mean(1, c(0, 1), c(tau, 1 - tau))
agmean_index(0.25)(x, w1, w1)

#---- Walsh index ----
# The (arithmetic) Walsh index is the implicit price index when using a
# superlative quadratic mean quantity index of order 1
p1 <- price6[[2]]
```
p0 <- price6[[1]]
q1 <- quantity6[[2]]
q0 <- quantity6[[1]]

walsh <- quadratic_mean_index2(1)

sum(p1 * q1) / sum(p0 * q0) / walsh(q1 / q0, p0 * q0, p1 * q1)

sum(p1 * sqrt(q1 * q0)) / sum(p0 * sqrt(q1 * q0))

Counter to the PPI manual (par. 1.105), it is not a superlative
quadratic mean price index of order 1

walsh(p1 / p0, p0 * q0, p1 * q1)

#---- Missing values ----

x[1] <- NA
w1[2] <- NA

fisher_mean(x, w1, w2, na.rm = TRUE)

Same as using obs 2 and 3 in an arithmetic mean, and obs 3 in a
harmonic mean

geometric_mean(c(
 arithmetic_mean(x, w1, na.rm = TRUE),
 harmonic_mean(x, w2, na.rm = TRUE)
))

Use balanced() to use only obs 3 in both inner means

balanced(fisher_mean)(x, w1, w2, na.rm = TRUE)

outliers

Outlier detection for price relatives

Description

Standard cutoff-based methods for detecting outliers with price relatives.

Usage

- `quartile_method(x, cu = 2.5, cl = cu, a = 0, type = 7)`
- `resistant_fences(x, cu = 2.5, cl = cu, a = 0, type = 7)`
- `robust_z(x, cu = 2.5, cl = cu)`
fixed_cutoff(x, cu = 2.5, cl = 1/cu)

tukey_algorithm(x, cu = 2.5, cl = cu, type = 7)

hb_transform(x)

Arguments

x
A strictly positive numeric vector of price relatives. These can be made with, e.g., `back_period()`.

cu, cl
A numeric vector, or something that can be coerced into one, giving the upper and lower cutoffs for each element of x. Recycled to the same length as x.

a
A numeric vector, or something that can be coerced into one, between 0 and 1 giving the scale factor for the median to establish the minimum dispersion between quartiles for each element of x. The default does not set a minimum dispersion. Recycled to the same length as x.

type
See `quantile()`.

Details

Each of these functions constructs an interval of the form $[b_l(x) - c_l \times l(x), b_u(x) + c_u \times u(x)]$ and assigns a value in x as TRUE if that value does not belong to the interval, FALSE otherwise. The methods differ in how they construct the values $b_l(x)$, $b_u(x)$, $l(x)$, and $u(x)$. Any missing values in x are ignored when calculating the cutoffs, but will return NA.

The fixed cutoff method is the simplest, and just uses the interval $[c_l, c_u]$.

The quartile method and Tukey algorithm are described in paragraphs 5.113 to 5.135 of the CPI manual (2020), as well as by Rais (2008) and Hutton (2008). The resistant fences method is an alternative to the quartile method, and is described by Rais (2008) and Hutton (2008). Quantile-based methods often identify price relatives as outliers because the distribution is concentrated around 1; setting $a > 0$ puts a floor on the minimum dispersion between quartiles as a fraction of the median. See the references for more details.

The robust Z-score is the usual method to identify relatives in the (asymmetric) tails of the distribution, simply replacing the mean with the median, and the standard deviation with the median absolute deviation.

These methods often assume that price relatives are symmetrically distributed (if not Gaussian). As the distribution of price relatives often has a long right tail, the natural logarithm can be used to transform price relative before identifying outliers (sometimes under the assumption that price relatives are distributed log-normal). The Hidiroglou-Berthelot transformation is another approach, described in the CPI manual (par. 5.124).

Value

A logical vector, the same length as x, that is TRUE if the corresponding element of x is identified as an outlier, FALSE otherwise.
References

See Also

grouped() to make each of these functions operate on grouped data.

back_period()/base_period() for a simple utility function to turn prices in a table into price relatives.

Examples

```r
set.seed(1234)
x <- rlnorm(10)
fixed_cutoff(x)
robust_z(x)
quartile_method(x)
resistant_fences(x) # always identifies fewer outliers than above
tukey_algorithm(x)

log(x)
hb_transform(x)

