Package ‘gpindex’

September 11, 2020

Title Generalized Price and Quantity Indexes

Version 0.2.0

Description A small package for calculating lots of different price indexes, and by extension quantity indexes. Provides tools to build and work with any type of generalized bilateral index (of which most price indexes are), along with a few important indexes that don't belong to the generalized family. Implements and extends many of the methods in Balk (2008, ISBN:978-1-107-40496-0) and ILO, IMF, OECD, Eurostat, UN, and World Bank (2004, ISBN:92-2-113699-X) for bilateral price indexes.

Depends R (>= 4.0)

Suggests stats

License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/marberts/gpindex

LazyData true

NeedsCompilation no

Author Steve Martin [aut, cre, cph]

Maintainer Steve Martin <stevemartin041@gmail.com>

Repository CRAN

Date/Publication 2020-09-11 06:00:06 UTC

R topics documented:

gpindex-package ... 2
generalized mean .. 3
logarithmic means .. 7
price indexes ... 10
price/quantity data ... 17
transform weights ... 18

Index

22
Description
A small package for calculating lots of different price indexes, and by extension quantity indexes. Provides tools to build and work with any type of generalized bilateral index (of which most price indexes are), along with a few important indexes that don’t belong to the generalized family. Implements and extends many of the methods in Balk (2008, ISBN:978-1-107-40496-0) and ILO, IMF, OECD, Eurostat, UN, and World Bank (2004, ISBN:92-2-113699-X) for bilateral price indexes.

Details
To avoid duplication, everything is framed as a price index; it is trivial to turn a price index into its analogous quantity index by simply switching prices and quantities.

Generalized indexes are a large family of price indexes that are consistent in aggregation (Balk, 2008, section 3.7.3). Almost all bilateral price indexes used in practice are either generalized indexes (like the Laspeyres and Paasche index) or are nested generalized indexes (like the Fisher index).

All generalized indexes are based on the generalized mean, which is provided by the mean_generalized() function. Given a set of price relatives and weights, any generalized price index is easily calculated as a generalized mean.

Two important functions for decomposing generalized means are given by weights_transmute() and weights_factor(). These functions can be used to calculate quote contributions and price-update weights for generalized indexes.

Together these functions, along with logmean_generalized(), provide the key mathematical apparatus to work with any type of generalized index, and those that are nested generalized indexes.

On top of these basic mathematical tools are functions for making standard price indexes when both prices and quantities are known. Weights for a large variety of indexes can be calculated with index_weights(), which can be plugged into the relevant generalized mean to calculate most common price indexes, and many uncommon ones. The index functions provide a simple wrapper.

Note
There are a number of R packages on the CRAN for working with price/quantity indexes (e.g., 'IndexNumber', 'productivity', 'IndexNumR', 'micEconIndex'). Compared to existing packages, this package provides greater flexibility for building index numbers in the class of generalized price and quantity indexes.

While there is support for a large number of index-number formulas out-of-the box, the focus is on the tools to easily make and work with any type of generalized price index. No assumptions are made about how data are stored or arranged; rather, the functions in the package are designed to work with atomic vectors, and can be used with R’s standard data-manipulation functions for more complex data structures. Compared to existing packages, this package is suitable for building custom price/quantity indexes, and learning about different types of index-number formulas.
Author(s)

Maintainer: Steve Martin <stevemartin041@gmail.com>

References

See Also

https://github.com/marberts/gpindex

generalized mean

Generalized mean

Description

Calculate a generalized mean.

Usage

```r
mean_generalized(r)
mean_arithmetic(x, w = rep(1, length(x)), na.rm = FALSE, scale = TRUE)
mean_geometric(x, w = rep(1, length(x)), na.rm = FALSE, scale = TRUE)
mean_harmonic(x, w = rep(1, length(x)), na.rm = FALSE, scale = TRUE)
```

Arguments

- `r` A finite number giving the order of the generalized mean.
- `x` A numeric vector.
- `w` A numeric vector of weights, the same length as `x`. The default is to equally weight each element of `x`.
- `na.rm` Should missing values in `x` and `w` be removed?
- `scale` Should the weights be scaled to sum to 1?
Details

The function `mean_generalized()` returns a function to compute the generalized mean of \(x \) with weights \(w \) and exponent \(r \) (i.e., the weighted mean of \(x \) to the power of \(r \), all raised to the power of \(1/r \)). This is also called the power mean or Holder mean. See Bullen (2003, p. 175) for a definition, or https://en.wikipedia.org/wiki/Power_mean.

