Package ‘greybox’

March 29, 2020

Type Package

Title Toolbox for Model Building and Forecasting

Version 0.5.9

Date 2020-03-29

URL https://github.com/config-i1/greybox

BugReports https://github.com/config-i1/greybox/issues

Language en-GB

Description Implements functions and instruments for regression model building and its application to forecasting. The main scope of the package is in variables selection and models specification for cases of time series data. This includes promotional modelling, selection between different dynamic regressions with non-standard distributions of errors, selection based on cross validation, solutions to the fat regression model problem and more. Models developed in the package are tailored specifically for forecasting purposes. So as a results there are several methods that allow producing forecasts from these models and visualising them.

License GPL (>= 2)

Depends R (>= 3.0.2)

Imports forecast, stats, graphics, utils, lamW, pracma, nloptr, statmod

LinkingTo Rcpp

Suggests smooth (>= 2.5.1), doMC, doParallel, foreach, testthat, rmarkdown, knitr

Enhances vars

RoxygenNote 7.0.2

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation yes

Author Ivan Svetunkov [aut, cre] (Lecturer at Centre for Marketing Analytics and Forecasting, Lancaster University, UK), Yves R. Sagaert [ctb] (Visiting Research at Centre for Marketing Analytics and Forecasting, Lancaster University, UK)
Maintainer
Ivan Svetunkov <ivan@svetunkov.ru>

Repository
CRAN

Date/Publication
2020-03-29 08:20:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>actuals</td>
<td>3</td>
</tr>
<tr>
<td>AICc</td>
<td>4</td>
</tr>
<tr>
<td>alm</td>
<td>5</td>
</tr>
<tr>
<td>association</td>
<td>9</td>
</tr>
<tr>
<td>cramer</td>
<td>11</td>
</tr>
<tr>
<td>dalaplace</td>
<td>12</td>
</tr>
<tr>
<td>dbcnorm</td>
<td>13</td>
</tr>
<tr>
<td>determination</td>
<td>15</td>
</tr>
<tr>
<td>dfnorm</td>
<td>16</td>
</tr>
<tr>
<td>dlaplace</td>
<td>18</td>
</tr>
<tr>
<td>ds</td>
<td>19</td>
</tr>
<tr>
<td>dtplnorm</td>
<td>21</td>
</tr>
<tr>
<td>errorType</td>
<td>22</td>
</tr>
<tr>
<td>graphmaker</td>
<td>23</td>
</tr>
<tr>
<td>greybox</td>
<td>25</td>
</tr>
<tr>
<td>hm</td>
<td>26</td>
</tr>
<tr>
<td>is.greybox</td>
<td>27</td>
</tr>
<tr>
<td>lmCombine</td>
<td>28</td>
</tr>
<tr>
<td>lmDynamic</td>
<td>30</td>
</tr>
<tr>
<td>mcor</td>
<td>33</td>
</tr>
<tr>
<td>ME</td>
<td>34</td>
</tr>
<tr>
<td>measures</td>
<td>37</td>
</tr>
<tr>
<td>nparam</td>
<td>39</td>
</tr>
<tr>
<td>pAIC</td>
<td>40</td>
</tr>
<tr>
<td>pcor</td>
<td>41</td>
</tr>
<tr>
<td>pinball</td>
<td>42</td>
</tr>
<tr>
<td>plot.greybox</td>
<td>43</td>
</tr>
<tr>
<td>pointLik</td>
<td>45</td>
</tr>
<tr>
<td>polyprod</td>
<td>46</td>
</tr>
<tr>
<td>predict.alm</td>
<td>47</td>
</tr>
<tr>
<td>rmcb</td>
<td>49</td>
</tr>
<tr>
<td>ro</td>
<td>51</td>
</tr>
<tr>
<td>spread</td>
<td>54</td>
</tr>
<tr>
<td>stepwise</td>
<td>55</td>
</tr>
<tr>
<td>tableplot</td>
<td>57</td>
</tr>
<tr>
<td>xregExpander</td>
<td>58</td>
</tr>
<tr>
<td>xregMultiplier</td>
<td>59</td>
</tr>
<tr>
<td>xregTransformer</td>
<td>60</td>
</tr>
</tbody>
</table>

Index

62
Function extracts the actual values from the function

Description

This is a simple method that returns the values of the response variable of the model

Usage

actuals(object, ...)

Default S3 method:
actuals(object, ...)

S3 method for class 'alm'
actuals(object, ...)

Arguments

object Model estimated using one of the functions of smooth package.
...
A parameter all can also be provided here. If it is FALSE, then in the case of occurrence model, only demand sizes will be returned. Works only with 'alm' class.

Value

The vector of the response variable.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

ourModel <- stepwise(xreg)

actuals(ourModel)
Description
This function extracts AICc / BICc from models. It can be applied to wide variety of models that use logLik() and nobs() methods (including the popular lm, forecast, smooth classes).

Usage
AICc(object, ...)
BICc(object, ...)

Arguments
 object Time series model.
 ... Some stuff.

Details
AICc was proposed by Nariaki Sugiura in 1978 and is used on small samples for the models with normally distributed residuals. BICc was derived in McQuarrie (1999) and is used in similar circumstances.

IMPORTANT NOTE: both of the criteria can only be used for univariate models (regression models, ARIMA, ETS etc) with normally distributed residuals!

Value
This function returns numeric value.

