Package ‘gratia’

January 19, 2020

Version 0.3.0
Date 2020-01-16
Title Graceful 'ggplot'-Based Graphics and Other Functions for GAMs Fitted Using 'mgcv'
Maintainer Gavin L. Simpson <ucfagls@gmail.com>
Depends R (>= 3.6.0)
Imports mgcv, ggplot2, tibble, dplyr, tidyr, rlang, cowplot, grid, mvnfast, purrr, stats, tools, grDevices
Suggests testthat, vdiffr, MASS, scam, datasets
Description Graceful 'ggplot'-based graphics and utility functions for working with generalized additive models (GAMs) fitted using the 'mgcv' package. Provides a reimplementation of the plot() method for GAMs that 'mgcv' provides, as well as 'tidyverse' compatible representations of estimated smooths.
License MIT + file LICENSE
LazyData true
URL https://gavinsimpson.github.io/gratia
BugReports https://github.com/gavinsimpson/gratia/issues
RoxygenNote 7.0.2
Encoding UTF-8
NeedsCompilation no
Author Gavin L. Simpson [aut, cre] (<https://orcid.org/0000-0002-9084-8413>), Henrik Singmann [ctb] (<https://orcid.org/0000-0002-4842-3657>)
Repository CRAN
Date/Publication 2020-01-19 20:20:03 UTC

R topics documented:

appraise ... 3
basis ... 4
R topics documented:

bird_move ... 5
check_user_select_smooths .. 5
go.scam ... 6
confint.fderiv ... 7
confint.gam ... 8
data_gen ... 10
data_class .. 11
data_slice ... 12
derivatives ... 13
draw .. 14
draw.derivatives ... 15
draw.evaluated_smooth .. 16
draw.gam ... 19
draw.mgcv_smooth ... 21
draw.smooth_samples .. 22
evaluate_smooth ... 24
factor_var_names ... 25
fderiv ... 26
fitted_samples .. 27
fix_offset ... 29
get_by_smooth .. 30
get_smooth ... 31
gt_smooths_by_id .. 31
is_by_smooth ... 32
is_factor_var ... 32
is_mgcv_smooth .. 33
is_offset ... 33
load_mgcv .. 34
n_smooths ... 34
observed_fitted_plot ... 35
parametric_terms ... 35
posterior_samples ... 36
qq_plot ... 37
rep_first_factor_value ... 39
residuals_hist_plot ... 39
residuals_linpred_plot ... 40
seq_min_max .. 41
seq_min_max_eps ... 41
shift_values .. 42
simulate.gam .. 42
smallAges ... 44
smooths ... 45
smooth_coefs .. 45
smooth_dim .. 46
smooth_samples ... 46
tidy_basis ... 49
which_smooths ... 49
zooplankton .. 50
appraise

Model diagnostic plots

Description

Model diagnostic plots

Usage

```r
appraise(
model, 
method = c("direct", "simulate", "normal"),
n_uniform = 10,
n_simulate = 50,
type = c("deviance", "pearson", "response"),
n_bins = c("sturges", "scott", "fd"),
ncol = 2,
level = 0.9,
alpha = 0.2,
...)
```

Arguments

- **model**: a fitted model. Currently only class "gam".
- **method**: character; method used to generate theoretical quantiles.
- **n_uniform**: numeric; number of times to randomize uniform quantiles in the direct computation method (method = "direct") for QQ plots.
- **n_simulate**: numeric; number of data sets to simulate from the estimated model when using the simulation method (method = "simulate") for QQ plots.
- **type**: character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
- **n_bins**: character or numeric; either the number of bins or a string indicating how to calculate the number of bins.
- **ncol**: numeric; number of columns to draw plots in. See `cowplot::plot_grid()`.
- **level**: numeric; the coverage level for QQ plot reference intervals. Must be strictly 0 < level < 1. Only used with method = "simulate".
- **alpha**: numeric; the level of alpha transparency for the QQ plot reference interval when method = "simulate".
- **...**: arguments passed to `cowplot::plot_grid()`, except for align and axis, which are set internally.
See Also

The plots are produced by functions `gratia::qq_plot()` , `gratia::residuals_linpred_plot()` ,
`gratia::residuals_hist_plot()` , and `gratia::observed_fitted_plot()` .

Examples

```r
library(mgcv)

## simulate some data...
dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
## run some basic model checks, including checking
## smoothing basis dimensions...
appraise(mod)
```

basis

Basis expansions for smooths

Description

Creates a basis expansion from a definition of a smoother using the syntax of `mgcv`'s smooths via `mgcv::s()` , `mgcv::te()` , `mgcv::ti()` , and `mgcv::t2()` .

Usage

```r
basis(smooth, data, knots = NULL, constraints = FALSE, ...)
```

Arguments

- `smooth` : a smooth specification, the result of a call to one of `mgcv::s()` , `mgcv::te()` ,
 `mgcv::ti()` , or `mgcv::t2()` .
- `data` : a data frame containing the variables used in smooth.
- `knots` : a list or data frame with named components containing knots locations. Names
 must match the covariates for which the basis is required. See `mgcv::smoothCon()` .
- `constraints` : logical: should identifiability constraints be applied to the smooth basis. See
 argument `absorb.cons` in `mgcv::smoothCon()` .
- `...` : other arguments passed to `mgcv::smoothCon()` .

Value

A tibble.

Author(s)

Gavin L. Simpson
Examples

```r
load_mgcv()

df <- gamSim(4, n = 400, verbose = FALSE)

bf <- basis(s(x0), data = df)
bf <- basis(s(x2, by = fac, bs = 'bs'), data = df, constraints = TRUE)
```

bird_move

Simulated bird migration data

Description

Data generated from a hypothetical study of bird movement along a migration corridor, sampled throughout the year. This dataset consists of simulated sample records of numbers of observed locations of 100 tagged individuals each from six species of bird, at ten locations along a latitudinal gradient, with one observation taken every four weeks. Counts were simulated randomly for each species in each location and week by creating a species-specific migration curve that gave the probability of finding an individual of a given species in a given location, then simulated the distribution of individuals across sites using a multinomial distribution, and subsampling that using a binomial distribution to simulation observation error (i.e. not every bird present at a location would be detected). The data set *(bird_move)* consists of the variables *count*, *latitude*, *week* and *species*.

Format

A data frame

Source

check_user_select_smooths

Select smooths based on user’s choices

Description

Given a vector indexing the smooths of a GAM, returns a logical vector selecting the requested smooths.

Usage

```r
check_user_select_smooths(smooths, select = NULL, partial_match = FALSE)
```
Arguments

smooths character; a vector of smooth labels.

select numeric, logical, or character vector of selected smooths.

partial_match logical; in the case of character select, should select match partially against smooths? If partial_match = TRUE, select must only be a single string, a character vector of length 1.

Value

A logical vector the same length as length(smooths) indicating which smooths have been selected.

Author(s)

Gavin L. Simpson

coe.scam Extract coefficients from a fitted scam model.

Description

Extract coefficients from a fitted scam model.

Usage

S3 method for class 'scam'
coef(object, parametrized = TRUE, ...)