The functions `mean_arithmetic()`, `mean_geometric()`, and `mean_harmonic()` compute the Pythagorean means, the most useful means for making price indexes, and correspond to setting \(r = 1 \), \(r = 0 \), and \(r = -1 \) in `mean_generalized()`.

Both \(x \) and \(w \) should be strictly positive, especially for the purpose of making a price index. This is not enforced here, but the results may not make sense if the generalized mean is not defined. There are two exceptions to this.

1. The convention in Hardy et al. (1952, p. 13) is used in cases where \(x \) has zeros: the generalized mean is 0 whenever \(w \) is strictly positive and \(r < 0 \).
2. Some authors let \(w \) be non-negative and sum to 1 (e.g., Sydsaeter et al., 2005, p. 47). If \(w \) has zeros, then the corresponding element of \(x \) has no impact on the mean, unless it is missing (unlike `weighted.mean()`).

The weights should almost always be scaled to sum to 1 to satisfy the definition of a generalized mean, although there are certain types of price indexes where the weight should not be scaled (e.g., the Vartia-I index).

The underlying calculation returned by `mean_generalized()` is mostly identical to `weighted.mean()`, with a few exceptions.

1. Missing values in the weights are not treated differently than missing values in \(x \). Setting `na.rm = TRUE` drops missing values in both \(x \) and \(w \), not just \(x \). This ensures that certain useful identities are satisfied with missing values in \(x \).
2. To speed up execution when there are NAs in \(x \) or \(w \), the return value is always NA whenever `na.rm = FALSE` and `anyNA(x) == TRUE` or `anyNA(w) == TRUE`. This means that NaNs can be handled slightly differently than `weighted.mean()`.

In most cases `mean_arithmetic()` is a drop-in replacement for `weighted.mean()`.

Value

`mean_generalized()` returns a function:

```r
function(x,w = rep(1,length(x)),na.rm = FALSE, scale = TRUE).
```

`mean_arithmetic()`, `mean_geometric()`, and `mean_harmonic()` each return a numeric value.

Warning

Passing very small values for \(r \) can give misleading results, and warning is given whenever `abs(r)` is sufficiently small. In general, \(r \) should not be a computed value.
Note

mean_generalized() can be defined on the extended real line, so that \(r = -\infty / \infty \) returns \({\min(\cdot)}/{\max(\cdot)}\), to agree with the definition in, e.g., Bullen (2003). This is not implemented, and \(r \) must be finite.

There are a number of existing functions for calculating unweighted geometric and harmonic means, namely the geometric.mean() and harmonic.mean() functions in the ‘psych’ package, the geomean() function in the ‘FSA’ package, the GMean() and HMean() functions in the ‘DescTools’ package, and the geoMean() function in the ‘EnvStats’ package.

References

See Also

logmean_generalized for the generalized logarithmic mean.

weights_transmute transforms the weights to turn an \(r \)-generalized mean into an \(s \)-generalized mean.

weights_factor factors the weights to a turn a mean of products into a product of means.

Examples

Make some data

\[
x <- 1:3
data <- c(0.25, 0.25, 0.5)
\]

Arithmetic mean

mean_arithmetic(x, w)
stats::weighted.mean(x, w)

Geometric mean

mean_geometric(x, w)
prod(x^w)

Using prod() to manually calculate the geometric mean can give misleading results

z <- 1:1000
prod(z)^(1 / length(z)) # overflow
mean_geometric(z)

z <- seq(0.0001, by = 0.0005, length.out = 1000)
prod(z)^(1 / length(z)) # underflow
mean_geometric(z)

Harmonic mean

mean_harmonic(x, w)
1 / stats::weighted.mean(1 / x, w)

Quadratic mean / root mean square

mean_generalized(2)(x, w)

Cubic mean

mean_generalized(3)(x, w)

This is larger than the other means so far because the generalized mean is
increasing in r

Example from Lord (2002) where the dispersion between arithmetic and
geometric means decreases as the variance increases

x <- c((5 + sqrt(5)) / 4, (5 - sqrt(5)) / 4, 1 / 2)
y <- c((16 + 7 * sqrt(2)) / 16, (16 - 7 * sqrt(2)) / 16, 1)
stats::sd(x) > stats::sd(y)
mean_arithmetic(x) - mean_geometric(x) <
mean_arithmetic(y) - mean_geometric(y)

