Package ‘graphicalVAR’

April 9, 2020

Type Package
Title Graphical VAR for Experience Sampling Data
Version 0.2.3
Author Sacha Epskamp
Maintainer Sacha Epskamp <mail@sachaepskamp.com>
License GPL (>= 2)
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp (>= 0.11.3), Matrix, glasso, glmnet, mvtnorm, qgraph (>= 1.3.1), dplyr, methods, igraph
Depends R (>= 3.1.0)
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-04-09 14:00:06 UTC

R topics documented:

 graphicalVAR ... 2
 graphicalVARsim .. 5
 mlGraphicalVAR ... 5
 plot.graphicalVAR .. 8
 print.graphicalVAR ... 8
 randomGVARmodel .. 9
 simMLgvar .. 10

Index 12
Estimate the graphical VAR model.

Description

Estimates the graphical VAR (Wild et al., 2010) model through LASSO estimation coupled with extended Bayesian information criterion for choosing the optimal tuning parameters. The estimation procedure is outlined by Rothman, Levina and Zhu (2010) and is further described by Abegaz and Wit (2013). The procedure here is based on the work done in the R package SparseTSCGM (Abegaz and Wit, 2014).

Usage

graphicalVAR(data, nLambda = 50, verbose = TRUE, gamma = 0.5, scale = TRUE, lambda_beta, lambda_kappa, maxit.in = 100, maxit.out = 100, deleteMissings = TRUE, penalize.diagonal = TRUE, lambda_min_kappa = 0.05, lambda_min_beta = lambda_min_kappa, mimic = c("current", "0.1.2", "0.1.4", "0.1.5", "0.2"), vars, beepvar, dayvar, idvar, lags = 1, centerWithin = TRUE, likelihood = c("unpenalized", "penalized"))

Arguments

data A matrix or data frame containing repeated measures (rows) on a set of variables (columns). Must not contain missing data.
nLambda The number of both lambda parameters to test. Defaults to 50, which results in 2500 models to evaluate.
verbose Logical, should a progress bar be printed to the console?
gamma The EBIC hyper-parameter. Set to 0 to use regular BIC.
scale Logical, should responses be standardized before estimation?
lambda_beta An optional vector of lambda_beta values to test. Set lambda_beta = 0 argument and lambda_kappa = 0 for unregularized estimation.
lambda_kappa An optional vector of lambda_kappa values to test. Set lambda_beta = 0 argument and lambda_kappa = 0 for unregularized estimation.
maxit.in Maximum number of iterations in the inner loop (computing beta)
maxit.out Maximum number of iterations in the outer loop
deleteMissings Logical, should missing responses be deleted?
penalize.diagonal Logical, should the diagonal of beta be penalized (i.e., penalize auto-regressions)?
lambda_min_kappa Multiplier of maximal tuning parameter for kappa
lambda_min_beta Multiplier of maximal tuning parameter for beta
mimic
Allows one to mimic earlier versions of graphicalVAR

vars
Vectors of variables to include in the analysis

beepvar
String indicating assessment beep per day (if missing, is added). Adding this argument will cause non-consecutive beeps to be treated as missing!

dayvar
String indicating assessment day. Adding this argument makes sure that the first measurement of a day is not regressed on the last measurement of the previous day. IMPORTANT: only add this if the data has multiple observations per day.

idvar
String indicating the subject ID

lags
Vector of lags to include

centerWithin
Logical, should subject data be within-person centered before estimating fixed effects?

likelihood
Should likelihood be computed based on penalized contemporaneous matrix or unpenalized contemporaneous matrix. Set to "penalized" to mimic version 2.5 and later of sparseTSCGM.

Details
Let $y_{i,t}$ denote the vector of centered responses of a subject on a set of items on time point t. The graphical VAR model, using only one lag, is defined as follows:

$$ y_{i,t} = \beta y_{i,t-1} + \epsilon_{i,t} $$

In which $\epsilon_{i,t}$ is a vector of error and is independent between time points but not within time points. Within time points, the error is normally distributed with mean vector 0 and precision matrix (inverse covariance matrix) $Kappa$. The β matrix encodes the between time point interactions and the $Kappa$ matrix encodes the within time point interactions. We aim to find a sparse solution for both β and $Kappa$, and do so by applying the LASSO algorithm as detailed by Rothman, Levina and Zhu (2010). The LASSO algorithm uses two tuning parameters, λ_{β} controlling the sparsity in β and λ_{κ} controlling the sparsity in $Kappa$. We estimate the model under a (by default) 50 by 50 grid of tuning parameters and choose the tuning parameters that optimize the extended Bayesian Information Criterion (EBIC; Chen and Chen, 2008).