Arguments

object a model object fitted by scam()

parametrized logical; extract parametrized coefficients, which respect the linear inequality constraints of the model.

... other arguments.
confint.fderiv

Point-wise and simultaneous confidence intervals for derivatives of smooths

Description
Calculates point-wise confidence or simultaneous intervals for the first derivatives of smooth terms in a fitted GAM.

Usage
```r
## S3 method for class 'fderiv'
confint(
  object,
  parm,
  level = 0.95,
  type = c("confidence", "simultaneous"),
  nsim = 10000,
  ncores = 1L,
  ...
)
```

Arguments
- `object`: an object of class "fderiv" containing the estimated derivatives.
- `parm`: which parameters (smooth terms) are to be given intervals as a vector of terms. If missing, all parameters are considered.
- `level`: numeric, 0 < level < 1; the confidence level of the point-wise or simultaneous interval. The default is 0.95 for a 95% interval.
- `type`: character; the type of interval to compute. One of "confidence" for point-wise intervals, or "simultaneous" for simultaneous intervals.
- `nsim`: integer; the number of simulations used in computing the simultaneous intervals.
- `ncores`: number of cores for generating random variables from a multivariate normal distribution. Passed to `mvnfast::rmvn()`. Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
- `...`: additional arguments for methods

Value
a data frame with components:
1. `term`: factor indicating to which term each row relates,
2. `lower`: lower limit of the confidence or simultaneous interval,
3. `est`: estimated derivative
4. `upper`: upper limit of the confidence or simultaneous interval.
Author(s)
Gavin L. Simpson

Examples

load_mgcv()

dat <- gamSim(1, n = 1000, dist = "normal", scale = 2)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

first derivatives of all smooths...
fd <- fderiv(mod)

point-wise interval
ci <- confint(fd, type = "confidence")
head(ci)

simultaneous interval for smooth term of x1
x1.sint <- confint(fd, parm = "x1", type = "simultaneous", nsim = 2500)
head(x1.sint)

confint.gam
Point-wise and simultaneous confidence intervals for smooths

Description
Calculates point-wise confidence or simultaneous intervals for the smooth terms of a fitted GAM.

Usage

S3 method for class 'gam'
confint(
 object,
 parm,
 level = 0.95,
 newdata = NULL,
 n = 200,
 type = c("confidence", "simultaneous"),
 nsim = 10000,
 shift = FALSE,
 transform = FALSE,
 unconditional = FALSE,
 ncores = 1,
 ...
)
S3 method for class 'gamm'
confint(object, ...)

Arguments

- **object**: an object of class "gam" or "gamm".
- **parm**: which parameters (smooth terms) are to be given intervals as a vector of terms. If missing, all parameters are considered, although this is not currently implemented.
- **level**: numeric, 0 < level < 1; the confidence level of the point-wise or simultaneous interval. The default is 0.95 for a 95% interval.
- **newdata**: data frame; containing new values of the covariates used in the model fit. The selected smooth(s) will be evaluated at the supplied values.
- **n**: numeric; the number of points to evaluate smooths at.
- **type**: character; the type of interval to compute. One of "confidence" for point-wise intervals, or "simultaneous" for simultaneous intervals.
- **nsim**: integer; the number of simulations used in computing the simultaneous intervals.
- **shift**: logical; should the constant term be add to the smooth?
- **transform**: logical; should the smooth be evaluated on a transformed scale? For generalised models, this involves applying the inverse of the link function used to fit the model. Alternatively, the name of, or an actual, function can be supplied to transform the smooth and its confidence interval.
- **unconditional**: logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is returned, if available.
- **ncores**: number of cores for generating random variables from a multivariate normal distribution. Passed to `mvnfast::rmvn()`. Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
- **...**: additional arguments for methods

Value

A data frame with components:

1. **term**: factor indicating to which term each row relates,
2. **x**: the vector of values at which the smooth was evaluated,
3. **lower**: lower limit of the confidence or simultaneous interval,
4. **est**: estimated value of the smooth
5. **upper**: upper limit of the confidence or simultaneous interval,
6. **crit**: critical value for the 100 * level% confidence interval.

Author(s)

Gavin L. Simpson
Examples

load_mgcv()

dat <- gamSim(1, n = 500, dist = "normal", scale = 2)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

point-wise interval
ci <- confint(mod, parm = "x1", type = "confidence")

simultaneous interval for smooth term of x1
si <- confint(mod, parm = "x1", type = "simultaneous", nsim = 100)

datagen Generate data over the range of variables used in smooths

Description

For each smooth in a GAM, generate new data over the range of the variables in volved in a smooth.

Usage

datagen(x, ...)

S3 method for class 'mgcv.smooth'
datagen(x, n = 100, data, ...)

S3 method for class 'fs.interaction'
datagen(x, n = 100, data, ...)

S3 method for class 'gam'
datagen(x, n = 200, ...)

S3 method for class 'gamm'
datagen(x, ...)

Arguments

- **x** an object for which new data is required. Currently objects of classes "gam", and "gamm" are supported, as are smooths from mgcv inheriting from class "mgcv.smooth".
- **...** arguments passed to methods
- **n** numeric; the number of data values to generate per term in each smooth.
- **data** data frame; for "mgcv.smooth" objects, the data used to fit the GAM need to be supplied.
Value

A data frame of new values spread over the range of the observed values.

Author(s)

Gavin L. Simpson

Examples

load_mgcv()

1d example
set.seed(2)
dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")
df <- datagen(m1)
head(df)

2d example
dat <- gamSim(2, n = 400, dist = "normal", scale = 2)
m2 <- gam(y ~ s(x, z), data = dat$data, method = "REML")
df <- datagen(m2)
head(df)

alternative showing using the mgcv.smooth method for a single smooth
df2 <- datagen(m2["smooth"][1L], data = dat$data)
head(df2)

data_class

Vectorized version of `data.class`

Description

Vectorized version of `data.class`

Usage

data_class(df)

Arguments

df

a data frame or tibble.

Value

A named character vector of data classes.

See Also

The underlying functionality is provided by `data.class()`.
data_slice

Prepare a data slice through covariates

Description

Prepare a data slice through covariates

Usage

data_slice(object, ...)

Default S3 method:
data_slice(object, ...)

S3 method for class 'gam'
data_slice(
 object,
 var1,
 var2,
 var3 = NULL,
 var4 = NULL,
 data = NULL,
 n = 50,
 offset = NULL,
 ...
)

Arguments

object an R model object.
...
arguments passed to other methods.
var1 character;
var2 character;
var3 character; ignored currently.
var4 character; ignored currently.
data a 1-row data frame or tibble containing values for variables in the fitted model that are not varying in the slice.
n numeric; the number of values to create for each of var1 and var2 in the slice.
offset numeric; value to use for an offset term in the model.
Derivatives of estimated smooths via finite differences

Description

Derivatives of estimated smooths via finite differences

Usage

derivatives(object, ...)

Default S3 method:
derivatives(object, ...)

S3 method for class 'gamm'
derivatives(object, ...)

