Package ‘gpmap’

February 20, 2015

Type Package
Title Analysing and plotting genotype-phenotype maps
Version 0.1.1
Date 2014-01-02
Author Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yun-
peng Wang <yunpeng.wang@gmail.com>
Maintainer Arne B. Gjuvsland <arne.gjuvsland@nmbu.no>
Depends isotone, plyr, ggplot2, foreach
Description This package contains tools for studying genotype-phenotype (GP) maps for bi-
allelic loci underlying quantitative phenotypes. The 0.1 version is released in connec-
tion with the publication of Gjuvsland et al. (2003) and implements ba-
sic line plots and the monotonicity measures for GP maps presented in the paper. Reference: Gju-
vsland AB, Wang Y, Plahte E and Omholt SW (2013) Monotonicity is a key feature of genotype-
License GPL-3
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2014-01-09 12:30:26

R topics documented:

 gpmap-package .. 2
decompose_monotone ... 3
degree_of_monotonicity .. 4
enumerate_genotypes ... 5
generate_gpmap .. 7
GPmaps ... 8
monotone_regression ... 8
partial_genotype_order ... 9
plot.gpmap .. 11
print.gpmap .. 11
Description

The gpmap package deals with genotype-phenotype maps for biallelic loci underlying quantitative phenotypes. The package provides a class gpmaps, analysis functions and basic lineplots. The package is designed for studying the properties of GP maps without reference to any particular population, i.e. the physiological (Cheverud & Routman, 1995) or functional (Hansen, 2001) properties of the GP map. This is opposed to statistical effects underlying most of quantitative genetics, where the GP-map is analysed together with genotype frequencies in a given population (e.g. Lynch & Walsh, 1998).

In version 0.1 which is released as part of the publication of Gjuvsland et al. (2013) we have implemented functionality for studying monotonicity Gjuvsland et al. (2011) of GP maps. The package utilizes the isotone package for monotone regression, and the foreach package for parallel computation.

The package consists of the following high-level functions: enumerate_genotypes, generate_gpmap, degree_of_monotonicity, decompose_monotone and plot.gpmap

Author(s)

Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>

References

decompose_monotone

Decompose genotype-phenotype map(s) using monotone regression

Description

Functions for decomposing genotype-phenotype (GP) maps with N biallelic loci using monotone regression from the `isotone` package.

Usage

```r
decompose_monotone(gpmap)
```

```r
decompose_monotone_single(gpmap)
```

Arguments

- `gpmap`: A `gpmap` object

Details

decompose_monotone works for any `gpmap` object (values is $(3^N) \times K$ matrix of genotypic values) and calls the internal function decompose_monotone_single for each column. decompose_monotone_single takes a `gpmap` object with a single set of genotypic values ($K = 1$), loops through all 2^N possible combinations of plusalleles, calls monotone_regression and identifies the best fit. The code uses the `foreach` package and will run in parallel if a parallel backend is registered (see `foreach` documentation).

Value

The input `gpmap` is returned with two added elements

- `monor`: The coefficient of determination of the monotone regression
- `values.mon`: A matrix of genotypic values for the monotone component of genotype-phenotype map(s)

Author(s)

Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>

References

Examples

```r
data(GPmaps)

# Additive GP map is monotone so monoR=1 and values.mono=values
decompose_monotone(A)

# Pure AxA epistasis map
decompose_monotone(AA)

two-locus example in Cheverud & Routman (1995)
decompose_monotone(mouseweight)

decompose four random 3-locus GP maps
set.seed(0)
randomGP <- rnorm(3^2*4)
dim(randomGP) <- c(9,4)
decompose_monotone(generate_gmap(randomGP))
```

degree_of_monotonicity

Degree of monotonicity of GP map

Description

Functions for computing degree of monotonicity \(m \) for `gmap` objects.