Author(s)
Ivan Svetunkov, <ivan@svetunkov.ru>

References

- Sugiura Nariaki (1978) Further analysts of the data by Akaike’s information criterion and the finite corrections, Communications in Statistics - Theory and Methods, 7:1, 13-26, doi: [10.1080/03610927808827599](http://dx.doi.org/10.1080/03610927808827599)
alm

See Also

AIC, BIC

Examples

```r
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

ourModel <- stepwise(xreg)
AICc(ourModel)
BICc(ourModel)
```

alm

Advanced Linear Model

Description

Function estimates model based on the selected distribution

Usage

```r
alm(formula, data, subset, na.action, distribution = c("dnorm", "dlogis", "dlaplace", "dalaplace", "ds", "dt", "dfnorm", "dlnorm", "dllaplace", "dls", "dbcnorm", "dinvgauss", "dpois", "dnbinom", "dbeta", "plogis", "pnorm"), occurrence = c("none", "plogis", "pnorm"), ar = 0, i = 0, parameters = NULL, vcovProduce = FALSE, fast = FALSE, ...)
```

Arguments

- **formula** an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data** a data frame or a matrix, containing the variables in the model.
- **subset** an optional vector specifying a subset of observations to be used in the fitting process.
- **na.action** a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset. The factory-fresh default is na.omit. Another possible value is NULL, no action. Value na.exclude can be useful.
- **distribution** what density function to use in the process. The full name of the distribution should be provided here. Values with "d" in the beginning of the name refer to the density function, while "p" stands for "probability" (cumulative distribution function). The names align with the names of distribution functions in R. For example, see dnorm.
occurrence what distribution to use for occurrence variable. Can be "none", then nothing
happens; "plogis" - then the logistic regression using alm() is estimated for
the occurrence part; "pnorm" - then probit is constructed via alm() for the oc-
currence part. In both of the latter cases, the formula used is the same as the
formula for the sizes. Finally, an "alm" model can be provided and its estimates
will be used in the model construction.

If this is not "none", then the model is estimated in two steps: 1. Occurrence
part of the model; 2. Sizes part of the model (excluding zeroes from the data).

ar the order of AR to include in the model. Only non-seasonal orders are accepted.

i the order of I to include in the model. Only non-seasonal orders are accepted.

parameters vector of parameters of the linear model. When NULL, it is estimated.

vcovProduce whether to produce variance-covariance matrix of coefficients or not. This is
done via hessian calculation, so might be computationally costly.

fast if TRUE, then the function won't check whether the data has variability and
whether the regressors are correlated. Might cause trouble, especially in cases
of multicollinearity.

... additional parameters to pass to distribution functions. This includes: alpha
value for Asymmetric Laplace distribution, size for the Negative Binomial or
df for the Chi-Squared and Student's t. You can also pass parameters to the
optimiser: 1. maxeval - maximum number of evaluations to carry out (default
is 100); 2. xtol_rel - the precision of the optimiser (the default is 1E-6); 3.
algorithm - the algorithm to use in optimisation ("NLOPT_LN_SBPLX" by de-
default), 4. print_level - the level of output for the optimiser (0 by default). You
can read more about these parameters in the documentation of nloptr function.

Details

This is a function, similar to lm, but for the cases of several non-normal distributions. These include:

1. dnorm - Normal distribution,
2. dlogis - Logistic Distribution,
3. dlaplace - Laplace distribution,
4. dllaplace - Log Laplace distribution,
5. dalaplace - Asymmetric Laplace distribution,
6. dt - T-distribution,
7. ds - S-distribution,
8. dls - Log S-distribution,
9. dfnorm - Folded normal distribution,
10. dnorm - Log normal distribution,
11. dbcnorm - Box-Cox normal distribution,
12. dinvgauss - Inverse Gaussian distribution,
13. dbeta - Beta distribution,
14. dpois - Poisson Distribution,
15. `dnbinom` - Negative Binomial Distribution,
16. `plogis` - Cumulative Logistic Distribution,
17. `pnorm` - Cumulative Normal distribution.

This function can be considered as an analogue of `glm`, but with the focus on time series. This is why, for example, the function has ar and i parameters and produces time series analysis plots with `plot(alm(...))`.

This function is slower than `lm`, because it relies on likelihood estimation of parameters, hessian calculation and matrix multiplication. So think twice when using `distribution="dnorm"` here.

The estimation is done using likelihood of respective distributions.

See more details and examples in the vignette "ALM": `vignette("alm", "greybox")`

Value

Function returns `model` - the final model of the class "alm", which contains:

- coefficients - estimated parameters of the model,
- vcov - covariance matrix of parameters of the model (based on Fisher Information). Returned only when `vcovProduce=TRUE`,
- fitted - fitted values,
- residuals - residuals of the model,
- mu - the estimated location parameter of the distribution,
- scale - the estimated scale parameter of the distribution,
- distribution - distribution used in the estimation,
- logLik - log-likelihood of the model,
- df.residual - number of degrees of freedom of the residuals of the model,
- df - number of degrees of freedom of the model,
- call - how the model was called,
- rank - rank of the model,
- data - data used for the model construction,
- occurrence - the occurrence model used in the estimation,
- other - the list of all the other parameters either passed to the function or estimated in the process, but not included in the standard output (e.g. `alpha` for Asymmetric Laplace).