S3 method for class 'gam'
derivatives(
 object,
 term,
 newdata,
 order = 1L,
 type = c("forward", "backward", "central"),
 n = 200,
 eps = 1e-07,
 interval = c("confidence", "simultaneous"),
 n_sim = 10000,
 level = 0.95,
 unconditional = FALSE,
 frequentist = FALSE,
 offset = NULL,
 ncores = 1,
 ...
)

Arguments

object an R object to compute derivatives for.
...
 arguments passed to other methods.
term character; vector of one or more smooth terms for which derivatives are required. If missing, derivatives for all smooth terms will be returned. Can be a partial match to a smooth term.
newdata a data frame containing the values of the model covariates at which to evaluate the first derivatives of the smooths.
order numeric; the order of derivative.
type character; the type of finite difference used. One of "forward", "backward", or "central".
n numeric; the number of points to evaluate the derivative at.
eps numeric; the finite difference.
interval character; the type of interval to compute. One of "confidence" for point-wise intervals, or "simultaneous" for simultaneous intervals.
n_sim integer; the number of simulations used in computing the simultaneous intervals.
level numeric; 0 < level < 1; the confidence level of the point-wise or simultaneous interval. The default is 0.95 for a 95% interval.
unconditional logical; use smoothness selection-corrected Bayesian covariance matrix?
frequentist logical; use the frequentist covariance matrix?
offset numeric; a value to use for any offset term
ncore number of cores for generating random variables from a multivariate normal distribution. Passed to `mvnfast::rmvn()`. Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).

Author(s)
Gavin L. Simpson

Examples

```r
load_mgcv()

dat <- gamSim(1, n = 400, dist = "normal", scale = 2, verbose = FALSE)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

## first derivatives of all smooths using central finite differences
derivatives(mod, type = "central")
```

draw

Generic plotting via ggplot2

Description
Generic plotting via ggplot2

Usage

```r
draw(object, ...)
```

Arguments

object and R object to plot.
... arguments passed to other methods.
Details

Generic function for plotting of R objects that uses the ggplot2 package.

Value

A `ggplot2::ggplot()` object.

Author(s)

Gavin L. Simpson

draw.derivatives
Plot derivatives of smooths

Description

Plot derivatives of smooths

Usage

```r
## S3 method for class 'derivatives'
draw(
  object,
  select = NULL,
  scales = c("free", "fixed"),
  alpha = 0.2,
  align = "hv",
  axis = "lrtb",
  ...
)
```

Arguments

- **object**: a fitted GAM, the result of a call to `mgcv::gam()`.
- **select**: character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from `summary(object)`. Logical select operates as per numeric select in the order that smooths are stored.
- **scales**: character; should all univariate smooths be plotted with the same y-axis scale? The default, scales = "fixed", ensures this is done. If scales = "free" each univariate smooth has its own y-axis scale. Currently does not affect the y-axis scale of plots of the parametric terms.
- **alpha**: numeric; alpha transparency for confidence or simultaneous interval.
draw.evaluated_smooth

align character; see argument align in cowplot::plot_grid(). Defaults to "hv" so that plots are nicely aligned.

axis character; see argument axis in cowplot::plot_grid(). Defaults to "lrtb" so that plots are nicely aligned.

... arguments passed to cowplot::plot_grid(). Any arguments to plot_grid() may be supplied, except for: plotlist and align.

Examples

```r
load_mgcv()

dat <- gamSim(1, n = 400, dist = "normal", scale = 2, verbose = FALSE)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

## first derivative of all smooths
df <- derivatives(mod)
draw(df)
```

Description

Plots estimated univariate and bivariate smooths using ggplot2.

Usage

```r
## S3 method for class 'evaluated_1d_smooth'
draw(
object,
rug = NULL,
xlab,
ylab,
title = NULL,
subtitle = NULL,
caption = NULL,
...
)

## S3 method for class 'evaluated_2d_smooth'
draw(
object,
show = c("estimate", "se"),
contour = TRUE,
xlab,
ylab,
```
Arguments

object an object, the result of a call to `evaluate_smooth()`.

rug For `evaluate_smooth()`, a numeric vector of values for the location of data
on the x axis. The default of NULL results in no rug plot being drawn. For
evaluate_parametric_terms(), a logical to indicate if a rug plot should be
drawn.

`xlab` character or expression; the label for the x axis. If not supplied, a suitable label
will be generated from object.

`ylab` character or expression; the label for the y axis. If not supplied, a suitable label
will be generated from object.

`title` character or expression; the title for the plot. See `ggplot2::labs()`.

`subtitle` character or expression; the subtitle for the plot. See `ggplot2::labs()`.

`caption` character or expression; the plot caption. See `ggplot2::labs()`.

... arguments passed to other methods.

`show` character; plot the estimated smooth ("estimate") or its standard error ("se").

`contour` logical; should contours be draw on the plot using `ggplot2::geom_contour()`.

`qq_line` logical; draw a reference line through the lower and upper theoretical quartiles.

`colour_scale` function; an appropriate discrete colour scale from `ggplot2`.

`position` Position adjustment, either as a string, or the result of a call to a position adjustment function.

Value

A `ggplot2::ggplot()` object.

Author(s)

Gavin L. Simpson

Examples

```r
load_mgcv()

dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

sm <- evaluate_smooth(m1, "s(x2)")
draw(sm)

dat <- gamSim(2, n = 1000, dist = "normal", scale = 1)
m2 <- gam(y ~ s(x, z, k = 40), data = dat$data, method = "REML")

sm <- evaluate_smooth(m2, "s(x,z)", n = 100)
draw(sm)
```
draw.gam

Plot estimated smooths from a fitted GAM

draw.gam

Description

Plots estimated smooths from a fitted GAM model in a similar way to mgcv::plot.gam() but instead of using base graphics, ggplot2::ggplot() is used instead.

Usage

S3 method for class 'gam'

draw(
 object,
 parametric = NULL,
 select = NULL,
 scales = c("free", "fixed"),
 align = "hv",
 axis = "lrtb",
 n = 100,
 unconditional = FALSE,
 overall_uncertainty = TRUE,
 dist = 0.1,
 rug = TRUE,
 partial_match = FALSE,
 ...
)

Arguments

object
a fitted GAM, the result of a call to mgcv::gam().

parametric
logical; plot parametric terms also? Default is TRUE, only if select is NULL. If select is used, parametric is set to FALSE unless the user specifically sets parametric = TRUE.

select
character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from summary(object). Logical select operates as per numeric select in the order that smooths are stored.

scales
character; should all univariate smooths be plotted with the same y-axis scale? The default, scales = "fixed", ensures this is done. If scales = "free" each univariate smooth has its own y-axis scale. Currently does not affect the y-axis scale of plots of the parametric terms.

align
character; see argument align in cowplot::plot_grid(). Defaults to "hv" so that plots are nicely aligned.
axis character; see argument axis in cowplot::plot_grid(). Defaults to "lrtb" so that plots are nicely aligned.

n numeric; the number of points over the range of the covariate at which to evaluate the smooth.

unconditional logical; should confidence intervals include the uncertainty due to smoothness selection? If TRUE, the corrected Bayesian covariance matrix will be used.

overall_uncertainty logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth?

dist numeric; if greater than 0, this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and dist is a distance within the unit square. See mgcv::exclude.too.far() for further details.

rug logical; draw a rug plot at the botom of each plot?

partial_match logical; should smooths be selected by partial matches with select? If TRUE, select can only be a single string to match against.