Usage

```r
degree_of_monotonicity(gmap)
degree_of_monotonicity_single(gmap)
```

Arguments

- `gmap` A `gmap` object

Details

degree_of_monotonicity works for any `gmap` object (values is \((3^N) \times K\) matrix of genotypic values) and calls the internal function `degree_of_monotonicity_single` for each column. degree_of_monotonicity_single computes substitution effect, locus weights and per-locus and overall degree of monotonicity as described in Gjuvsland *et al.* (2013).
enumerate_genotypes

Value

degree_of_monotonicity returns the input gpmap with the following added fields:
degree_monotonicity
 Overall degree of monotonicity for the K GP maps
degree_monotonicity.locus
 Data frame with per locus degree of monotonicity for the K GP maps
locus.weight
 Data frame with locus weights

Author(s)

Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>

References

Examples

data(GPmaps)

Additive GP map is monotone
degree_of_monotonicity(A)

Pure AxA epistasis map
degree_of_monotonicity(AA)

Two-locus example in Cheverud & Routman (1995)
degree_of_monotonicity(mouseweight)

enumerate_genotypes Function for enumerating genotypes for N biallelic loci

Description

Function for enumerating all 3^N genotypes for N biallelic loci. Optional specification of names of loci and alleles. Generates a data frame of multilocus genotypes in the sequence used for objects of class gpmap.

Usage

enumerate_genotypes(nloci=1, locinames=NULL, allelenames=NULL)

Arguments

nloci The number of loci N
locinames An optional character vector with N names of loci
allelenames An optional character object specifying allele names
Details

Unless specified locinames default to "Locus 1", "Locus 2",..,"Locus N".

If allelenames is not specified then the alleles will be named "1" and "2".

Value

Returns a data frame with locinames as colnames, and with 3^N rows specifying all possible genotypes in the sequence used for all GP maps in the package (the same sequence as used in Gjuvsland et al. (2011)), where the genotype at the first locus varies fastest, then the second locus, and so on:

<table>
<thead>
<tr>
<th>Locus_1</th>
<th>Locus_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
</tr>
</tbody>
</table>

Author(s)

Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>

References

Examples

```r
# genotypes for a single locus
enumerate_genotypes()

# genotypes for two loci "A" and "B", with alleles named "H" and "L"
enumerate_genotypes(2,c("A","B"),c("H","L"))

# genotypes for the two-locus example in Cheverud & Routman (1995)
enumerate_genotypes(2,c("D7Mit17","D1Mit7"),rbind(c('A1','A2'),c('B1','B2')))```
Function for creating genotype-phenotype (GP) maps

Description

Function for creating a gpmap object representing a genotype-phenotype (GP) map for \( N \) biallelic loci or more generally \( K \) such maps, from a matrix of genotypic values.

Usage

```R
generate_gpmap(y, locinames = NULL, allelenames = NULL, mapnames = NULL)
```

Arguments

- `y`: A \((3^N \times K)\) matrix or numeric with each column specifying the \(3^N\) genotypic values for \( K \) GP maps
- `locinames`: An optional character vector with \( N \) names of loci
- `allelenames`: An optional character object specifying allele names
- `mapnames`: An optional character vector with \( K \) names of GP maps / phenotypes

Details

Arguments `locinames` and `allelenames` are passed on to `enumerate_genotypes`, and the genotypic values in `y` should be given in the same sequence as the sequence of genotypes returned by `enumerate_genotypes`. If `mapnames` is not specified then the GP maps will be named "GPmap_1", "GPmap_2", ..., "GPmap_K".

Value

The function returns an object of class `gpmap` containing the following components:

- `values`: The vector or matrix of genotypic values
- `nloci`: The number of loci in the map
- `genotypes`: Data frame with enumeration of genotypes
- `locinames`: Character vector with names for all loci
- `mapname`: The name(s) of the GP map

Author(s)

Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>

References

Examples

# inter- and intra-locus additive GPmap with two loci
generate_gpmap(c(-2,1,0,-1,0,1,0,1,2),mapnames="Additive")

# two-locus GP map with AxA epistasis for loci named A and B
generate_gpmap(c(-1,0,1,0,0,0,1,0,-1),locinames=c("A","B"),mapnames="AxA")

# random GP map with 3 loci
set.seed(0)
generate_gpmap(rnorm(27))

GPmaps

Dataset containing example GP maps

Description


Usage

GPmaps

Format

Objects of class gpmap

References


monotone_regression

Perform monotone regression on a genotype-phenotype (GP) map

Description

The function uses partial_genotype_order and activeSet from the isotone package to do monotone regression (Leeuw et al., 2009) on a GP map.

Usage

monotone_regression(gpmap, plusallele)
**partial_genotype_order**

Arguments

- `gpmap` An object of class `gpmap`
- `plusallele` An \( N \) vector of allele indexes (1 or 2)

Details

Element \( i \) in `plusallele` specifies the ordering of the genotypes at locus \( i \), if the element is 1 then \( 11 < 12 < 22 \) and conversely if it is 2 then \( 22 < 12 < 11 \). `monotone_regression` calls `partial_genotype_order` to obtain the partial ordering of genotypic values for the given `plusalleles`. This partial ordering is then used together with the GP map itself as input to the `activeSet` function from the package `isotone`.

Value

`monotone_regression` returns the output from `activeSet` directly.

Author(s)

Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>

References


Examples