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

See Also

`stepwise`, `lmCombine`, `xregTransformer`
Examples

```r
### An example with mtcars data and factors
mtcars2 <- within(mtcars, {
  vs <- factor(vs, labels = c("V", "S"))
  am <- factor(am, labels = c("automatic", "manual"))
  cyl <- factor(cyl)
  gear <- factor(gear)
  carb <- factor(carb)
})
# The standard model with Log Normal distribution
ourModel <- alm(mpg~., mtcars2[1:30,], distribution="dlnorm")
summary(ourModel)
plot(ourModel)
# Produce predictions with the one sided interval (upper bound)
predict(ourModel, mtcars2[-c(1:30),], interval="p", side="u")

### Artificial data for the other examples
xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rlaplace(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
inSample <- xreg[1:80,]
outSample <- xreg[-c(1:80),]
# An example with Laplace distribution
ourModel <- alm(y~x1+x2, inSample, distribution="dlaplace")
summary(ourModel)
plot(predict(ourModel,outSample))
# And another one with Asymmetric Laplace distribution (quantile regression)
# with optimised alpha
ourModel <- alm(y~x1+x2, inSample, distribution="dalaplace")
summary(ourModel)
plot(predict(ourModel,outSample))
# An example with AR(1) order
ourModel <- alm(y~x1+x2, inSample, distribution="dnorm", ar=1)
summary(ourModel)
plot(predict(ourModel,outSample))

### Examples with the count data
xreg[,1] <- round(exp(xreg[,1]-70),0)
inSample <- xreg[1:80,]
outSample <- xreg[-c(1:80),]
# Negative Binomial distribution
ourModel <- alm(y~x1+x2, inSample, distribution="dnbinom")
summary(ourModel)
predict(ourModel,outSample,interval="p", side="u")
```
Poisson distribution
ourModel <- alm(y~x1+x2, inSample, distribution="dpois")
summary(ourModel)
predict(ourModel,outSample,interval="p",side="u")

Examples with binary response variable
xreg[,1] <- round(xreg[,1] / (1 + xreg[,1]),0)
inSample <- xreg[1:80,]
outSample <- xreg[-c(1:80),]

Logistic distribution (logit regression)
ourModel <- alm(y~x1+x2, inSample, distribution="plogis")
summary(ourModel)
plot(predict(ourModel,outSample,interval="c"))

Normal distribution (probit regression)
ourModel <- alm(y~x1+x2, inSample, distribution="pnorm")
summary(ourModel)
plot(predict(ourModel,outSample,interval="p"))

association

Measures of association

Description

Function returns the matrix of measures of association for different types of variables.

Usage

```r
association(x, y = NULL, use = c("na.or.complete", "complete.obs", "everything", "all.obs"), method = c("auto", "pearson", "spearman", "kendall", "cramer"))
```

```r
assoc(x, y = NULL, use = c("na.or.complete", "complete.obs", "everything", "all.obs"), method = c("auto", "pearson", "spearman", "kendall", "cramer"))
```

Arguments

- **x**
 - Either data.frame or a matrix
- **y**
 - The numerical variable.
- **use**
 - What observations to use. See `cor` function for details. The only option that is not available here is "pairwise.complete.obs".
- **method**
 - Which method to use for the calculation of measures of association. By default this is "auto", which means that the function will use: `cor`, `mcor` or `cramer` depending on the scales of variables. The other options force the function to use one and the same method for all the variables:
association

- "pearson" - Pearson’s correlation coefficient using cor;
- "spearman" - Spearman’s correlation coefficient based on cor;
- "kendall" - Kendall’s correlation coefficient via cor;
- "cramer" - Cramer’s V using cramer;

Be aware that the wrong usage of measures of association might give misleading results.

Details

The function looks at the types of the variables and calculates different measures depending on the result:

- If both variables are numeric, then Pearson’s correlation is calculated;
- If both variables are categorical, then Cramer’s V is calculated;
- Finally, if one of the variables is categorical, and the other is numeric, then multiple correlation is returned.

After that the measures are wrapped up in a matrix.

Function also calculates the p-values associated with the respective measures (see the return).

See details in the vignette "Marketing analytics with greybox": vignette("maUsingGreybox","greybox")

assoc() is just a short name for the association{}.

Value

The following list of values is returned:

- value - Matrix of the coefficients of association;
- p.value - The p-values for the parameters;
- type - The matrix of the types of measures of association.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

See Also

table, tableplot, spread, cramer, mcor

Examples

association(mtcars)
Calculate Cramer's V for categorical variables

Function calculates Cramer's V for two categorical variables based on the table function

Usage

cramer(x, y, use = c("na.or.complete", "complete.obs", "everything", "all.obs"))

Arguments

 x First categorical variable.
 y Second categorical variable.
 use What observations to use. See cor function for details. The only option that is not available here is "pairwise.complete.obs".

Details

The function calculates Cramer's V and also returns the associated statistics from Chi-Squared test with the null hypothesis of independence of the two variables.

See details in the vignette "Marketing analytics with greybox": vignette("maUsingGreybox", "greybox")

Value

The following list of values is returned:

- value The value of Cramer's V;
- statistic The value of Chi squared statistic associated with the Cramer’s V;
- p.value The p-value of Chi squared test associated with the Cramer’s V;
- df The number of degrees of freedom from the test.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

See Also

table, tableplot, spread, mcor, association

Examples

cramer(mtcars$am, mtcars$gear)
Description

Density, cumulative distribution, quantile functions and random number generation for the Asymmetric Laplace distribution with the location parameter mu, Mean Absolute Error (or Mean Absolute Deviation) equal to 2 scale and asymmetry parameter alpha.

Usage

dalaplace(q, mu = 0, scale = 1, alpha = 0.5, log = FALSE)
palaplace(q, mu = 0, scale = 1, alpha = 0.5)
qalaplace(p, mu = 0, scale = 1, alpha = 0.5)
ralaplace(n = 1, mu = 0, scale = 1, alpha = 0.5)

Arguments

q vector of quantiles.
mu vector of location parameters (means).
scale vector of scale parameters.
alpha value of asymmetry parameter. Varies from 0 to 1.
log if TRUE, then probabilities are returned in logarithms.
p vector of probabilities.
n number of observations. Should be a single number.