... arguments passed to cowplot::plot_grid(). Any arguments to plot_grid() may be supplied, except for: plotlist and align.

Value

The object returned is created by cowplot::plot_grid().

Note

Internally, plots of each smooth are created using ggplot2::ggplot() and composed into a single plot using cowplot::plot_grid(). As a result, it is not possible to use + to add to the plots in the way one might typically work with ggplot() plots.

Author(s)

Gavin L. Simpson

Examples

load_mgcv()

dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")
draw(m1)
Description

Plots basis functions using ggplot2

Usage

```r
## S3 method for class 'mgcv_smooth'
draw(object, legend = FALSE, use_facets = TRUE, labeller = NULL, xlab, ylab, title = NULL, subtitle = NULL, caption = NULL, ...)
```

Arguments

- `object`: an object, the result of a call to `basis()`.
- `legend`: logical; should a legend be drawn to indicate basis functions?
- `use_facets`: logical; for factor bysmooths, use facets to show the basis functions for each level of the factor? If FALSE, a separate ggplot object will be created for each level and combined using `cowplot::plot_grid()`. **Currently ignored.**
- `labeller`: a labeller function with which to label facets. The default is to use `ggplot2::label_both()`.
- `xlab`: character or expression; the label for the x axis. If not supplied, a suitable label will be generated from `object`.
- `ylab`: character or expression; the label for the y axis. If not supplied, a suitable label will be generated from `object`.
- `title`: character or expression; the title for the plot. See `ggplot2::labs()`.
- `subtitle`: character or expression; the subtitle for the plot. See `ggplot2::labs()`.
- `caption`: character or expression; the plot caption. See `ggplot2::labs()`.
- `...`: arguments passed to other methods. Not used by this method.

Value

A `ggplot2::ggplot()` object.
Author(s)
Gavin L. Simpson

Examples

```r
load_mgcv()

df <- gamSim(4, n = 400, verbose = FALSE)

bf <- basis(s(x0), data = df)
draw(bf)

bf <- basis(s(x2, by = fac, bs = 'bs'), data = df)
draw(bf)
```

draw.smooth_samples
Plotting posterior smooths

Description

Plotting posterior smooths

Usage

```r
## S3 method for class 'smooth_samples'
draw(
  object,
  select = NULL,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  alpha = 1,
  colour = "black",
  scales = c("free", "fixed"),
  align = "hv",
  axis = "lrtb",
  rug = TRUE,
  partial_match = FALSE,
  ...
)
```

Arguments

- `object` a fitted GAM, the result of a call to `mgcv::gam()`.
draw_smooth_samples character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Numeric select indexes the smooths in the order they are specified in the formula and stored in object. Character select matches the labels for smooths as shown for example in the output from summary(object). Logical select operates as per numeric select in the order that smooths are stored.
xlab character or expression; the label for the x axis. If not supplied, a suitable label will be generated from object.
ylab character or expression; the label for the y axis. If not supplied, a suitable label will be generated from object.
title character or expression; the title for the plot. See ggplot2::labs().
subtitle character or expression; the subtitle for the plot. See ggplot2::labs().
caption character or expression; the plot caption. See ggplot2::labs().
alpha numeric; alpha transparency for confidence or simultaneous interval.
colour The colour to use to draw the posterior smooths. Passed to ggplot2::geom_line() as argument colour.
scales character; should all univariate smooths be plotted with the same y-axis scale? The default, scales = "fixed", ensures this is done. If scales = "free" each univariate smooth has its own y-axis scale. Currently does not affect the y-axis scale of plots of the parametric terms.
align character; see argument align in cowplot::plot_grid(). Defaults to "hv" so that plots are nicely aligned.
axis character; see argument axis in cowplot::plot_grid(). Defaults to "lrtb" so that plots are nicely aligned.
rug logical; draw a rug plot at the bottom of each plot?
partial_match logical; should smooths be selected by partial matches with select? If TRUE, select can only be a single string to match against.
...
arguments to be passed to cowplot::plot_grid().

Author(s)
Gavin L. Simpson

Examples
load_mgcv()

dat1 <- gamSim(1, n = 400, dist = "normal", scale = 2, verbose = FALSE)
a single smooth GAM
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat1, method = "REML")
posterior smooths from m1
sm1 <- smooth_samples(m1, n = 15, seed = 23478)
plot
draw(sm1, alpha = 0.7)
evaluate_smooth

Evaluate a smooth

Description

Evaluate a smooth at a grid of evenly spaced value over the range of the covariate associated with the smooth. Alternatively, a set of points at which the smooth should be evaluated can be supplied.

Usage

```r
evaluate_smooth(object, ...)
```

S3 method for class 'gam'

```r
evaluate_smooth(
  object,
  smooth,
  n = 100,
  newdata = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = 0.1,
  ...
)
```

S3 method for class 'gamm'

```r
evaluate_smooth(object, ...)
```

```r
evaluate_parametric_term(object, ...)
```

S3 method for class 'gam'

```r
evaluate_parametric_term(object, term, unconditional = FALSE, ...)
```

Arguments

- **object**
 - an object of class "gam" or "gamm".
- **...**
 - arguments passed to other methods.
- **smooth**
 - character; a single smooth to evaluate.
- **n**
 - numeric; the number of points over the range of the covariate at which to evaluate the smooth.
factor_var_names

newdata a vector or data frame of points at which to evaluate the smooth.
unconditional logical; should confidence intervals include the uncertainty due to smoothness selection? If TRUE, the corrected Bayesian covariance matrix will be used.
overall_uncertainty logical; should the uncertainty in the model constant term be included in the standard error of the evaluate values of the smooth?
dist numeric; if greater than 0, this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and dist is a distance within the unit square. See mgcv::exclude.too.far() for further details.
term character; which parametric term whose effects are evaluated

Value
A data frame, which is of class "evaluated_1d_smooth" or evaluated_2d_smooth, which inherit from classes "evaluated_smooth" and "data.frame".

Examples
load_mgcv()

dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

evaluate_smooth(m1, "s(x1)")

2d example
set.seed(2)

dat <- gamSim(2, n = 1000, dist = "normal", scale = 1)
m2 <- gam(y ~ s(x, z, k = 30), data = dat$data, method = "REML")

evaluate_smooth(m2, "s(x,z)", n = 100)

factor_var_names

Names of any factor variables in model data

Description
Names of any factor variables in model data

Usage
factor_var_names(df)

Arguments
df a data frame or tibble
fderiv

First derivatives of fitted GAM functions

Description
The first derivative of the smooth functions of a GAM model calculated using finite differences.

Usage
fderiv(model, ...)

S3 method for class 'gam'
fderiv(
 model,
 newdata,
 term,
 n = 200,
 eps = 1e-07,
 unconditional = FALSE,
 offset = NULL,
 ...
)

S3 method for class 'gamm'
fderiv(model, ...)