# Works the same for grouped data
f <- c("a", "b", "a", "a", "b", "b", "a", "a", "b")
grouped(quartile_method)(x, group = f)
```

price_data

Sample price/quantity data

Description

Prices and quantities for six products over five periods.

Format

Each data frame has 6 rows and 5 columns, with each row corresponding to a product and each column corresponding to a time period.
Note

Adapted from tables 3.1 and 3.2 in Balk (2008), which were adapted from tables 19.1 and 19.2 in the PPI manual.

Source

Examples

Recreate tables 3.4, 3.6, and 3.12 from Balk (2008)

```r
index_formulas <- function(p1, p0, q1, q0) {
  c(
    harmonic_laspeyres = harmonic_index("Laspeyres")(p1, p0, q0),
    geometric_laspeyres = geometric_index("Laspeyres")(p1, p0, q0),
    laspeyres = arithmetic_index("Laspeyres")(p1, p0, q0),
    paasche = harmonic_index("Paasche")(p1, p0, q1),
    geometric_paasche = geometric_index("Paasche")(p1, p0, q1),
    palgrave = arithmetic_index("Palgrave")(p1, p0, q1),
    fisher = fisher_index(p1, p0, q1, q0),
    tornqvist = geometric_index("Tornqvist")(p1, p0, q1, q0),
    marshall_edgeworth = arithmetic_index("MarshallEdgeworth")(p1, p0, q1, q0),
    walsh1 = arithmetic_index("Walsh1")(p1, p0, q1, q0),
    vartia2 = geometric_index("Vartia2")(p1, p0, q1, q0),
    vartial = geometric_index("Vartial")(p1, p0, q1, q0),
    stuvel = stuvel_index(2, 2)(p1, p0, q1, q0)
  )
}

round(t(mapply(index_formulas, price6, price6[1], quantity6, quantity6[1])), 4)
```

<table>
<thead>
<tr>
<th>price_indexes</th>
<th>Price indexes</th>
</tr>
</thead>
</table>

Description

Calculate a variety of price indexes using information on prices and quantities at two points in time.

Usage