When r < 1, the generalized mean is larger than the corresponding
counter-harmonic (Lehmer) mean

r <- -1
sum(w * x^r) / sum(w * x^(r - 1)) < mean_generalized(r)(x, w)

The reverse is true when r > 1

r <- 2
sum(w * x^r) / sum(w * x^(r - 1)) > mean_generalized(r)(x, w)

Example of how missing values are handled

w <- replace(x, 2, NA)
logarithmic means

mean_arithmetic(x, w)
mean_arithmetic(x, w, na.rm = TRUE)
stats::weighted.mean(x, w, na.rm = TRUE)

logarithmic means Generalized logarithmic mean / extended mean

Description

Calculate a generalized logarithmic mean / extended mean.

Usage

mean_extended(r, s)
logmean_generalized(r)
logmean(a, b, tol = .Machine$double.eps^0.5)

Arguments

r, s A finite number giving the order of the generalized logarithmic mean / extended mean.
a, b A numeric vector.
tol The tolerance used to determine if a == b.

Details

The function mean_extended() returns a function to compute the extended mean of a and b of order r and s. See Bullen (2003, p. 393) for a definition. This is also called the difference mean, Stolarsky mean, or extended mean-value mean.

The function logmean_generalized() returns a function to compute the generalized logarithmic mean of a and b of order r. See Bullen (2003, p. 385) for a definition, or https://en.wikipedia.org/wiki/Stolarsky_mean. The generalized logarithmic mean is a special case of the extended mean, mean_extended(r,1), but is more commonly used for price indexes.

The function logmean() returns the ordinary logarithmic mean, and corresponds to logmean_generalized(1).

Both a and b should be strictly positive. This is not enforced here, but the results may not make sense when the generalized logarithmic mean / extended mean is not defined.

By definition, the generalized logarithmic mean / extended mean of a and b is a when a == b. The tol argument is used to test equality by checking if abs(a - b) <= tol. The default value is the same as in all.equal(). Setting tol = 0 will test for exact equality, but can give misleading results in certain applications when a and b are computed values.
logarithmic means

Value

logmean_generalized() and mean_extended() return a function:
function(a,b,tol = .Machine$double.eps^0.5).

logmean() returns a numeric vector the same length as max(length(a),length(b)).

Warning

Passing very small values for \(r \) or \(s \) can give misleading results, and warning is given whenever
abs(\(r \)) or abs(\(s \)) is sufficiently small. Similarly, values for \(r \) and \(s \) that are very close in value,
but not equal, can give misleading results. In general, \(r \) and \(s \) should not be computed values.

Note

logmean_generalized() can be defined on the extended real line, so that \(r = -\infty/\infty \) returns
pmin() / pmax(), to agree with the definition in, e.g., Bullen (2003). This is not implemented, and \(r \)
must be finite.

References

See Also

mean_generalized for the generalized mean.
weights_transmute uses the extended mean to turn an \(r \)-generalized mean into an \(s \)-generalized mean.

Examples

Make some data
x <- 8:5
y <- 1:4

The arithmetic and geometric means are special cases of the generalized
logarithmic mean
all.equal(logmean_generalized(2)(x, y), (x + y) / 2)
all.equal(logmean_generalized(-1)(x, y), sqrt(x * y))

The logarithmic mean lies between the arithmetic and geometric means
because the generalized logarithmic mean is increasing in \(r \)
all(logmean(x, y) < (x + y) / 2) & all(logmean(x, y) > sqrt(x * y))
logarithmic means

It can be approximated as a convex combination of the arithmetic and
geometric means that gives more weight to the geometric mean

always a positive approximation error
1 / 3 * (x + y) / 2 + 2 / 3 * sqrt(x * y)
can have a smaller approximation error
((x + y) / 2)^(1 / 3) * (sqrt(x * y))^(2 / 3)
logmean(x, y)

A better approximation

correction <- (log(x / y) / pi)^4 / 32
(1 / 3 * (x + y) / 2 + 2 / 3 * sqrt(x * y)) / (1 + correction)

The harmonic mean cannot be expressed as a logarithmic mean, but can be
expressed as an extended mean

all.equal(mean_extended(-2, -1)(x, y), 2 / (1 / x + 1 / y))

The quadratic mean is also a type of extended mean

all.equal(mean_extended(2, 4)(x, y), sqrt(x^2 / 2 + y^2 / 2))