Arguments

model A fitted GAM. Currently only models fitted by \texttt{mgcv::gam()} and \texttt{mgcv::gamm()} are supported.

... Arguments that are passed to other methods.

newdata a data frame containing the values of the model covariates at which to evaluate the first derivatives of the smooths.

term character; vector of one or more terms for which derivatives are required. If missing, derivatives for all smooth terms will be returned.

n integer; if \texttt{newdata} is missing the original data can be reconstructed from \texttt{model} and then \texttt{n} controls the number of values over the range of each covariate with which to populate \texttt{newdata}.

eps numeric; the value of the finite difference used to approximate the first derivative.

unconditional logical; if \texttt{TRUE}, the smoothing parameter uncertainty corrected covariance matrix is used, if available, otherwise the uncorrected Bayesian posterior covariance matrix is used.

offset numeric; value of offset to use in generating predictions.
fitted_samples

Value

An object of class "fderiv" is returned.

Author(s)

Gavin L. Simpson

Examples

```r
load_mgcv()

dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

## first derivatives of all smooths...
fd <- fderiv(mod)

## ...and a selected smooth
fd2 <- fderiv(mod, term = "x1")

## Models with factors
set.seed(2)

dat <- gamSim(4, n = 400, dist = "normal", scale = 2)
mod <- gam(y ~ s(x0) + s(x1) + fac, data = dat, method = "REML")

## first derivatives of all smooths...
fd <- fderiv(mod)

## ...and a selected smooth
fd2 <- fderiv(mod, term = "x1")
```

fitted_samples

Draw fitted values from the posterior distribution

Description

Expectations (fitted values) of the response drawn from the posterior distribution of fitted model, created via `simulate()` (e.g. `simulate.gam()`) and returned in a tidy, long, format.

Predicted values of the response drawn from the posterior distribution of fitted model, created via `simulate()` (e.g. `simulate.gam()`) and returned in a tidy, long, format.

Usage

```
fitted_samples(model, ...)

## S3 method for class 'gam'
fitted_samples(model,
```
n = 1,
newdata,
seed,
scale = c("response", "linear_predictor"),
freq = FALSE,
unconditional = FALSE,
ncores = 1L,
...
)
predicted_samples(model, ...)

S3 method for class 'gam'
predicted_samples(
 model,
 n = 1,
 newdata = NULL,
 seed = NULL,
 freq = FALSE,
 unconditional = FALSE,
 weights = NULL,
 ...
)

Arguments

- **model**: a fitted model of the supported types
- **n**: numeric; the number of posterior samples to return.
- **newdata**: data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for newdata, if available in model.
- **seed**: numeric; a random seed for the simulations.
- **scale**: character;
- **freq**: logical; TRUE to return the frequentist covariance matrix of the parameter estimators, FALSE to return the Bayesian posterior covariance matrix of the parameters.
- **unconditional**: logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is returned, if available.
- **ncores**: number of cores for generating random variables from a multivariate normal distribution. Passed to `mvnfast::rmvn()`. Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
- **weights**: numeric; a vector of prior weights. If newdata is null then defaults to `object[['prior.weights']]]`, otherwise a vector of ones.
Value

A tibble (data frame) with 3 columns containing the posterior predicted values in long format. The columns are

- row (integer) the row of newdata that each posterior draw relates to,
- draw (integer) an index, in range 1:n, indicating which draw each row relates to,
- response (numeric) the predicted response for the indicated row of newdata.

A tibble (data frame) with 3 columns containing the posterior predicted values in long format. The columns are

- row (integer) the row of newdata that each posterior draw relates to,
- draw (integer) an index, in range 1:n, indicating which draw each row relates to,
- response (numeric) the predicted response for the indicated row of newdata.

Author(s)

Gavin L. Simpson

Examples

load_mgcv()

dat <- gamSim(1, n = 1000, dist = "normal", scale = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

fitted_samples(m1, n = 5, seed = 42)

load_mgcv()

dat <- gamSim(1, n = 1000, dist = "normal", scale = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

predicted_samples(m1, n = 5, seed = 42)

fix_offset

Fix the names of a data frame containing an offset variable.

Description

Identifies which variable, if any, is the model offset, and fixed the name such that offset(foo(var)) is converted to var, and possibly sets the values of that variable to offset_val.

Usage

fix_offset(model, newdata, offset_val = NULL)
get_by_smooth

Arguments

model a fitted GAM.
newdata data frame; new values at which to predict at.
offset_val numeric, optional; if provided, then the offset variable in newdata is set to this constant value before returning newdata.

Value

The original newdata is returned with fixed names and possibly modified offset variable.

Author(s)

Gavin L. Simpson

Examples

load_mgcv()

df <- gamSim(1, n = 400, dist = "normal")
m <- gam(y ~ s(x0) + s(x1) + offset(x2), data = df, method = "REML")
names(model.frame(m))
names(fix_offset(m, model.frame(m), offset_val = 1L))

get_by_smooth Extract an factor-by smooth by name

Description

Extract an factor-by smooth by name

Usage

get_by_smooth(object, term, level)

Arguments

object a fitted GAM model object.
term character; the name of a smooth term to extract.
level character; which level of the factor to extract the smooth for..

Value

A single smooth object, or a list of smooths if several match the named term.
get_smooth

Extract an mgcv smooth by name

Description

Extract an mgcv smooth by name

Usage

get_smooth(object, term)

Arguments

object a fitted GAM model object.
term character; the name of a smooth term to extract

Value

A single smooth object, or a list of smooths if several match the named term.

get_smooths_by_id

Extract an mgcv smooth given its position in the model object

Description

Extract an mgcv smooth given its position in the model object

Usage

get_smooths_by_id(object, id)

Arguments

object a fitted GAM model object.

id numeric; the position of the smooth in the model object.
is_by_smooth
Tests for by variable smooths

Description
Functions to check if a smooth is a by-variable one and to test of the type of by-variable smooth is a factor-smooth or a continuous-smooth interaction.

Usage

is_by_smooth(smooth)

is_factor_by_smooth(smooth)

is_continuous_by_smooth(smooth)

by_variable(smooth)

by_level(smooth)

Arguments

smooth an object of class "mgcv.smooth"

Value
A logical vector.

Author(s)
Gavin L. Simpson

is_factor_var Are variables in a data frame factors?

Description
Are variables in a data frame factors?

Usage

is_factor_var(df)

Arguments
df a data frame or tibble
is_mgcv_smooth

Check if objects are smooths or are a particular type of smooth

Description

Check if objects are smooths or are a particular type of smooth

Usage

```r
is_mgcv_smooth(smooth)
```

```r
is_mrf_smooth(smooth)
```

Arguments

- `smooth` an R object, typically a list

is_offset

Is a model term an offset?

Description

Given a character vector of model terms, checks to see which, if any, is the model offset.

Usage

```r
is_offset(terms)
```

Arguments

- `terms` character vector of model terms.

Value

A logical vector of the same length as `terms`.