```r
arithmetic_index(type)
geometric_index(type)
```
harmonic_index(type)
laspeyres_index(p1, p0, q0, na.rm = FALSE)
paasche_index(p1, p0, q1, na.rm = FALSE)
jevons_index(p1, p0, na.rm = FALSE)
lowe_index(p1, p0, qb, na.rm = FALSE)
young_index(p1, p0, pb, qb, na.rm = FALSE)
fisher_index(p1, p0, q1, q0, na.rm = FALSE)
hlp_index(p1, p0, q1, q0, na.rm = FALSE)
lm_index(elasticity)
cswd_index(p1, p0, na.rm = FALSE)
cswdb_index(p1, p0, q1, q0, na.rm = FALSE)
bw_index(p1, p0, na.rm = FALSE)
stuvel_index(a, b)
arithmetic_agmean_index(elasticity)
geometric_agmean_index(elasticity)
lehr_index(p1, p0, q1, q0, na.rm = FALSE)

Arguments

type The name of the index. See details for the possible types of indexes.
p1 Current-period prices.
p0 Base-period prices.
q0 Base-period quantities.
na.rm Should missing values be removed? By default missing values for prices or quantities return a missing value.
q1 Current-period quantities.
qb Period-b quantities for the Lowe/Young index.
pb Period-b prices for the Lowe/Young index.
elasticity The elasticity of substitution for the Lloyd-Moulton and AG mean indexes.
a, b Parameters for the generalized Stuvel index.
Details

The arithmetic_index(), geometric_index(), and harmonic_index() functions return a function to calculate a given type of arithmetic, geometric (logarithmic), and harmonic index. Together, these functions produce functions to calculate the following indexes.

- **Arithmetic indexes**
 - Carli
 - Dutot
 - Laspeyres
 - Palgrave
 - Unnamed index (arithmetic mean of Laspeyres and Palgrave)
 - Drobisch (arithmetic mean of Laspeyres and Paasche)
 - Walsh-I (arithmetic Walsh)
 - Marshall-Edgeworth
 - Geary-Khamis
 - Lowe
 - Young

- **Geometric indexes**
 - Jevons
 - Geometric Laspeyres
 - Geometric Paasche
 - Geometric Young
 - Törnqvist (or Törnqvist-Theil)
 - Montgomery-Vartia / Vartia-I
 - Sato-Vartia / Vartia-II
 - Walsh-II (geometric Walsh)
 - Theil
 - Rao

- **Harmonic indexes**
 - Coggeshall (equally weighted harmonic index)
 - Paasche
 - Harmonic Laspeyres
 - Harmonic Young

Along with the lm_index() function to calculate the Lloyd-Moulton index, these are just convenient wrappers for generalized_mean() and index_weights().

The Laspeyres, Paasche, Jevons, Lowe, and Young indexes are among the most common price indexes, and so they get their own functions. The laspeyres_index(), lowe_index(), and young_index() functions correspond to setting the appropriate type in arithmetic_index(); paasche_index()
and `jevons_index()` instead come from the `harmonic_index()` and `geometric_index()` functions.

In addition to these indexes, there are also functions for calculating a variety of indexes not based on generalized means. The Fisher index is the geometric mean of the arithmetic Laspeyres and Paasche indexes; the Harmonic Laspeyres Paasche index is the harmonic analog of the Fisher index (8054 on Fisher’s list). The Carruthers-Sellwood-Ward-Dalen and Carruthers-Sellwood-Ward-Dalen-Balk indexes are sample analogs of the Fisher index; the Balk-Walsh index is the sample analog of the Walsh index. The AG mean index is the arithmetic or geometric mean of the geometric and arithmetic Laspeyres indexes, weighted by the elasticity of substitution. The `stuvel_index()` function returns a function to calculate a Stuvel index of the given parameters. The Lehr index is an alternative to the Geary-Khamis index, and is the implicit price index for Fisher’s index 4153.

Value

`arithmetic_index()`, `geometric_index()`, `harmonic_index()`, and `stuvel_index()` each return a function to compute the relevant price indexes; `lm_index()`, `arithmetic_agmean_index()`, and `geometric_agmean_index()` each return a function to calculate the relevant index for a given elasticity of substitution. The others return a numeric value giving the change in price between the base period and current period.

Note

There are different ways to deal with missing values in a price index, and care should be taken when relying on these functions to remove missing values. Setting `na.rm = TRUE` removes price relatives with missing information, either because of a missing price or a missing weight, while using all available non-missing information to make the weights.

Certain properties of an index-number formula may not work as expected when removing missing values if there is ambiguity about how to remove missing values from the weights (as in, e.g., a Törnqvist or Sato-Vartia index). The `balanced()` operator may be helpful, as it balances the removal of missing values across prices and quantities prior to making the weights.

References

See Also

generalized_mean() for the generalized mean that powers most of these functions.
contributions() for calculating percent-change contributions.
quantity_index() to remap the arguments in these functions for a quantity index.
price6() for an example of how to use these functions with more than two time periods.
The piar package has more functionality working with price indexes for multiple groups of products over many time periods.
Other price-indexes: geks(), index_weights()

Examples

p0 <- price6[[2]]
p1 <- price6[[3]]
q0 <- quantity6[[2]]
q1 <- quantity6[[3]]
pb <- price6[[1]]
qb <- quantity6[[1]]

#---- Calculating price indexes ----
Most indexes can be calculated by combining the appropriate weights
with the correct type of mean

geometric_index("Laspeyres")(p1, p0, q0)
geometric_mean(p1 / p0, index_weights("Laspeyres")(p0, q0))

Arithmetic Laspeyres index

laspeyres_index(p1, p0, q0)
arithmetic_mean(p1 / p0, index_weights("Laspeyres")(p0, q0))

Harmonic calculation for the arithmetic Laspeyres

harmonic_mean(p1 / p0, index_weights("HybridLaspeyres")(p1, q0))

Same as transmuting the weights

all.equal(
 scale_weights(index_weights("HybridLaspeyres")(p1, q0)),
 scale_weights(
 transmute_weights(1, -1)(p1 / p0, index_weights("Laspeyres")(p0, q0))
)
)

This strategy can be used to make more exotic indexes, like the
quadratic-mean index (von der Lippe, 2001, p. 71)

generalized_mean(2)(p1 / p0, index_weights("Laspeyres")(p0, q0))

Or the exponential mean index (p. 64)
log(arithmetic_mean(exp(p1 / p0), index_weights("Laspeyres")(p0, q0)))

Or the arithmetic hybrid index (von der Lippe, 2015, p. 5)

arithmetic_mean(p1 / p0, index_weights("HybridLaspeyres")(p1, q0))
contraharmonic_mean(p1 / p0, index_weights("Laspeyres")(p0, q0))

Unlike its arithmetic counterpart, the geometric Laspeyres can
increase when base-period prices increase if some of these prices
are small