```r
data(GPmaps)

#Additive GP map is monotone
monotone_regression(A,c(2,2))

#Pure AxA epistasis map
monotone_regression(AA,c(2,2))

#two-locus example in Cheverud & Routman (1995)
monotone_regression(mouseweight,c(1,1))
```

---

**partial_genotype_order**

Generate partial ordering of genotype space based from allele content of genotypes
Description

Generate the strict partial order on genotype space specified in eq. (13) in Gjuvsland et al. (2011). For a genotype space with $N$ biallelic loci a minimal description of this partial order is given by $2N \times 3^{(N-1)}$ inequalities.

Usage

`partial_genotype_order(plusallele)`

Arguments

- `plusallele`: A $N$-vector with indexes (1 or 2) for the $+$-allele for each locus

Details

In short a partial order on a set is a binary relation defining a pairwise ordering of some pairs of elements in the set, for a formal definition see [http://en.wikipedia.org/wiki/Partial_order](http://en.wikipedia.org/wiki/Partial_order). In the partial order on the set of genotypes defined in Gjuvsland et al. (2011) the comparable pairs of genotypes are equal at every locus except one, while all other pairs of genotypes are incomparable. This partial ordering of genotype space is implicit in the regression on gene content (the number of alleles with a given index in each genotype) used for decomposition of the genotypic value in quantitative genetics (see e.g. Lynch and Walsh page 65).

Value

Returns a $(2N \times 3^{(N-1)}) \times 2$ matrix of genotype indexes. The genotype indexes refer to row number in the genotype sequence set up in `enumerate_genotypes`. Each row vector in the matrix contains the genotype indexes of one comparable pairs, and if the first index is $k$ and the second is $l$ then `genotype[k] < genotype[l]`.

Author(s)

Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>

References


plot.gpmap

Functions for creating lineplots of genotype-phenotype (GP) maps

Description

Function for creating lineplots for genotype-phenotype (GP) map (an object of class gpmap) with 1-3 biallelic loci.

Usage

# S3 method for class 'gpmap'
plot(x, show=1, decomposed=FALSE, ...)

Arguments

x
  A gpmap object
show
  Which map (only used if >1 map in gpmap object) to plot
decomposed
  Decomposition into monotone and non-monotone component plotted if TRUE
... ignored

Author(s)

Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>

Examples

data(GPmaps)

#plot additive gpmap
plot(A)

#plot decomposition of GPmap from Cheverud & Routman (1995)
decomp <- decompose_monotone(mouseweight)
plot(decomp, decomposed=TRUE)

print.gpmap

Print function for gpmap objects

Description

Print a summary of a genotype-phenotype (GP) map (an object of class gpmap) with 1-3 N biallelic loci.
Usage

```r
S3 method for class 'gpmap'
print(x, ...)
```

Arguments

- `x` A `gpmap` object
- `...` ignored

Details

Prints name(s) of GP map(s) and loci, a summary of genotypic values. Monotonicity measures are printed if available.

Author(s)

Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>

Examples

```r
data(GPmaps)
print(A)
```
Index

+Topic datasets
  GPmaps, 8
+Topic package
  gmap-package, 2

A (GPmaps), 8
AA (GPmaps), 8
activeSet, 8, 9
AD (GPmaps), 8

D (GPmaps), 8
DA (GPmaps), 8
DD (GPmaps), 8
decompose_monotone, 2, 3
decompose_monotone_single
  (decompose_monotone), 3
degree_of_monotonicity, 2, 4
degree_of_monotonicity_single
  (degree_of_monotonicity), 4
enumerate_genotypes, 2, 5, 7, 10

generate_gmap, 2, 7
gmap, 3–5, 7–9, 11, 12
gmap(generate_gmap), 7
gmap-package, 2
GPmaps, 8

monotone_regression, 3, 8
mouseweight (GPmaps), 8

partial_genotype_order, 8, 9, 9
plot.gmap, 2, 11
print.gmap, 11