Author(s)

Gavin L. Simpson

Examples

```r
load_mgcv()
df <- gamSim(1, n = 400, dist = "normal")
m <- gam(y ~ s(x0) + s(x1) + offset(x0), data = df, method = "REML")
nm <- names(model.frame(m))
nm
is_offset(nm)
```
load_mgcv

Load mgcv quietly

Description

Simple function that loads the mgcv package whilst suppressing the startup messages that it prints to the console.

Usage

load_mgcv()

Value

Returns a logical vectors invisibly, indicating whether the package was loaded or not.

n_smooths

How many smooths in a fitted model

Description

How many smooths in a fitted model

Usage

n_smooths(object)

Default S3 method:

n_smooths(object)

S3 method for class 'gam'

n_smooths(object)

S3 method for class 'gamm'

n_smooths(object)

S3 method for class 'bam'

n_smooths(object)

Arguments

object a fitted GAM or related model. Typically the result of a call to mgcv::gam(), mgcv::bam(), or mgcv::gamm().
observed_fitted_plot
Plot of fitted against observed response values

Description

Plot of fitted against observed response values

Usage

```r
observed_fitted_plot(
  model,
  ylab = NULL,
  xlab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL
)
```

Arguments

- **model**: a fitted model. Currently only class "gam".
- **ylab**: character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
- **xlab**: character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
- **title**: character or expression; the title for the plot. See `ggplot2::labs()`.
- **subtitle**: character or expression; the subtitle for the plot. See `ggplot2::labs()`.
- **caption**: character or expression; the plot caption. See `ggplot2::labs()`.

parametric_terms
Names of any parametrix terms in a GAM

Description

Names of any parametrix terms in a GAM

Usage

```r
parametric_terms(model, ...)
```

Default S3 method:
```r
parametric_terms(model, ...)
```

S3 method for class 'gam'
```r
parametric_terms(model, ...)
```
Arguments

model a fitted model.
... arguments passed to other methods.

Description

Draw samples from the posterior distribution of an estimated model

Usage

posterior_samples(model, ...)

S3 method for class 'gam'
posterior_samples(
 model,
 n,
 newdata,
 seed,
 scale = c("response", "linear_predictor"),
 freq = FALSE,
 unconditional = FALSE,
 weights = NULL,
 ncores = 1L,
 ...
)

Arguments

model a fitted model of the supported types
... arguments passed to other methods
n numeric; the number of posterior samples to return.
newdata data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for newdata, if available in model.
seed numeric; a random seed for the simulations.
scale character;
freq logical; TRUE to return the frequentist covariance matrix of the parameter estimators, FALSE to return the Bayesian posterior covariance matrix of the parameters.
unconditional logical; if TRUE (and freq != FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is returned, if available.
weights numeric; a vector of prior weights. If newdata is null then defaults to object[["prior.weights"]], otherwise a vector of ones.

ncores number of cores for generating random variables from a multivariate normal distribution. Passed to \textit{mvnfast::rmvn()}. Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).

\textbf{Value}

A tibble (data frame) with 3 columns containing the posterior predicted values in long format. The columns are

- \textit{row} (integer) the row of newdata that each posterior draw relates to,
- \textit{draw} (integer) an index, in range 1:n, indicating which draw each row relates to,
- \textit{response} (numeric) the predicted response for the indicated row of newdata.

\textbf{Author(s)}

Gavin L. Simpson

\begin{verbatim}
qq_plot Quantile-quantile plot of model residuals
\end{verbatim}

\textbf{Description}

Quantile-quantile plot of model residuals

\textbf{Usage}

\begin{verbatim}
qq_plot(model, ...)
\end{verbatim}

\begin{verbatim}
S3 method for class 'gam'
qq_plot(
 model,
 method = c("direct", "simulate", "normal"),
 type = c("deviance", "response", "pearson"),
 n_uniform = 10,
 n_simulate = 50,
 level = 0.9,
 ylab = NULL,
 xlab = NULL,
 title = NULL,
 subtitle = NULL,
 caption = NULL,
 alpha = 0.2,
 ...
)
\end{verbatim}
Arguments

- **model**: a fitted model. Currently only class "gam".
- ...: arguments passed to other methods.
- **method**: character; method used to generate theoretical quantiles.
- **type**: character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
- **n_uniform**: numeric; number of times to randomize uniform quantiles in the direct computation method (method = "direct").
- **n_simulate**: numeric; number of data sets to simulate from the estimated model when using the simulation method (method = "simulate").
- **level**: numeric; the coverage level for reference intervals. Must be strictly 0 < level < 1. Only used with method = "simulate".
- **ylab**: character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
- **xlab**: character or expression; the label for the x axis. If not supplied, a suitable label will be generated.
- **title**: character or expression; the title for the plot. See `ggplot2::labs()`.
- **subtitle**: character or expression; the subtitle for the plot. See `ggplot2::labs()`.
- **caption**: character or expression; the plot caption. See `ggplot2::labs()`.
- **alpha**: numeric; the level of alpha transparency for the reference interval when method = "simulate".

Examples

```r
load_mgcv()
## simulate binomial data...
set.seed(0)
n.samp <- 200
dat <- gamSim(1, n = n.samp, dist = "binary", scale = .33)
p <- binomial()$linkinv(dat$f) # binomial p
n <- sample(c(1, 3), n.samp, replace = TRUE) # binomial n
dat <- transform(dat, y = rbinom(n, n, p), n = n)
m <- gam( y / n ~ s(x0) + s(x1) + s(x2) + s(x3),
    family = binomial, data = dat, weights = n,
    method = "REML")

## Q-Q plot; default using direct randomization of uniform quantiles
qq_plot(m)

## Alternatively use simulate new data from the model, which
## allows construction of reference intervals for the Q-Q plot
qq_plot(m, method = "simulate")

## ... or use the usual normality assumption
qq_plot(m, method = "normal")
```
rep_first_factor_value

Repeat the first level of a factor n times

Description

Function to repeat the first level of a factor n times and return this vector as a factor with the original levels intact.

Usage

```r
rep_first_factor_value(f, n)
```

Arguments

- `f`: a factor
- `n`: numeric; the number of times to repeat the first level of `f`

Value

A factor of length n with the levels of `f`, but whose elements are all the first level of `f`.

residuals Hist_plot

Histogram of model residuals

Description

Histogram of model residuals

Usage

```r
residuals_hist_plot(
    model,
    type = c("deviance", "pearson", "response"),
    n_bins = c("sturges", "scott", "fd"),
    ylab = NULL,
    xlab = NULL,
    title = NULL,
    subtitle = NULL,
    caption = NULL
)
```
Arguments

model a fitted model. Currently only class "gam".

type character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
n_bins character or numeric; either the number of bins or a string indicating how to calculate the number of bins.
ylab character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
title character or expression; the title for the plot. See ggplot2::labs().
subtitle character or expression; the subtitle for the plot. See ggplot2::labs().
caption character or expression; the plot caption. See ggplot2::labs().

residuals_linpred_plot

Plot of residuals versus linear predictor values

Description

Plot of residuals versus linear predictor values

Usage

residuals_linpred_plot(
 model,
 type = c("deviance", "pearson", "response"),
 ylab = NULL,
 xlab = NULL,
 title = NULL,
 subtitle = NULL,
 caption = NULL
)

Arguments

model a fitted model. Currently only class "gam".

type character; type of residuals to use. Only "deviance", "response", and "pearson" residuals are allowed.
ylab character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
xlab character or expression; the label for the y axis. If not supplied, a suitable label will be generated.
seq_min_max

create a sequence of evenly-spaced values

Description

Creates a sequence of \(n \) evenly-spaced values over the range \(\min(x) - \max(x) \).