Details

When mu=0 and scale=1, the Laplace distribution becomes standardized. The distribution has the following density function:

\[f(x) = \alpha (1-\alpha) / \text{scale} \exp\left(-\frac{x-\mu}{\text{scale} (\alpha - 1(\text{x}\leq\mu))}\right), \]

where \(I(.) \) is the indicator function (equal to 1 if the condition is satisfied and zero otherwise).

When alpha=0.5, then the distribution becomes Symmetric Laplace, where scale = 1/2 MAE. This distribution function aligns with the quantile estimates of parameters (Geraci & Bottai, 2007). Finally, both palaplace and qalaplace are returned for the lower tail of the distribution.
Value

Depending on the function, various things are returned (usually either vector or scalar):

- `dalaplace` returns the density function value for the provided parameters.
- `palaplace` returns the value of the cumulative function for the provided parameters.
- `qalaplace` returns quantiles of the distribution. Depending on what was provided in `p, mu` and `scale`, this can be either a vector or a matrix, or an array.
- `ralaplace` returns a vector of random variables generated from the Laplace distribution. Depending on what was provided in `mu` and `scale`, this can be either a vector or a matrix or an array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

References

Examples

```r
x <- dalaplace(c(-100:100)/10, 0, 1, 0.2)
plot(x, type="l")

x <- palaplace(c(-100:100)/10, 0, 1, 0.2)
plot(x, type="l")

qalaplace(c(0.025,0.975), 0, c(1,2), c(0.2,0.3))

x <- ralaplace(1000, 0, 1, 0.2)
hist(x)
```

dbcnorm

Box-Cox Normal Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the distribution that becomes normal after the Box-Cox transformation. Note that this is based on the original Box-Cox paper.
Usage

dbcnorm(q, mu = 0, sigma = 1, lambda = 0, log = FALSE)
pbcnorm(q, mu = 0, sigma = 1, lambda = 0)
qbcnorm(p, mu = 0, sigma = 1, lambda = 0)
rbcnorm(n = 1, mu = 0, sigma = 1, lambda = 0)

Arguments

q vector of quantiles.
mu vector of location parameters (means).
sigma vector of scale parameters.
lambda the value of the Box-Cox transform parameter.
log if TRUE, then probabilities are returned in logarithms.
p vector of probabilities.
n number of observations. Should be a single number.

Details

The distribution has the following density function:

\[f(x) = x^{\lambda - 1} \frac{1}{\sqrt{2 \pi}} \exp\left(-\frac{(y^{\lambda - 1}/\lambda - \mu)^2}{2 \sigma^2}\right) \]

Both pbcnorm and qbcnorm are returned for the lower tail of the distribution.

In case of \(\lambda = 0 \), the values of the log normal distribution are returned. In case of \(\lambda = 1 \),
the values of the normal distribution are returned with \(\mu = \mu + 1 \).

All the functions are defined for non-negative values only.

Value

Depending on the function, various things are returned (usually either vector or scalar):

- \(\text{dbcnorm} \) returns the density function value for the provided parameters.
- \(\text{pbcnorm} \) returns the value of the cumulative function for the provided parameters.
- \(\text{qbcnorm} \) returns quantiles of the distribution. Depending on what was provided in \(p, \mu \) and \(\sigma \), this can be either a vector or a matrix, or an array.
- \(\text{rbcnorm} \) returns a vector of random variables generated from the bcnorm distribution. Depending on what was provided in \(\mu \) and \(\sigma \), this can be either a vector or a matrix or an array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>
determination

References

Examples

```r
x <- dbcnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")

x <- pbcnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")

qbcnorm(c(0.025,0.975), 0, c(1,2), 1)

x <- rbcnorm(1000, 0, 1, 1)
hist(x)
```

determination

Coefficients of determination

Description
Function produces coefficients of determination for the provided data

Usage

```r
determination(xreg, bruteforce = TRUE, ...)
determin(object, ...)
```

Arguments

- `xreg` Data frame or a matrix, containing the exogenous variables.
- `bruteforce` If TRUE, then all the variables will be used for the regression construction (sink regression). If the number of observations is smaller than the number of series, the function will use stepwise function and select only meaningful variables. So the reported values will be based on stepwise regressions for each variable.
- `...` Other values passed to cor function.
- `object` The object, for which to calculate the coefficients of determination.
Details

The function calculates coefficients of determination (aka R^2) between all the provided variables. The higher the coefficient for a variable is, the higher the potential multicollinearity effect in the model with the variable will be. Coefficients of determination are connected directly to Variance Inflation Factor (VIF): VIF = 1 / (1 - determination). Arguably it is easier to interpret, because it is restricted with (0, 1) bounds. The multicollinearity can be considered as serious, when determination > 0.9 (which corresponds to VIF > 10).

The method `determination` can be applied to wide variety of classes, including `lm`, `glm` and `alm`.