gl <- geometric_index("Laspeyres")
p0_small <- replace(p0, 1, p0[1] / 5)
p0_dx <- replace(p0_small, 1, p0_small[1] + 0.01)
gl(p1, p0_small, q0) < gl(p1, p0_dx, q0)

#---- Price updating the weights in a price index -----

Chain an index by price updating the weights

p2 <- price6[[4]]
laspeyres_index(p2, p0, q0)

I1 <- laspeyres_index(p1, p0, q0)
w_pu <- update_weights(p1 / p0, index_weights("Laspeyres")(p0, q0))
I2 <- arithmetic_mean(p2 / p1, w_pu)
I1 * I2

Works for other types of indexes, too

harmonic_index("Laspeyres") (p2, p0, q0)

I1 <- harmonic_index("Laspeyres") (p1, p0, q0)
w_pu <- factor_weights(-1)(p1 / p0, index_weights("Laspeyres")(p0, q0))
I2 <- harmonic_mean(p2 / p1, w_pu)
I1 * I2

#---- Percent-change contributions -----

Percent-change contributions for the Tornqvist index

w <- index_weights("Tornqvist")(p1, p0, q1, q0)
(con <- geometric_contributions(p1 / p0, w))

all.equal(sum(con), geometric_index("Tornqvist")(p1, p0, q1, q0) - 1)

#---- Missing values -----

NAs get special treatment

p_na <- replace(p0, 6, NA)
Drops the last price relative
laspeyres_index(p1, p_na, q0, na.rm = TRUE)

Only drops the last period-0 price
sum(p1 * q0, na.rm = TRUE) / sum(p_na * q0, na.rm = TRUE)

#---- von Bortkiewicz decomposition ----
paasche_index(p1, p0, q1) / laspeyres_index(p1, p0, q0) - 1

wl <- scale_weights(index_weights("Laspeyres")(p0, q0))
pl <- laspeyres_index(p1, p0, q0)
ql <- quantity_index(laspeyres_index)(q1, q0, p0)
sum(wl * (p1 / p0 / pl - 1) * (q1 / q0 / ql - 1))

Similar decomposition for geometric Laspeyres/Paasche
wp <- scale_weights(index_weights("Paasche")(p1, q1))
gl <- geometric_index("Laspeyres")(p1, p0, q0)
gp <- geometric_index("Paasche")(p1, p0, q1)
log(gp / gl)
sum(scale_weights(wl) * (wp / wl - 1) * log(p1 / p0 / gl))

#---- Consistency in aggregation ----
p0a <- p0[1:3]
p0b <- p0[4:6]
p1a <- p1[1:3]
p1b <- p1[4:6]
q0a <- q0[1:3]
q0b <- q0[4:6]
q1a <- q1[1:3]
q1b <- q1[4:6]

Indexes based on the generalized mean with value share weights are
consistent in aggregation
lm_index(0.75)(p1, p0, q0)

w <- index_weights("LloydMoulton")(p0, q0)
Ia <- generalized_mean(0.25)(p1a / p0a, w[1:3])
Ib <- generalized_mean(0.25)(p1b / p0b, w[4:6])
generalized_mean(0.25)(c(Ia, Ib), c(sum(w[1:3]), sum(w[4:6])))

Agrees with group-wise indexes
all.equal(lm_index(0.75)(p1a, p0a, q0a), Ia)
all.equal(lm_index(0.75)(p1b, p0b, q0b), Ib)
Care is needed with more complex weights, e.g., Drobisch, as this
doesn't fit Balk's (2008) definition (p. 113) of a generalized-mean
index (it's the arithmetic mean of a Laspeyres and Paasche index)

`arithmetic_index("Drobisch")`<p1, p0, q1, q0>

`w <- index_weights("Drobisch")`(p1, p0, q1, q0)
`Ia <- arithmetic_mean(p1a / p0a, w[1:3])`
`Ib <- arithmetic_mean(p1b / p0b, w[4:6])`
`arithmetic_mean(c(Ia, Ib), c(sum(w[1:3]), sum(w[4:6])))`

Does not agree with group-wise indexes

`all.equal(arithmetic_index("Drobisch")`(p1a, p0a, q1a, q0a), Ia)
`all.equal(arithmetic_index("Drobisch")`(p1b, p0b, q1b, q0b), Ib)

quantity_index
Quantity index operator

Description

Remaps price arguments into quantity argument (and vice versa) to turn a price index into a quantity index.

Usage

`quantity_index(f)`

Arguments

- `f`
 A price-index function.

Value

A function like `f`, except that the role of prices/quantities is reversed.

See Also

Other operators: `balanced()`, `grouped()`

Examples

`p1 <- price6[[3]]`
`p0 <- price6[[2]]`
`q1 <- quantity6[[3]]`
`q0 <- quantity6[[2]]`

Remap argument names to be quantities rather than prices
scale_weights

Description
Scale a vector of weights so that they sum to 1.

Usage
scale_weights(x)

Arguments
x A strictly positive numeric vector.

Value
A numeric vector that sums to 1. If there are NAs in x then the result sums 1 to if these values are removed.

See Also
grouped() to make this function applicable to grouped data.
Other weights: factor_weights(), transmute_weights()

Examples
scale_weights(1:5)
Description

Transmute weights to turn a generalized mean of order \(r \) into a generalized mean of order \(s \). Useful for calculating additive and multiplicative decompositions for a generalized-mean index, and those made of nested generalized means (e.g., Fisher index).

Usage

- `transmute_weights(r, s)`
- `nested_transmute(r1, r2, s, t = c(1, 1))`
- `nested_transmute2(r1, r2, s, t = c(1, 1))`

Arguments

- `r`, `s`: A finite number giving the order of the generalized mean. See details.
- `r1`: A finite number giving the order of the outer generalized mean.
- `r2`: A pair of finite numbers giving the order of the inner generalized means.
- `t`: A pair of strictly positive weights for the inner generalized means. The default is equal weights.

Details

The function `transmute_weights(r, s)` returns a function to compute a vector of weights \(v(x, w) \) such that

\[
generalized_mean(r)(x, w) = generalized_mean(s)(x, v(x, w))
\]

`nested_transmute(r1, r2, t, s)` and `nested_transmute2(r1, r2, t, s)` do the same for nested generalized means, so that

\[
nested_mean(r1, r2, t)(x, w1, w2) = generalized_mean(s)(x, v(x, w1, w2))
\]

This generalizes the result for turning a geometric mean into an arithmetic mean (and vice versa) in section 4.2 of Balk (2008), and a Fisher mean into an arithmetic mean in section 6 of Reinsdorf et al. (2002), although these are usually the most important cases. See Martin (2021) for details.

`nested_transmute2()` takes a slightly different approach than `nested_transmute()`, generalizing the van IJzeren arithmetic decomposition for the Fisher index (Balk, 2008, section 4.2.2) using the approach by Martin (2021), although in most cases the results are broadly similar.

Transmuting weights returns a value that is the same length as \(x \), so any missing values in \(x \) or the weights will return `NA`. Unless all values are `NA`, however, the result for will still satisfy the above identities when `na.rm = TRUE`.
Value

transmute_weights() returns a function:

\[
\text{function}(x, w = \text{NULL})\{\ldots\}
\]

nested_transmute() and nested_transmute2() similarly return a function:

\[
\text{function}(x, w1 = \text{NULL}, w2 = \text{NULL})\{\ldots\}
\]

References

See Also

- generalized_mean() for the generalized mean and nested_mean() for the nested mean.
- extended_mean() for the extended mean that underlies transmute_weights().
- contributions() for calculating additive percent-change contributions.
- grouped() to make these functions operate on grouped data.

Other weights: factor_weights(), scale_weights()

Examples