#-------------------

A useful identity for turning an additive change into a proportionate
change

all.equal(logmean(x, y) * log(x / y), x - y)

Works for other orders, too

r <- 2

all.equal(logmean_generalized(r)(x, y) * (r * (x - y))^((1 / r) - 1)),
(x^r - y^r)^((1 / (r - 1))))

Some other identities

all.equal(logmean_generalized(-2)(1, 2),
(mean_harmonic(1:2) * mean_geometric(1:2)^2)^(1 / 3))

all.equal(logmean_generalized(0.5)(1, 2),
(mean_arithmetic(1:2) + mean_geometric(1:2)) / 2)

all.equal(logmean(1, 2),
mean_geometric(1:2)^2 * logmean(1, 1/2))

#-------------------

Logarithmic means can be represented as integrals

logmean(2, 3)
Calculate a variety of price indexes

Description

Calculate a variety of price indexes using information on prices and quantities.

Usage

index_arithmetic(type)
index_geometric(type)
index_harmonic(type)
index_laspeyres(p1, p0, q0, na.rm = FALSE)
index_paasche(p1, p0, q1, na.rm = FALSE)
index_jevons(p1, p0, na.rm = FALSE)
index_lowe(p1, p0, qb, na.rm = FALSE)
index_young(p1, p0, pb, qb, na.rm = FALSE)
index_fisher(p1, p0, q1, q0, na.rm = FALSE)
index_hlp(p1, p0, q1, q0, na.rm = FALSE)
index_lm(p1, p0, q0, elasticity, na.rm = FALSE)
index_cswd(p1, p0, na.rm = FALSE)
index_cswdb(p1, p0, q1, q0, na.rm = FALSE)
index_bw(p1, p0, na.rm = FALSE)
index_stuval(a, b)
index_weights(type)

Arguments

- type: The name of the index. See details.
price indexes

\[p_1 \] Current-period prices.
\[p_0 \] Base-period prices.
\[q_1 \] Current-period quantities.
\[q_0 \] Base-period quantities.
\[p_b \] Period-b prices for the Lowe/Young index.
\[q_b \] Period-b quantities for the Lowe/Young index.
\[\text{na.rm} \] Should missing values be removed?
\[\text{elasticity} \] The elasticity of substitution for the Lloyd-Moulton index.
\[a, b \] Parameters for the generalized Stuval index.

Details

The `arithmetic_mean()`, `geometric_mean()`, and `harmonic_mean()` functions return a function to calculate a given type of arithmetic, geometric, and harmonic index. Together, these functions produce functions to calculate the following indexes.

- **Arithmetic indexes**
 - Carli
 - Dutot
 - Laspeyres
 - Palgrave
 - Unnamed index (arithmetic analog of the Fisher)
 - Drobish
 - Walsh-I (arithmetic Walsh)
 - Marshall-Edgeworth
 - Geary-Khamis
 - Lowe
 - Young

- **Geometric indexes**
 - Jevons
 - Geometric Laspeyres
 - Geometric Paasche
 - Geometric Young
 - Tornqvist
 - Montgomery-Vartia / Vartia-I
 - Sato-Vartia / Vartia-II
 - Walsh-II (geometric Walsh)

- **Harmonic indexes**
 - Coggeshall (equally weighted harmonic index)
• Paasche
• Harmonic Laspeyres

Along with the index_lm() function to calculate the Lloyd-Moulton index, these are just convenient wrappers for mean_generalized().

The Laspeyres, Paasche, Jevons, Lowe, and Young indexes are among the most common price indexes. The index_laspeyres(), index_lowe(), and index_young() functions correspond to setting the appropriate type in index_arithmetic(); index_paasche() and index_jevons() instead come from the index_harmonic() and index_geometric() functions.

In addition to these generalized indexes, there are also functions for calculating a variety of non-generalized indexes. The Fisher index is the geometric mean of the arithmetic Laspeyres and Paasche indexes; the Harmonic Laspeyres Paasche index is the harmonic analog of the Fisher index. The Carruthers-Sellwood-Ward-Dalen and Carruthers-Sellwood-Ward-Dalen-Balk indexes are sample analogs of the Fisher index; the Balk-Walsh index is the sample analog of the Walsh index. The index_stuval() function returns a function to calculate a Stuval index of the given parameters.

The index_weights() function returns a function to calculate weights for a variety of price indexes. Weights for the following types of indexes can be calculated.