See details in the vignette "Marketing analytics with greybox": vignette("maUsingGreybox","greybox")

Value

Function returns the vector of determination coefficients.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

See Also

cor, mcor, stepwise

Examples

```r
### Simple example
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("x1","x2","x3","Noise")
determination(xreg)
```

dfnorm

Folded Normal Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the folded normal distribution with the location parameter mu and the scale sigma (which corresponds to standard deviation in normal distribution).
Usage

dfnorm(q, mu = 0, sigma = 1, log = FALSE)
pfnorm(q, mu = 0, sigma = 1)
qfnorm(p, mu = 0, sigma = 1)
rfnorm(n = 1, mu = 0, sigma = 1)

Arguments

q vector of quantiles.
mu vector of location parameters (means).
sigma vector of scale parameters.
log if TRUE, then probabilities are returned in logarithms.
p vector of probabilities.
n number of observations. Should be a single number.

Details

The distribution has the following density function:

\[f(x) = \frac{1}{\sqrt{2\pi}} \left(\exp\left(-\frac{(x-mu)^2}{2 \sigma^2}\right) + \exp\left(-\frac{(x+mu)^2}{2 \sigma^2}\right) \right) \]

Both pfnorm and qfnorm are returned for the lower tail of the distribution.

Value

Depending on the function, various things are returned (usually either vector or scalar):

- dfnorm returns the density function value for the provided parameters.
- pfnorm returns the value of the cumulative function for the provided parameters.
- qfnorm returns quantiles of the distribution. Depending on what was provided in p, mu and sigma, this can be either a vector or a matrix, or an array.
- rfnorm returns a vector of random variables generated from the fnorm distribution. Depending on what was provided in mu and sigma, this can be either a vector or a matrix or an array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

References

Examples

```r
dx <- dfnorm(c(-1000:1000)/200, 0, 1)
plot(x, type="l")

x <- pfnorm(c(-1000:1000)/200, 0, 1)
plot(x, type="l")

qfnorm(c(0.025,0.975), 0, c(1,2))

x <- rfnorm(1000, 0, 1)
hist(x)
```

dlaplace

Laplace Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the Laplace distribution with the location parameter mu and Mean Absolute Error (or Mean Absolute Deviation) equal to scale.

Usage

- `dlaplace(q, mu = 0, scale = 1, log = FALSE)`
- `plaplace(q, mu = 0, scale = 1)`
- `qlaplace(p, mu = 0, scale = 1)`
- `rlaplace(n = 1, mu = 0, scale = 1)`

Arguments

- `q` vector of quantiles.
- `mu` vector of location parameters (means).
- `scale` vector of mean absolute errors.
- `log` if TRUE, then probabilities are returned in logarithms.
- `p` vector of probabilities.
- `n` number of observations. Should be a single number.

Details

When mu=0 and scale=1, the Laplace distribution becomes standardized. The distribution has the following density function:

\[f(x) = \frac{1}{2 \text{scale}} \exp(-\text{abs}(x-\mu) / \text{scale}) \]

Both `plaplace` and `qlaplace` are returned for the lower tail of the distribution.
Value

Depending on the function, various things are returned (usually either vector or scalar):

- `dlaplace` returns the density function value for the provided parameters.
- `plaplace` returns the value of the cumulative function for the provided parameters.
- `qlaplace` returns quantiles of the distribution. Depending on what was provided in `p`, `mu` and `scale`, this can be either a vector or a matrix, or an array.
- `rlaplace` returns a vector of random variables generated from the Laplace distribution. Depending on what was provided in `mu` and `scale`, this can be either a vector or a matrix or an array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

References

Examples

```r
x <- dlaplace(c(-100:100)/10, 0, 1)
plot(x, type="l")

x <- plaplace(c(-100:100)/10, 0, 1)
plot(x, type="l")

qlaplace(c(0.025,0.975), 0, c(1,2))

x <- rlaplace(1000, 0, 1)
hist(x)
```

ds | **S Distribution**

Description

Density, cumulative distribution, quantile functions and random number generation for the S distribution with the location parameter `mu` and a scaling parameter `scale`.

Usage

```r
ds(q, mu = 0, scale = 1, log = FALSE)
ps(q, mu = 0, scale = 1)
qs(p, mu = 0, scale = 1)
rs(n = 1, mu = 0, scale = 1)
```
Arguments

- **q**: vector of quantiles.
- **mu**: vector of location parameters (means).
- **scale**: vector of scaling parameter (which are equal to ham/2).
- **log**: if TRUE, then probabilities are returned in logarithms.
- **p**: vector of probabilities.
- **n**: number of observations. Should be a single number.

Details

When mu=0 and ham=2, the S distribution becomes standardized with scale=1 (this is because scale=ham/2). The distribution has the following density function:

\[f(x) = \frac{1}{4 \text{ scale}^2} \exp(-\sqrt{\text{abs}(x-\mu)} / \text{scale}) \]

The S distribution has fat tails and large excess.

Both ps and qs are returned for the lower tail of the distribution.

Value

Depending on the function, various things are returned (usually either vector or scalar):

- **ds** returns the density function value for the provided parameters.
- **ps** returns the value of the cumulative function for the provided parameters.
- **qs** returns quantiles of the distribution. Depending on what was provided in p, mu and scale, this can be either a vector or a matrix, or an array.
- **rs** returns a vector of random variables generated from the S distribution. Depending on what was provided in mu and scale, this can be either a vector or a matrix or an array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

Examples

```r
x <- ds(c(-1000:1000)/10, 0, 1)
plot(x, type="l")

x <- ps(c(-1000:1000)/10, 0, 1)
plot(x, type="l")

qs(c(0.025,0.975), 0, 1)

x <- rs(1000, 0, 1)
hist(x)
```
Three Parameter Log Normal Distribution

Description
Density, cumulative distribution, quantile functions and random number generation for the 3 parameter log normal distribution with the location parameter mu, scale sigma (which corresponds to standard deviation in normal distribution) and shifting parameter shift.