After estimation, the β and $Kappa$ matrices can be standardized as described by Wild et al. (2010). The $Kappa$ matrix can be standardized to partial contemporaneous correlations (PCC) as follows:

$$ PCC(y_{i,t}, y_{j,t}) = - \frac{kappa_{ij}}{\sqrt{kappa_{ii} \cdot kappa_{jj}}} $$

Similarly, the β matrix can be standardized to partial directed correlations (PDC):

$$ PDC(y_{i,t-1}, y_{j,t}) = \frac{\beta_{ji}}{\sqrt{\sigma_{jj} \cdot kappa_{ii}} + \beta_{ji}^2} $$

In which σ is the inverse of $kappa$. Note that this process transposes the β matrix. This is done because in representing a directed network it is typical to let rows indicate the node of origin and columns the node of destination.

Set $\lambda_{\beta} = 0$ argument and $\lambda_{\kappa} = 0$ for unregularized estimation.

Value

A graphicalVAR object, which is a list containing:

PCC
The partial contemporaneous correlation network
PDC The partial directed correlation network
beta The estimated beta matrix
kappa The estimated kappa matrix
EBIC The optimal EBIC
path Results of all tested tuning parameters
labels A vector containing the node labels

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Examples

Simulate model:
Mod <- randomGVARmodel(4,probKappaEdge = 0.8,probBetaEdge = 0.8)

Simulate data:
Data <- graphicalVARsim(100,Mod$beta,Mod$kappa)

Estimate model:
Res <- graphicalVAR(Data, gamma = 0, nLambda = 10)

Plot results:
layout(t(1:2))
plot(Mod, "PCC", layout = "circle")
plot(Res, "PCC", layout = "circle")
plot(Mod, "PDC", layout = "circle")
plot(Res, "PDC", layout = "circle")
graphicalVARsim

Simulates data from the graphical VAR model

Description

Simulates data from the graphical VAR model, see `graphicalVAR` for details.

Usage

```r
graphicalVARsim(nTime, beta, kappa, mean = rep(0, ncol(kappa)), init = mean, warmup = 100, lbound = rep(-Inf, ncol(kappa)), ubound = rep(Inf, ncol(kappa)))
```

Arguments

- `nTime` Number of time points to sample
- `beta` The Beta matrix to use
- `kappa` The Kappa matrix to use
- `mean` Means to use
- `init` Initial values
- `warmup` The amount of samples to use as warmup (not returned)
- `lbound` Lower bound, at every time point values below this bound are set to the bound.
- `ubound` Upper bound, at every time point values above this bound are set to the bound.

Value

A matrix containing the simulated data.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

mlGraphicalVAR

Pooled and individual graphical VAR estimation

Description

This function fits fixed effect temporal and contemporaneous networks over multiple subjects and runs separate graphical VAR models per subject. The algorithm does: (1) pool all data, within-subject center variables and run `graphicalVAR` to obtain fixed effects, (2) run `EBICglasso` on subject means to obtain a between-subjects network, (3) run `graphicalVAR` on data of every subject to obtain individual networks. See arxiv.org/abs/1609.04156 for more details.
mlGraphicalVAR

Usage

mlGraphicalVAR(data, vars, beepvar, dayvar, idvar, scale = TRUE,
 centerWithin = TRUE, gamma = 0.5, verbose = TRUE,
 subjectNetworks = TRUE, lambda_min_kappa_fixed = 0.001,
 lambda_min_beta_fixed = 0.001, lambda_min_kappa = 0.05,
 lambda_min_beta = lambda_min_kappa, lambda_min_glasso = 0.01,
 ...)

Arguments

data Data frame
vars Vectors of variables to include in the analysis
beepvar String indicating assessment beep per day (if missing, is added). Adding this argument will cause non-consecutive beeps to be treated as missing!
dayvar String indicating assessment day. Adding this argument makes sure that the first measurement of a day is not regressed on the last measurement of the previous day. IMPORTANT: only add this if the data has multiple observations per day.
idvar String indicating the subject ID
scale Logical, should variables be standardized before estimation?
centerWithin Logical, should subject data be within-person centered before estimating fixed effects?
gamma EBIC tuning parameter.
verbose Logical indicating if console messages and the progress bar should be shown.
subjectNetworks TRUE to estimate all subject numbers, or a vector with IDs of which subject numbers should be estimated.
lambda_min_kappa_fixed Multiplier of maximal tuning parameter
lambda_min_beta_fixed Multiplier of maximal tuning parameter
lambda_min_kappa Multiplier of maximal tuning parameter
lambda_min_beta Multiplier of maximal tuning parameter
lambda_min_glasso Multiplier of maximal tuning parameter
...
Arguments sent to graphicalVAR

Value

A "mlGraphicalVAR" object with the following elements:

fixedPCC Estimated fixed effects (partial contemporaneous correlations) of contemporaneous effects
fixedPDC Estimated fixed effects (partial directed correlations) of temporal effects
fixedResults Full object of pooled data estimation (fixed effects)
betweenNet Estimated between-subjects network (partial correlations)
ids Vector of subject IDs
subjectPCC List of estimated individual contemporaneous networks
subjectPDC List of estimated individual directed networks
subjetcResults List of full results of individual estimations

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Epskamp, S., Waldorp, L. J., M\~ottus, R., & Borsboom, D. Discovering Psychological Dynamics: The Gaussian Graphical Model in Cross-sectional and Time-series Data.