• Carli / Jevons / Coggeshall
• Dutot
• Laspeyres / Lloyd-Moulton
• Hybrid Laspeyres (for use in a harmonic mean)
• Paasche / Palgrave
• Hybrid Paasche (for use in an arithmetic mean)
• Tornqvist / Unnamed
• Drobish
• Walsh-I (for an arithmetic Walsh index)
• Walsh-II (for a geometric Walsh index)
• Marshall-Edgeworth
• Geary-Khamis
• Montgomery-Vartia / Vartia-I
• Sato-Vartia / Vartia-II
• Lowe
• Young

The weights need not sum to 1, as this normalization isn’t always appropriate (i.e., for the Vartia-I weights).

Naming for the indexes and weights generally follows the CPI/PPI manual first, then Balk (2008) for indexes not listed (or not named) in the CPI/PPI manual. In several cases two or more names correspond to the same weights (e.g., Paasche and Palgrave, or Sato-Vartia and Vartia-II). The calculations are given in the examples.
price indexes

Value

\[
\text{index_arithmetic()}, \text{index_geometric()}, \text{index_harmonic()}, \text{index_stuval()}, \text{and} \text{index_weights()}
\]
each return a function; the others return a numeric value.

Note

Dealing with missing values is cumbersome when making a price index, and best avoided. As there are different approaches for dealing with missing values in a price index, missing values should be dealt with prior to calculating the index.

The approach taken here when \text{na.rm} = \text{TRUE} is to remove price relatives with missing information, either because of a missing price or a missing weight. Certain properties of an index-number formula may not work as expected with missing values, however, if there is ambiguity about how to remove missing values from the weights (as in, e.g., a Tornqvist or Sato-Vartia index).

References

See Also

mean_generalized for the generalized mean.

contributions for calculating quote contributions.

Examples

Make some data
p0 <- price6[[2]]
p1 <- price6[[3]]
q0 <- quantity6[[2]]
q1 <- quantity6[[3]]
pb <- price6[[1]]
qb <- quantity6[[1]]

Most indexes can be calculated by combining the appropriate weights with
the correct type of mean

index_geometric("Laspeyres")\(p1, p0, q0\)
mean_geometric\(p1 / p0, \text{index_weights("Laspeyres")}(p0, q0)\)

Arithmetic Laspeyres index

index_laspeyres\(p1, p0, q0\)
mean_arithmetic\(p1 / p0, \text{index_weights("Laspeyres")}(p0, q0)\)
Trivial to turn weights for an arithmetic index
into a basket-style index

qs <- index_weights("Laspeyres")(p0, q0) / p0
sum(p1 * qs) / sum(p0 * qs)

Harmonic calculation for the arithmetic Laspeyres

mean_harmonic(p1 / p0, index_weights("HybridLaspeyres")(p1, q0))

Unlike its arithmetic counterpart, the geometric Laspeyres can increase
when base-period prices increase if some of these prices are small

p0_small <- replace(p0, 1, p0[1] / 5)
p0_dx <- replace(p0_small, 1, p0_small[1] + 0.01)
index_geometric("Laspeyres")(p1, p0_small, q0) <
index_geometric("Laspeyres")(p1, p0_dx, q0)

#-------------------
Chain an index by price updating the weights

p2 <- price6[4]
index_laspeyres(p2, p0, q0)

I1 <- index_laspeyres(p1, p0, q0)
w_pu <- weights_update(p1 / p0, index_weights("Laspeyres")(p0, q0))
I2 <- mean_arithmetic(p2 / p1, w_pu)
I1 * I2

Works for other types of indexes, too

index_harmonic("Laspeyres")(p2, p0, q0)

I1 <- index_harmonic("Laspeyres")(p1, p0, q0)
w_pu <- weights_factor(-1)(p1 / p0, index_weights("Laspeyres")(p0, q0))
I2 <- mean_harmonic(p2 / p1, w_pu)
I1 * I2

#-------------------
Quote contributions for the Tornqvist index

w <- index_weights("Tornqvist")(p1, p0, q1, q0)
(con <- contributions_geometric(p1 / p0, w))
sum(con)
index_geometric("Tornqvist")(p1, p0, q1, q0) - 1