```r
x <- 1:3
y <- 4:6
w <- 3:1

#---- Transforming generalized means ----

generalize_mean(x)
arithmetic_mean(x, transmute_weights(0, 1)(x))
harmonic_mean(x, transmute_weights(0, -1)(x))

# Transmuting the weights for a harmonic mean into those
# for an arithmetic mean is the same as using weights w / x

all.equal(
  scale_weights(transmute_weights(-1, 1)(x, w)),
)```
scale_weights(w / x)
)

# Works for nested means, too
w1 <- 3:1
w2 <- 1:3

fisher_mean(x, w1, w2)
arithmetic_mean(x, nested_transmute(0, c(1, -1), 1)(x, w1, w2))
arithmetic_mean(x, nested_transmute2(0, c(1, -1), 1)(x, w1, w2))

# Note that nested_transmute() has an invariance property
# not shared by nested_transmute2()
all.equal(nested_transmute(0, c(1, -1), 1)(x, w1, w2),
          transmute_weights(2, 1)(
            x, nested_transmute(0, c(1, -1), 2)(x, w1, w2)
          ))

all.equal(nested_transmute2(0, c(1, -1), 1)(x, w1, w2),
          transmute_weights2(2, 1)(
            x, nested_transmute2(0, c(1, -1), 2)(x, w1, w2)
          ))