Usage

\[
\text{seq_min_max}(x, n)
\]

Arguments

- \(x \) numeric; vector over which evenly-spaced values are returned
- \(n \) numeric; the number of evenly-spaced values to return

Value

A numeric vector of length \(n \).

Examples

\[
x \leftarrow \text{rnorm}(10)
n \leftarrow 10L
\text{seq_min_max}(x, n = n)
\]

seq_min_max_eps

Create a sequence of evenly-spaced values adjusted to accommodate a small adjustment

Description

Creates a sequence of \(n \) evenly-spaced values over the range \(\min(x) - \max(x) \), where the minimum and maximum are adjusted such that they are always contained within the range of \(x \) when \(x \) may be shifted forwards or backwards by an amount related to \(\text{eps} \). This is particularly useful in computing derivatives via finite differences where without this adjustment we may be predicting for values outside the range of the data and hence the constraints of the penalty.

Usage

\[
\text{seq_min_max_eps}(x, n, \text{order}, \text{type} = \text{c("forward", "backward", "central"), \text{eps})}
\]
Arguments

- **x**: numeric; vector over which evenly-spaced values are returned
- **n**: numeric; the number of evenly-spaced values to return
- **order**: integer; the order of derivative. Either 1 or 2 for first or second order derivatives
- **type**: character; the type of finite difference used. One of “forward”, “backward”, or “central”
- **eps**: numeric; the finite difference

Value

A numeric vector of length n.

shift_values

Shift numeric values in a data frame by an amount eps

Description

Shift numeric values in a data frame by an amount eps

Usage

```r
shift_values(df, h, i, FUN = "+")
```

Arguments

- **df**: a data frame or tibble.
- **h**: numeric; the amount to shift values in df by.
- **i**: logical; a vector indexing columns of df that should not be included in the shift.
- **FUN**: function; a function to apply the shift. Typically + or -.

simulate.gam

Simulate from the posterior distribution of a GAM

Description

Simulations from the posterior distribution of a fitted GAM model involve making random draws from a multivariate normal with mean vector equal to the estimated model coefficients and covariance matrix equal to the covariance matrix of the coefficients.
Usage

```r
## S3 method for class 'gam'
simulate(
  object,
  nsim = 1,
  seed = NULL,
  newdata = NULL,
  freq = FALSE,
  unconditional = FALSE,
  weights = NULL,
  ...
)
```

```r
## S3 method for class 'gamm'
simulate(
  object,
  nsim = 1,
  seed = NULL,
  newdata = NULL,
  freq = FALSE,
  unconditional = FALSE,
  weights = NULL,
  ...
)
```

```r
## S3 method for class 'scam'
simulate(
  object,
  nsim = 1,
  seed = NULL,
  newdata = NULL,
  freq = FALSE,
  weights = NULL,
  ...
)
```

Arguments

- **object**
 - a fitted GAM, typically the result of a call to `mgcv::gam` or `mgcv::gamm()`.

- **nsim**
 - numeric; the number of posterior simulations to return.

- **seed**
 - numeric; a random seed for the simulations.

- **newdata**
 - data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for newdata, if available in object.

- **freq**
 - logical; TRUE to return the frequentist covariance matrix of the parameter estimators, FALSE to return the Bayesian posterior covariance matrix of the parameters.
unconditional logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is returned, if available.

weights numeric; a vector of prior weights. If newdata is null then defaults to object["prior.weights"], otherwise a vector of ones.

... arguments passed to methods

Value

(Currently) A matrix with nsim columns.

Author(s)

Gavin L. Simpson

Examples

load_mgcv()

dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

sims <- simulate(m1, nsim = 5, seed = 42)
head(sims)

smallAges

Lead-210 age-depth measurements for Small Water

Description

A dataset containing lead-210 based age depth measurements for the SMALL1 core from Small Water.

Format

A data frame with 12 rows and 7 variables.

Details

The variables are as follows:

- Depth
- Drymass
- Date
- Age
- Error
- SedAccRate
- SedPerCentChange
smooths

Source

smooths

Names of smooths in a GAM

Description

Names of smooths in a GAM

Usage

smooths(object)

Arguments

object a fitted GAM or related model. Typically the result of a call to mgcv::gam(), mgcv::bam(), or mgcv::gamm().

smooth_coefs

Indices of the parametric terms for a particular smooth

Description

Returns a vector of indices of the parametric terms that represent the supplied smooth. Useful for extracting model coefficients and columns of their covariance matrix.

Usage

smooth_coefs(smooth)

Arguments

smooth an object that inherits from class mgcv.smooth

Value

A numeric vector of indices.

Author(s)

Gavin L. Simpson
smooth_dim | Dimension of a smooth

Description

Extracts the dimension of an estimated smooth.

Usage

```r
smooth_dim(object)
```

```r
## S3 method for class 'gam'
smooth_dim(object)
```

```r
## S3 method for class 'gamm'
smooth_dim(object)
```

```r
## S3 method for class 'mgcv.smooth'
smooth_dim(object)
```

Arguments

- `object`: an R object. See Details for list of supported objects.

Details

This is a generic function with methods for objects of class "gam", "gamm", and "mgcv.smooth".

Value

A numeric vector of dimensions for each smooth.

Author(s)

Gavin L. Simpson

smooth_samples | Posterior draws for individual smooths

Description

Returns draws from the posterior distributions of smooth functions in a GAM. Useful, for example, for visualising the uncertainty in individual estimated functions.
smooth_samples

Usage

smooth_samples(model, ...)

S3 method for class 'gam'
smooth_samples(
 model,
 term = NULL,
 n = 1,
 newdata = NULL,
 seed = NULL,
 freq = FALSE,
 unconditional = FALSE,
 ncores = 1L,
 n_vals = 200,
 ...
)

Arguments

model a fitted model of the supported types
...
arguments passed to other methods
term character; select which smooth’s posterior to draw from. The default (NULL) means the posteriors of all smooths in model will be sampled from. If supplied, a character vector of requested terms.
n numeric; the number of posterior samples to return.
newdata data frame; new observations at which the posterior draws from the model should be evaluated. If not supplied, the data used to fit the model will be used for newdata, if available in model.
seed numeric; a random seed for the simulations.
freq logical; TRUE to return the frequentist covariance matrix of the parameter estimators, FALSE to return the Bayesian posterior covariance matrix of the parameters.
unconditional logical; if TRUE (and freq == FALSE) then the Bayesian smoothing parameter uncertainty corrected covariance matrix is returned, if available.
ncores number of cores for generating random variables from a multivariate normal distribution. Passed to \texttt{mvnfast::rmvn()}. Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current R).
n_vals numeric; how many locations to evaluate the smooth at if newdata not supplied

Value

A tibble with additional classes "smooth_samples" and "posterior_samples".
For the "gam" method, the columns currently returned (not in this order) are:

- smooth; character vector. Indicates the smooth function for that particular draw,
- term; character vector. Similar to smooth, but will contain the full label for the smooth, to differentiate factor-by smooths for example.
by_variable: character vector. If the smooth involves a by term, the by variable will be named here, \texttt{NA_character_} otherwise.

row: integer. A vector of values \texttt{seq_len(n_vals)}, repeated if \texttt{n > 1L}. Indexes the row in \texttt{newdata} for that particular draw.

draw: integer. A vector of integer values indexing the particular posterior draw that each row belongs to.

value: numeric. The value of smooth function for this posterior draw and covariate combination.