Quote contributions for the Fisher index

wl <- weights_scale(index_weights("Laspeyres")(p0, q0))
wp <- weights_scale(index_weights("HybridPaasche")(p0, q1))
price indexes

\[
\text{wf} \leftarrow \text{weights_transmute}(0, 1)(c(\text{mean_arithmetic}(p_1 / p_0, w_1), \\
\text{mean_arithmetic}(p_1 / p_0, w_p)))
\]
\[
\text{wf} \leftarrow \text{weights_scale}(\text{wf})
\]
\[
\text{con} \leftarrow (\text{wf}[1] * w_1 + \text{wf}[2] * w_p) * (p_1 / p_0 - 1)
\]
\[
\text{sum(con)}
\]
\[
\text{index_fisher}(p_1, p_0, q_1, q_0) - 1
\]

The same as the decomposition in section 4.2.2 of Balk (2008)

\[
\text{Qf} \leftarrow \text{index_fisher}(q_1, q_0, p_1, p_0)
\]
\[
\text{Ql} \leftarrow \text{index_laspeyres}(q_1, q_0, p_0)
\]
\[
\text{con2} \leftarrow (\text{Qf} / (\text{Qf} + \text{Ql}) * w_1 + \text{Ql} / (\text{Qf} + \text{Ql}) * w_p) * (p_1 / p_0 - 1)
\]
\[
\text{all.equal(con, con2)}
\]

NAs get special treatment

\[
\text{p_na} \leftarrow \text{replace}(p_0, 6, \text{NA})
\]

Drops the last price relative

\[
\text{index_laspeyres}(p_1, \text{p_na}, q_0, \text{na.rm} = \text{TRUE})
\]

Only drops the last period-0 price

\[
\text{sum}(p_1 * q_0, \text{na.rm} = \text{TRUE}) / \text{sum}(\text{p_na} * q_0, \text{na.rm} = \text{TRUE})
\]

Explicit calculation for each of the different weights
Carli/Jevons/Coggeshall

\[
\text{index_weights("Carli")}(p_1)
\]
\[
\text{rep}(1, \text{length}(p_0))
\]

Dutot

\[
\text{index_weights("Dutot")}(p_0)
\]
\[
p_0
\]

Laspeyres / Lloyd-Moulton

\[
\text{index_weights("Laspeyres")}(p_0, q_0)
\]
\[
p_0 * q_0
\]

Hybrid Laspeyres

\[
\text{index_weights("HybridLaspeyres")}(p_1, q_0)
\]
\[
p_1 * q_0
\]

Paasche / Palgrave
index_weights("Paasche")(p1, q1)
 p1 * q1
 # Hybrid Paasche
index_weights("HybridPaasche")(p0, q1)
 p0 * q1
 # Tornqvist / Unnamed
index_weights("Tornqvist")(p1, p0, q1, q0)
 0.5 * p0 * q0 / sum(p0 * q0) + 0.5 * p1 * q1 / sum(p1 * q1)
 # Drobish
index_weights("Drobish")(p1, p0, q1, q0)
 0.5 * p0 * q0 / sum(p0 * q0) + 0.5 * p0 * q1 / sum(p0 * q1)
 # Walsh-I
index_weights("Walsh1")(p0, q1, q0)
 p0 * sqrt(q0 * q1)
 # Marshall-Edgeworth
index_weights("MarshallEdgeworth")(p0, q1, q0)
 p0 * (q0 + q1)
 # Geary-Khamis
index_weights("GearyKhamis")(p0, q1, q0)
 p0 / (1 / q0 + 1 / q1)
 # Montgomery-Vartia / Vartia-I
index_weights("MontgomeryVartia")(p1, p0, q1, q0)
 logmean(p0 * q0, p1 * q1) / logmean(sum(p0 * q0), sum(p1 * q1))
 # Sato-Vartia / Vartia-II
index_weights("SatoVartia")(p1, p0, q1, q0)
 logmean(p0 * q0 / sum(p0 * q0), p1 * q1 / sum(p1 * q1))
 # Walsh-II
index_weights("Walsh2")(p1, p0, q1, q0)
 sqrt(p0 * q0 * p1 * q1)
 # Lowe
index_weights("Lowe")(p0, qb)
 p0 * qb
price/quantity data

Young

index_weights("Young")(pb, qb)
 pb * qb

<table>
<thead>
<tr>
<th>price/quantity data</th>
<th>Sample price/quantity data</th>
</tr>
</thead>
</table>

Description

Prices and quantities for six products over five periods.