#---- Percent-change contributions ----
# Transmuted weights can be used to calculate percent-change
# contributions for, e.g., a geometric price index
scale_weights(transmute_weights(0, 1)(x)) * (x - 1)
geometric_contributions(x) # the more convenient way

#---- Basket representation of a price index ----
# Any generalized-mean index can be represented as a basket-style
# index by transmuting the weights, which is how some authors
# define a price index (e.g., Sydsaeter et al., 2005, p. 174)
p1 <- 2:6
p0 <- 1:5

qs <- transmute_weights(-1, 1)(p1 / p0) / p0
all.equal(harmonic_mean(p1 / p0), sum(p1 * qs) / sum(p0 * qs))
Index

* means
  extended_mean, 9
  generalized_mean, 17
  lehmer_mean, 26
  nested_mean, 29

* operators
  balanced, 4
  grouped, 21
  quantity_index, 41

* price-indexes
  geks, 15
  index_weights, 22
  price_indexes, 34

* weights
  factor_weights, 13
  scale_weights, 42
  transmute_weights, 43

  all.equal(), 10
  arithmetic_agmean_index
    (price_indexes), 34
  arithmetic_contributions
    (contributions), 5
  arithmetic_index (price_indexes), 34
  arithmetic_mean (generalized_mean), 17
  ave(), 21

  back_period, 2
  back_period(), 16, 19, 32, 33
  balanced, 4, 21, 41
  balanced(), 29, 37
  base_period (back_period), 2
  base_period(), 19, 33
  bw_index (price_indexes), 34

  complete_cases(), 4
  contraharmonic_mean (lehmer_mean), 26
  contributions, 5
  contributions(), 38, 44
  cswd_index (price_indexes), 34
  cswdb_index (price_indexes), 34
  cut(), 2, 16
  extended_mean, 9, 19, 27, 30
  extended_mean(), 44
  factor_weights, 13, 42, 44
  factor_weights(), 19
  fisher_contributions (contributions), 5
  fisher_contributions2 (contributions), 5
  fisher_geks (geks), 15
  fisher_index (price_indexes), 34
  fisher_mean (nested_mean), 29
  fixed_cutoff (outliers), 31
  geks, 15, 27, 38
  generalized_logmean (extended_mean), 9
  generalized_mean, 11, 17, 27, 30
  generalized_mean(), 14, 36, 38, 44
  geometric_agmean_index (price_indexes), 34
  geometric_contributions
    (contributions), 5
  geometric_index (price_indexes), 34
  geometric_mean (generalized_mean), 17
  grouped, 4, 21, 41
  grouped(), 14, 43, 42, 44
  harmonic_contributions (contributions), 5
  harmonic_index (price_indexes), 34
  harmonic_mean (generalized_mean), 17
  hb_transform (outliers), 31
  hlp_index (price_indexes), 34

  index_weights, 16, 22, 38
  index_weights(), 36
  jevons_index (price_indexes), 34
  laspeyres_index (price_indexes), 34
lehmer_mean, 11, 19, 26, 30
leh_r_index (price_indexes), 34
lm_index (price_indexes), 34
logmean (extended_mean), 9
lowe_index (price_indexes), 34

max(), 19, 27
min(), 19, 27

nested_contributions (contributions), 5
nested_contributions(), 30
nested_contributions2 (contributions), 5
nested_mean, 11, 19, 27, 29
nested_mean(), 44
nested_transmute (transmute_weights), 43
nested_transmute2 (transmute_weights), 43

outliers, 3, 31

paasche_index (price_indexes), 34
pmax(), 11
pmin(), 11
price_index_function, 15
price-index function, 41
price6 (price_data), 33
price6(), 38
price_data, 33
price_indexes, 16, 19, 23, 34

quantile(), 32
quantity6 (price_data), 33
quantity_index, 4, 21, 41
quantity_index(), 19, 23, 38
quartile_method (outliers), 31

resistant_fences (outliers), 31
robust_z (outliers), 31

scale_weights, 14, 42, 44
stuvel_index (price_indexes), 34
sum(), 18

tornqvist_geks (geks), 15
transmute_weights, 14, 42, 43
transmute_weights(), 7, 11, 19
tukey_algorithm (outliers), 31

update_weights (factor_weights), 13
update_weights(), 23