Usage
\[\text{dtplnorm}(q, \mu = 0, \sigma = 1, \text{shift} = 0, \text{log} = \text{FALSE}) \]
\[\text{ptplnorm}(q, \mu = 0, \sigma = 1, \text{shift} = 0) \]
\[\text{qtplnorm}(p, \mu = 0, \sigma = 1, \text{shift} = 0) \]
\[\text{rtplnorm}(n = 1, \mu = 0, \sigma = 1, \text{shift} = 0) \]

Arguments
- \(q \) vector of quantiles.
- \(\mu \) vector of location parameters (means).
- \(\sigma \) vector of scale parameters.
- \(\text{shift} \) vector of shift parameters.
- \(\text{log} \) if TRUE, then probabilities are returned in logarithms.
- \(p \) vector of probabilities.
- \(n \) number of observations. Should be a single number.

Details
The distribution has the following density function:
\[f(x) = \frac{1}{(x-a) 1/\sqrt{2 \pi}} \exp\left(-\frac{(\log(x-a)-\mu)^2}{2 \sigma^2}\right) \]
Both \(\text{ptplnorm} \) and \(\text{qtplnorm} \) are returned for the lower tail of the distribution.

The function is based on the \text{lnorm} functions from \text{stats} package, introducing the shift parameter.

Value
Depending on the function, various things are returned (usually either vector or scalar):
- \(\text{dtplnorm} \) returns the density function value for the provided parameters.
- \(\text{ptplnorm} \) returns the value of the cumulative function for the provided parameters.
- \(\text{qtplnorm} \) returns quantiles of the distribution. Depending on what was provided in \(p, \mu \) and \(\sigma \), this can be either a vector or a matrix, or an array.
• `rtplnorm` returns a vector of random variables generated from the `tplnorm` distribution. Depending on what was provided in `mu` and `sigma`, this can be either a vector or a matrix or an array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

References

Examples

```
x <- dtplnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")

x <- ptplnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")

qtplnorm(c(0.025,0.975), 0, c(1,2), 1)

x <- rtplnorm(1000, 0, 1, 1)
hist(x)
```

errorType

Functions that extracts type of error from the model

Description

This function allows extracting error type from any model.

Usage

```
errorType(object, ...)
```

Arguments

- **object**: Model estimated using one of the functions of smooth package.
- **...**: Currently nothing is accepted via ellipsis.

Details

`errorType` extracts the type of error from the model (either additive or multiplicative).
Value

Either "A" for additive error or "M" for multiplicative. All the other functions return strings of character.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

Examples

```r
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- alm(y~x1+x2,as.data.frame(xreg))
errorType(ourModel)
```

graphmaker

Linear graph construction function

Description

The function makes a standard linear graph using the provided actuals and forecasts.

Usage

```r
graphmaker(actuals, forecast, fitted = NULL, lower = NULL, upper = NULL,
level = NULL, legend = TRUE, cumulative = FALSE, vline = TRUE,
parReset = TRUE, ...)
```

Arguments

- `actuals`: The vector of actual values
- `forecast`: The vector of forecasts. Should be ts object that starts at the end of fitted values.
- `fitted`: The vector of fitted values.
- `lower`: The vector of lower bound values of a prediction interval. Should be ts object that start at the end of fitted values.
- `upper`: The vector of upper bound values of a prediction interval. Should be ts object that start at the end of fitted values.
- `level`: The width of the prediction interval.
- `legend`: If TRUE, the legend is drawn.
- `cumulative`: If TRUE, then the forecast is treated as cumulative and value per period is plotted.
vline Whether to draw the vertical line, splitting the in-sample and the holdout sample.
parReset Whether to reset par() after plotting things or not. If FALSE then you can add elements to the plot (e.g. additional lines).
... Other parameters passed to plot() function.

Details
Function uses the provided data to construct a linear graph. It is strongly advised to use ts objects to define the start of each of the vectors. Otherwise the data may be plotted incorrectly.

Value
Function does not return anything.

Author(s)
Ivan Svetunkov

See Also
ts

Examples

```r
x <- rnorm(100,0,1)
values <- forecast(arima(x),h=10,level=0.95)

graphmaker(x,values$mean,fitted(values))
graphmaker(x,values$mean,fitted(values),legend=FALSE)
graphmaker(x,values$mean,fitted(values),values$lower,values$upper,level=0.95)
graphmaker(x,values$mean,fitted(values),values$lower,values$upper,level=0.95,legend=FALSE)

# Produce the necessary ts objects from an arbitrary vectors
actuals <- ts(c(1:10), start=c(2000,1), frequency=4)
forecast <- ts(c(11:15),start=end(actuals)[1]+end(actuals)[2]*deltat(actuals),
                frequency=frequency(actuals))

graphmaker(actuals,forecast)

# This should work as well
graphmaker(c(1:10),c(11:15))

# This way you can add additional elements to the plot
graphmaker(c(1:10),c(11:15), parReset=FALSE)
points(c(1:15))
# But don’t forget to do dev.off() in order to reset the plotting area afterwards
```
Description

Toolbox for working with multivariate models for purposes of analysis and forecasting

Details

Package: greybox
Type: Package
Date: 2018-02-13 - Inf
License: GPL-2

The following functions are included in the package:

- **AICc** and **BICc** - AIC / BIC corrected for the sample size.
- **pointLik** - point likelihood of the function.
- **pAIC**, **pAICc**, **pBIC**, **pBICc** - point versions of respective information criteria.
- **determination** - Coefficients of determination between different exogenous variables.
- **alm** - Advanced Linear Model - regression, estimated using likelihood with specified distribution (e.g. Laplace or Chi-Squared).
- **stepwise** - Stepwise based on information criteria and partial correlations. Efficient and fast.
- **xregExpander** - Function that expands the provided data into the data with lags and leads.
- **xregTransformer** - Function produces mathematical transformations of the variables, such as taking logarithms, square roots etc.
- **xregMultiplier** - Function produces cross-products of the matrix of the provided variables.
- **lmCombine** - Function combines lm models from the estimated based on information criteria weights.
- **lmDynamic** - Dynamic regression based on point AIC.
- **ro** - Rolling origin evaluation.
- **qalaplace**, **dalaplace**, **palaplace**, **ralaplace** - Asymmetric Laplace distribution and the respective functions.
- **qfnorm**, **dfnorm**, **pfnorm**, **rfnorm** - Folded normal distribution and the respective functions.
- **qs**, **ds**, **rs** - S distribution and the respective functions.
- **qtplnorm**, **dtplnorm**, **ptplnorm**, **rtplnorm** - Three parameter log normal distribution and the respective functions.
- **qbcnorm**, **dbcnorm**, **pbcnorm**, **rbcnorm** - Box-Cox normal distribution and the respective functions.
• `qtplnorm, dtplnorm, ptplnorm, rtplnorm` - Three parameter log normal distribution and the respective functions.
• `spread` - function that produces scatterplots / boxplots / tableplots, depending on the types of variables.
• `assoc` - function that calculates measures of association, depending on the types of variables.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>
Maintainer: Ivan Svetunkov

See Also

`stepwise, lmCombine`

Examples

```r
## Not run:
xreg <- cbind(rnorm(100,10,3), rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3), xreg, rnorm(100,300,10))
colnames(xreg) <- c("y", "x1", "x2", "Noise")

stepwise(xreg)
## End(Not run)
```

hm

Half moment of a distribution and its derivatives.

Description

hm function estimates half moment from some predefined constant C. ham estimates half absolute moment. Finally, cbias function returns bias based on hm.

Usage

```r
hm(x, C = mean(x), ...)
ham(x, C = mean(x), ...)
cbias(x, C = mean(x), ...)
```

Arguments

- **x** A variable based on which HM is estimated.
- **C** Centering parameter.
- **...** Other parameters passed to mean function.
Details

NA values of x are excluded on the first step of calculation.

Value

A complex variable is returned for hm function and real values are returned for cbias and ham.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

Examples

```r
x <- rnorm(100,0,1)
hm(x)
ham(x)
cbias(x)
```

Description

Functions to check if an object is of the specified class

Usage

```r
is.greybox(x)
is.alm(x)
is.occurrence(x)
is.greyboxC(x)
is.greyboxD(x)
is.rollingOrigin(x)
is.rmc(x)
```

Arguments

```r
x            The object to check.
```
Details

The list of functions includes:

- `is.greybox()` tests if the object was produced by a greybox function (e.g. `alm` / `stepwise` / `lmCombine` / `lmDynamic`);
- `is.alm()` tests if the object was produced by `alm()` function;
- `is.occurrence()` tests if an occurrence part of the model was produced;
- `is.greyboxC()` tests if the object was produced by `lmCombine()` function;
- `is.greyboxD()` tests if the object was produced by `lmDynamic()` function;
- `is.rmc()` tests if the object was produced by `rmc()` function;
- `is.rollingOrigin()` tests if the object was produced by `ro()` function.

Value

TRUE if this is the specified class and FALSE otherwise.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

Examples

```r
xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rlaplace(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

ourModel <- alm(y~x1+x2, xreg, distribution="dnorm")

is.alm(ourModel)
is.greybox(ourModel)
is.greyboxC(ourModel)
is.greyboxD(ourModel)
```

lmCombine

Combine regressions based on information criteria

Description

Function combines parameters of linear regressions of the first variable on all the other provided data.
Usage

Arguments

data | Data frame containing dependent variable in the first column and the others in the rest.

ic | Information criterion to use.

bruteforce | If TRUE, then all the possible models are generated and combined. Otherwise the best model is found and then models around that one are produced and then combined.

silent | If FALSE, then nothing is silent, everything is printed out. TRUE means that nothing is produced.

distribution | Distribution to pass to alm(). See alm for details.

parallel | If TRUE, then the model fitting is done in parallel. WARNING! Packages foreach and either doMC (Linux and Mac only) or doParallel are needed in order to run the function in parallel.

... | Other parameters passed to alm().

Details

The algorithm uses alm() to fit different models and then combines the models based on the selected IC. The parameters are combined so that if they are not present in some of models, it is assumed that they are equal to zero. Thus, there is a shrinkage effect in the combination.

Some details and examples of application are also given in the vignette "Greybox": vignette("greybox","greybox")

Value

Function returns model - the final model of the class "greyboxC". The list of variables:

- coefficients - combined parameters of the model,
- vcov - combined covariance matrix of the model,
- fitted - the fitted values,
- residuals - residual of the model,
- distribution - distribution used in the estimation,
- logLik - combined log-likelihood of the model,
- IC - the values of the combined information criterion,
- ICType - the type of information criterion used,
- df.residual - number of degrees of freedom of the residuals of the combined model,
- df - number of degrees of freedom of the combined model,
- importance - importance of the parameters,
- combination - the table, indicating which variables were used in every model construction and what were the weights for each model.
lmDynamic