.xN: numeric. A series of one or more columns containing data required for the smooth. \texttt{.x1} will always be present and contains the values of the covariate in the smooth. For example if smooth is \texttt{s(z)} then \texttt{.x1} will contain the values of covariate \texttt{z} at which the smooth was evaluated. Further covariates for multi-dimensional thin plate splines (e.g. \texttt{s(x,z)}) or tensor product smooths (e.g. \texttt{te(x,z,a)}) will result in variables \texttt{.x1} and \texttt{.x2}, and \texttt{.x1}, \texttt{.x2}, and \texttt{.x3} respectively, with the number (1, 2, etc) representing the order in which the covariates were specified in the smooth.

Additional columns will be present in the case of factor by smooths, which will contain the level for the factor named in \texttt{by_variable} for that particular posterior draw.

Warning

The set of variables returned and their order in the tibble is subject to change in future versions. Don’t rely on position.

Author(s)

Gavin L. Simpson

Examples

```r
load_mgcv()

dat <- gamSim(1, n = 1000, dist = "normal", scale = 2)
m1 <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML")

smooth_samples(m1, term = "s(x0)", n = 5, seed = 42)

## A factor by example (with a spurious covariate x0)

dat <- gamSim(4)

## fit model...
m2 <- gam(y ~ fac + s(x2, by = fac) + s(x0), data = dat)
smooth_samples(m2, n = 5, seed = 42)
```
tidy_basis

Description

Takes an object of class `mgcv::smooth` and returns a tidy representation of the basis.

Usage

```r
tidy_basis(smooth, data)
```

Arguments

- `smooth` a smooth object.
- `data` a data frame containing the variables used in `smooth`.

Value

A tibble.

Author(s)

Gavin L. Simpson

which_smooths

Description

Identify a smooth term by it's label

Usage

```r
which_smooths(object, ...)  
```

```r
## Default S3 method:  
which_smooths(object, ...)  
```

```r
## S3 method for class 'gam'  
which_smooths(object, terms, ...)  
```

```r
## S3 method for class 'bam'  
which_smooths(object, terms, ...)  
```

```r
## S3 method for class 'gamm'  
which_smooths(object, terms, ...)  
```
Arguments

- **object**: a fitted GAM.
- **...**: arguments passed to other methods.
- **terms**: character; one or more (partial) term labels with which to identify required smooths.

zooplankton

Madison lakes zooplankton data

Description

The Madison lake zooplankton data are from a long-term study in seasonal dynamics of zooplankton, collected by the Richard Lathrop. The data were collected from a chain of lakes in Wisconsin (Mendota, Monona, Kegonsa, and Waubesa) approximately bi-weekly from 1976 to 1994. They consist of samples of the zooplankton communities, taken from the deepest point of each lake via vertical tow. The data are provided by the Wisconsin Department of Natural Resources and their collection and processing are fully described in Lathrop (2000).

Format

A data frame

Details

Each record consists of counts of a given zooplankton taxon taken from a subsample from a single vertical net tow, which was then scaled to account for the relative volume of subsample versus the whole net sample and the area of the net tow and rounded to the nearest 1000 to give estimated population density per m² for each taxon at each point in time in each sampled lake.

Source

References

Index

*Topic data
 bird_move, 5
 smallAges, 44
 zooplankton, 50

appraise, 3
basis, 4
basis(), 21
bird_move, 5
by_level(is_by_smooth), 32
by_variable(is_by_smooth), 32

check_user_select_smooths, 5
coeff.scam, 6
confint.fderiv, 7
confint.gam, 8
confint.gamm(confint.gam), 8
cowplot::plot_grid(), 3, 20, 21, 23
data.class(), 11
data_class, 11
data_slice, 12
datagen, 10
derivatives, 13
draw, 14
draw.derivatives, 15
draw.evaluated_1d_smooth
draw.evaluated_2d_smooth
draw.evaluated_fs_smooth
draw.evaluated_parametric_term
draw.evaluated_re_smooth
draw.evaluated_smooth, 16
draw.gam, 19
draw.mgcv_smooth, 21
draw.smooth_samples, 22
evaluate_parametric_term
evaluate_smooth, 24
evaluate_smooth(), 17
factor_var_names, 25
fderiv, 26
fitted_samples, 27
fix_offset, 29
geom_rug(draw.evaluated_smooth), 16
g_by_smooth, 30
g_smooth, 31
g_smooths_by_id, 31
geogp2::geom_contour(), 18
geogp2::geom_line(), 23
geogp2::ggplot(), 15, 18–21
geogp2::label_both(), 21
geogp2::labs(), 18, 21, 23, 35, 38, 40, 41
gratia::observed_fitted_plot(), 4
gratia::qq_plot(), 4
gratia::residuals_hist_plot(), 4
gratia::residuals_linpred_plot(), 4
is_by_smooth, 32
is_continuous_by_smooth(is_by_smooth), 32
is_factor_by_smooth(is_by_smooth), 32
is_factor_var, 32
is_mgcv_smooth, 33
is_mrf_smooth(is_mgcv_smooth), 33
is_offset, 33
load_mgcv, 34
mgcv::bam(), 34, 45
mgcv::exclude.too.far(), 20, 25
mgcv::gam, 43
mgcv::gam(), 15, 19, 22, 26, 34, 45
mgcv::gamm(), 26, 34, 43, 45
mgcv::s(), 4
mgcv::smoothCon(), 4
mgcv::t2(), 4
mgcv::te(), 4
mgcv::ti(), 4
mvnfast::rmvn(), 7, 9, 14, 28, 37, 47

n_smooths, 34
observed_fitted_plot, 35
parametric_terms, 35
posterior_samples, 36
predicted_samples (fitted_samples), 27

qq_plot, 37
rep_first_factor_value, 39
residuals_hist_plot, 39
residuals_linpred_plot, 40
seq_min_max, 41
seq_min_max_eps, 41
shift_values, 42
simulate.gam, 42
simulate.gam(), 27
simulate.gamm(simulate.gam), 42
simulate.scam(simulate.gam), 42
smallAges, 44
smooth_coefs, 45
smooth_dim, 46
smooth_samples, 46
smooths, 45

tidy_basis, 49

which_smooths, 49

zooplankton, 50