Usage

price6
quantity6

Format

Each data frame has 6 rows and 5 columns, with each row corresponding to a product and each column corresponding to a time period.

Note

Adapted from tables 3.1 and 3.2 in Balk (2008), which were adapted from tables 19.1 and 19.2 in the PPI manual.

Source

Examples

Recreate table 3.6 from Balk (2008)

```r
index_formulas <- function(p1, p0, q1, q0) {
  c(fisher = index_fisher(p1, p0, q1, q0),
    tornqvist = index_geometric("Tornqvist")(p1, p0, q1, q0),
    marshall_edgeworth = index_arithmetic("MarshallEdgeworth")(p1, p0, q1, q0),
    wald = index_arithmetic("Walsh1")(p1, p0, q1, q0)
  )
}

round(t(mapply(index_formulas, price6, price6[1], quantity6, quantity6[1])), 4)
```
Transmute weights
Transformations for weights in a generalized mean

Description
Useful transformations for the weights in a generalized mean.

- Transmute weights to turn an r-generalized mean into an s-generalized mean.
- Factor weights to turn the generalized mean of a product into the product of generalized means.
- Scale weights so they sum to 1.

Usage
weights_transmute(r, s)
contributions(r)
contributions_geometric(x, w = rep(1, length(x)))
contributions_harmonic(x, w = rep(1, length(x)))
weights_factor(r)
weights_update(x, w = rep(1, length(x)))
weights_scale(x)

Arguments
r, s A number giving the order of the generalized mean. See details.
x A numeric vector.
w A numeric vector of weights, the same length as x. The default is to equally weight each element of x.

Details
Both x and w should be strictly positive. This is not enforced here, but the results may not make sense in cases where the generalized mean and generalized logarithmic mean are not defined.

Transmute weights
The function weights_transmute() returns a function to compute a vector of weights v(x,w) such that
mean_generalized(r)(x,w) == mean_generalized(s)(x,v(x,w)).

These weights are calculated as
v(x,w) = w * mean_extended(r,s)(x,mean_generalized(r)(x,w))^(r -s).

This generalizes the result for turning a geometric mean into an arithmetic mean (and vice versa) in section 4.2 of Balk (2008), although this is usually the most important case.
Contributions

The function contributions() is a simple wrapper for weights_transmute(r, 1) to calculate (additive) quote contributions for a price index. It returns a function to compute a vector \(k(x, w) \) such that

\[
\text{mean}_{\text{generalized}}(r)(x, w) - 1 = \sum k(x, w).
\]

That is, \(k(x, w) \) gives the additive contribution for each element of \(x \) in an \(r \)-generalized mean. The contributions_geometric() and contributions_harmonic() functions cover the most important cases. This generalizes the approach for calculating quote contributions in section 4.2 of Balk (2008).

Factor weights

The function weights_factor() returns a function to compute weights \(u(x, w) \) such that

\[
\text{mean}_{\text{generalized}}(r)(x \ast y, w) = \text{mean}_{\text{generalized}}(r)(x, w) \ast \text{mean}_{\text{generalized}}(r)(y, u(x, w)).
\]

These weights are calculated as \(u(x, w) = w \ast x^r \).

This generalizes the result in section C.5 of Chapter 9 of the PPI Manual for chaining the Young index, and gives a way to chain generalized price indexes over time. Factoring weights with \(r = 1 \) sometimes get called price-updating weights; weights_update() simply calls weights_factor(1).

Scale weights

The function weights_scale() scales a vector of weights so they sum to 1 by calling

\[
x / \text{sum}(x, \text{na.rm} = \text{TRUE}).
\]

Value

weights_transmute(), contributions(), and weights_factor() return a function:

\[
\text{function}(x, w = \text{rep}(1, \text{length}(x))).
\]

contributions_geometric(), contributions_harmonic(), weights_update(), and weights_scale() return a numeric vector the same length as \(x \).

Note

Transmuting, factoring, and scaling weights will return a value that is the same length as \(x \), so any NAs in \(x \) or \(w \) will return NA. Unless all values are NA, however, the result for transmuting or factoring will still satisfy the above identities when \(\text{na.rm} = \text{TRUE} \) in mean_generalized(). Similarly, the result of scaling will sum to 1 when NAs are removed.