See Also

graphicalVAR

Examples

Not run:
Simulate data:
Sim <- simMLgvar(nTime = 50, nPerson = 20, nVar = 3)

Estimate model:
Res <- mlGraphicalVAR(Sim$data, vars = Sim$vars, idvar = Sim$idvar)

layout(t(1:2))
library("qgraph")

Temporal fixed effects
qgraph(Res$fixedPDC, title = "Estimated fixed PDC", layout = "circle")
qgraph(Sim$fixedPDC, title = "Simulated fixed PDC", layout = "circle")

Contemporaneous fixed effects
qgraph(Res$fixedPCC, title = "Estimated fixed PCC", layout = "circle")
qgraph(Sim$fixedPCC, title = "Simulated fixed PCC", layout = "circle")

End(Not run)
plot.graphicalVAR Plot method for graphicalVAR objects

Description

Sends the estimated PCC and PDC networks to qgraph.

Usage

```r
## S3 method for class 'graphicalVAR'
plot(x, include = c("PCC", "PDC"), repulsion = 1,
    horizontal = TRUE, titles = TRUE, sameLayout = TRUE,
    unweightedLayout = FALSE, ...)
```

Arguments

- `x`: A graphicalVAR object
- `include`: A vector of at most two containing "PCC" and "PDC" indicating which networks should be plotted and in what order.
- `repulsion`: The repulsion argument used in qgraph
- `horizontal`: Logical, should the networks be plotted horizontal or vertical?
- `titles`: Logical, should titles be added to the plots?
- `sameLayout`: Logical, should both networks be plotted in the same layout?
- `unweightedLayout`: Logical, should the layout be based on the unweighted network instead of the weighted network?
- `...`: Arguments sent to qgraph

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

print.graphicalVAR S3 methods for graphicalVAR objects.

Description

Prints a short overview of the results of graphicalVAR

Usage

```r
## S3 method for class 'graphicalVAR'
print(x, ...)  
## S3 method for class 'graphicalVAR'
summary(object, ...)
```
randomGVARmodel

Arguments

x A graphicalVAR object
object A graphicalVAR object
... Not used.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

randomGVARmodel Simulate a graphical VAR model

Description

Simulates an contemporaneous and temporal network using the method described by Yin and Li (2001)

Usage

randomGVARmodel(Nvar, probKappaEdge = 0.1, probKappaPositive = 0.5, probBetaEdge = 0.1, probBetaPositive = 0.5, maxtry = 10, kappaConstant = 1.1)

Arguments

Nvar Number of variables
probKappaEdge Probability of an edge in contemporaneous network
probKappaPositive Proportion of positive edges in contemporaneous network
probBetaEdge Probability of an edge in temporal network
probBetaPositive Propotion of positive edges in temporal network
maxtry Maximum number of attempts to create a stationairy VAR model
kappaConstant The constant used in making kappa positive definite. See Yin and Li (2001)

Details

The resulting simulated networks can be plotted using the plot method.

Value

A list containing:
kappa True kappa structure (residual inverse variance-covariance matrix)
beta True beta structure
PCC True partial contemporaneous correlations
PDC True partial temporal correlations
simMLgvar

Author(s)
Sacha Epskamp

References

simMLgvar Generate graphical VAR data of multiple subjects

Description
See arxiv.org/abs/1609.04156 for details.

Usage
simMLgvar(nTime, nVar, nPerson, propPositive = 0.5, kappaRange = c(0.25, 0.5),
betaRange = c(0.25, 0.5), betweenRange = c(0.25, 0.5),
rewireWithin = 0, betweenVar = 1, withinVar = 0.25,
temporalOffset = 2)

Arguments
nTime Number of time points per subject
nVar Number of variables
nPerson Number of subjects
propPositive Proportion of positive edges
kappaRange Range of partial contemporaneous correlation coefficients
betaRange Range of temporal coefficients
betweenRange Range of partial between-subjects coefficients
rewireWithin Rewiring probability of contemporaneous networks
betweenVar Between-subjects variance
withinVar Contemporaneous variance
temporalOffset Specifies the temporal network. Setting this to 2 connects X_i to X_(i+2)

Value
A "simMLgvar" object with the following elements:
data Generated dataset
fixedKappa Fixed inverse contemporaneous covariance matrix
fixedPCC Fixed contemporaneous partial correlation network
fixedBeta Fixed temporal network
fixedPDC Fixed standardized temporal network
between Fixed between-subjects network
means True means
personData Dataset split per person
idvar String indicating the id variable
vars Vector of strings indicating the variables

Author(s)
Sacha Epskamp <mail@sachaepskamp.com>
Index

EBICglasso, 5

graphicalVAR, 2, 5–8
graphicalVARsim, 5

mlGraphicalVAR, 5

plot.graphicalVAR, 8
print.graphicalVAR, 8

qgraph, 8

randomGVARmodel, 9

simMLgvar, 10
summary.graphicalVAR
(print.graphicalVAR), 8