References

See Also

mean_generalized for the generalized mean.

mean_extended for the extended mean.
Examples

Make some data
x <- 2:3
y <- 4:5
w <- runif(2)

Calculate the geometric mean as an arithmetic mean and harmonic mean by transmuting the weights
mean_geometric(x)
mean_arithmetic(x, weights_transmute(0, 1)(x))
mean_harmonic(x, weights_transmute(0, -1)(x))

Works for nested means, too
w1 <- runif(2)
w2 <- runif(2)
mean_geometric(c(mean_arithmetic(x, w1), mean_harmonic(x, w2)))

v0 <- weights_transmute(0, 1)(c(mean_arithmetic(x, w1), mean_harmonic(x, w2)))
v1 <- weights_scale(v0)
v2 <- weights_scale(weights_transmute(-1, 1)(x, w2))
mean_arithmetic(x, v0[1] * v1 + v0[2] * v2)

Transmuted weights can be used to calculate quote contributions for, e.g., a geometric price index
weights_scale(weights_transmute(0, 1)(x)) * (x - 1)
contributions_geometric(x) # the more convenient way

Not the only way to calculate contributions
transmute2 <- function(x) {
 m <- mean_geometric(x)
 (m - 1) / log(m) * log(x) / (x - 1) / length(x)
}
transmute2(x) * (x - 1) # this isn't proportional to the method above
all.equal(sum(transmute2(x) * (x - 1)), mean_geometric(x) - 1)

But these "transmuted" weights don't recover the geometric mean!
Not a particularly good way to calculate contributions
isTRUE(all.equal(mean_arithmetic(x, transmute2(x)), mean_geometric(x)))

There are infinitely many ways to calculate contributions, but the weights
transform weights

from weights_transmute(0, 1) are the *unique* weights that recover the geometric mean

perturb <- function(w, e) {
 w + c(e, -e) / (x - 1)
}

perturb(transmute2(x), 0.1) * (x - 1)
all.equal(sum(perturb(transmute2(x), 0.1) * (x - 1)),
 mean_geometric(x) - 1)
isTRUE(all.equal(mean_arithmetic(x, perturb(transmute2(x), 0.1)),
 mean_geometric(x))

#-------------------
Factor the harmonic mean by chaining the calculation

mean_harmonic(x * y, w)
mean_harmonic(x, w) * mean_harmonic(y, weights_factor(-1)(x, w))

The common case of an arithmetic mean

mean_arithmetic(x * y, w)
mean_arithmetic(x, w) * mean_arithmetic(y, weights_update(x, w))

In cases where x and y have the same order, Chebyshev's inequality implies that the chained calculation is too small

mean_arithmetic(x * y, w) > mean_arithmetic(x, w) * mean_arithmetic(y, w)
Index

all.equal(), 7
contributions, 13
contributions (transform weights), 18
contributions_geometric (transform weights), 18
contributions_harmonic (transform weights), 18
generalized mean, 3
gpindex (gpindex-package), 2
gpindex-package, 2
index, 2
index (price indexes), 10
index_arithmetic (price indexes), 10
index_bw (price indexes), 10
index_cswd (price indexes), 10
index_cswdb (price indexes), 10
index_fisher (price indexes), 10
index_geometric (price indexes), 10
index_harmonic (price indexes), 10
index_hlp (price indexes), 10
index_jevons (price indexes), 10
index_laspeyres (price indexes), 10
index_lm (price indexes), 10
index_lowe (price indexes), 10
index_paasche (price indexes), 10
index_stuval (price indexes), 10
index_weights (price indexes), 10
index_weights(), 2
index_young (price indexes), 10
logarithmic means, 7
logmean (logarithmic means), 7
logmean_generalized, 5
logmean_generalized (logarithmic means), 7
logmean_generalized(), 2
max(), 5
mean_arithmetic (generalized mean), 3
mean_extended, 19
mean_extended (logarithmic means), 7
mean_generalized, 8, 13, 19
mean_generalized (generalized mean), 3
mean_generalized(), 2, 12, 19
mean_geometric (generalized mean), 3
mean_harmonic (generalized mean), 3
min(), 5
pmax(), 8
pmin(), 8
price indexes, 10
price/quantity data, 17
price6 (price/quantity data), 17
quantity6 (price/quantity data), 17
transform weights, 18
weighted.mean(), 4
weights_factor, 5
weights_factor (transform weights), 18
weights_factor(), 2
weights_scale (transform weights), 18
weights_transmute, 5, 8
weights_transmute (transform weights), 18
weights_transmute(), 2
weights_update (transform weights), 18