Combine regressions based on point information criteria

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

References

See Also

`step, xregExpander, stepwise`

Examples

```r
### Simple example
xreg <- cbind(rnorm(100,10,3), rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3), xreg, rnorm(100,300,10))
colnames(xreg) <- c("y", "x1", "x2", "Noise")
inSample <- xreg[1:80,]
outSample <- xreg[-c(1:80),]
# Combine all the possible models
ourModel <- lmCombine(inSample, bruteforce=TRUE)
predict(ourModel, outSample)
plot(predict(ourModel, outSample))

### Fat regression example
xreg <- matrix(rnorm(5000,10,3), 50, 100)
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(50,0,3), xreg, rnorm(50,300,10))
colnames(xreg) <- c("y", paste0("x", c(1:100)), "Noise")
inSample <- xreg[1:40,]
outSample <- xreg[-c(1:40),]
# Combine only the models close to the optimal
ourModel <- lmCombine(inSample, ic="BICc", bruteforce=FALSE)
summary(ourModel)
plot(predict(ourModel, outSample))

# Combine in parallel - should increase speed in case of big data
## Not run: ourModel <- lmCombine(inSample, ic="BICc", bruteforce=TRUE, parallel=TRUE)
summary(ourModel)
plot(predict(ourModel, outSample))
## End(Not run)
```
Description

Function combines parameters of linear regressions of the first variable on all the other provided data using pAIC weights.

Usage

```r

**Arguments**

- `data`: Data frame containing dependent variable in the first column and the others in the rest.
- `ic`: Information criterion to use.
- `bruteforce`: If TRUE, then all the possible models are generated and combined. Otherwise the best model is found and then models around that one are produced and then combined.
- `silent`: If FALSE, then nothing is silent, everything is printed out. TRUE means that nothing is produced.
- `distribution`: Distribution to pass to `alm()` function. See `alm` for details.
- `parallel`: If TRUE, then the model fitting is done in parallel. WARNING! Packages `foreach` and either `doMC` (Linux and Mac only) or `doParallel` are needed in order to run the function in parallel.
- `...`: Other parameters passed to `alm()`.

**Details**

The algorithm uses `alm()` to fit different models and then combines the models based on the selected point IC. This is a dynamic counterpart of `lmCombine` function.

Some details and examples of application are also given in the vignette "Greybox": vignette("greybox", "greybox")

**Value**

Function returns model - the final model of the class "greyboxD", which includes time varying parameters and dynamic importance of each variable. The list of variables:

- coefficients - the mean (over time) parameters of the model,
- vcov - the combined covariance matrix of the model,
- fitted - the fitted values,
- residuals - the residuals of the model,
- distribution - the distribution used in the estimation,
- logLik - the mean (over time) log-likelihood of the model,
- IC - dynamic values of the information criterion (pIC),
• ICType - the type of information criterion used,
• df.residual - mean number of degrees of freedom of the residuals of the model,
• df - mean number of degrees of freedom of the model,
• importance - dynamic importance of the parameters,
• call - call used in the function,
• rank - rank of the combined model,
• data - the data used in the model,
• mu - the location value of the distribution,
• scale - the scale parameter if alm() was used,
• coefficientsDynamic - table with parameters of the model, varying over the time,
• df.residualDynamic - dynamic df.residual,
• dfDynamic - dynamic df.
• weights - the dynamic weights for each model under consideration.

Author(s)
Ivan Svetunkov, <ivan@svetunkov.ru>

References

See Also
stepwise, lmCombine

Examples

```r
Simple example
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
inSample <- xreg[1:80,]
outSample <- xreg[-c(1:80),]
Combine all the possible models
ourModel <- lmDynamic(inSample,bruteforce=TRUE)
predict(ourModel,outSample)
plot(predict(ourModel,outSample))
```
**mcor**

**Multiple correlation**

**Description**

Function calculates multiple correlation between y and x, constructing a linear regression model.

**Usage**

```r
mcor(x, y, use = c("na.or.complete", "complete.obs", "everything", "all.obs"))
```

**Arguments**

- `x`: Either data.frame or a matrix.
- `y`: The numerical variable.
- `use`: What observations to use. See `cor` function for details. The only option that is not available here is "pairwise.complete.obs".

**Details**

This is based on the linear regression model with the set of variables in x. The returned value is just a coefficient of multiple correlation from regression, the F-statistics of the model (thus testing the null hypothesis that all the parameters are equal to zero), the associated p-value and the degrees of freedom.

See details in the vignette "Marketing analytics with greybox":

```r
vignette("maUsingGreybox", "greybox")
```

**Value**

The following list of values is returned:

- `value`: The value of the coefficient;
- `statistic`: The value of F-statistics associated with the parameter;
- `p.value`: The p-value of F-statistics associated with the parameter;
- `df.residual`: The number of degrees of freedom for the residuals;
- `df`: The number of degrees of freedom for the data.

**Author(s)**

Ivan Svetunkov, <ivan@svetunkov.ru>

**See Also**

- `table`, `tableplot`, `spread`, `cramer`, `association`
Examples

mcor(mtcars$am, mtcars$mpg)

Error measures

<table>
<thead>
<tr>
<th>ME</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>Functions allow to calculate different types of errors for point and interval predictions:</td>
</tr>
<tr>
<td>MAE</td>
<td>1. ME - Mean Error,</td>
</tr>
<tr>
<td>MSE</td>
<td>2. MAE - Mean Absolute Error,</td>
</tr>
<tr>
<td>MSE</td>
<td>3. MSE - Mean Squared Error,</td>
</tr>
<tr>
<td>MRE</td>
<td>4. MRE - Mean Root Error (Kourentzes, 2014),</td>
</tr>
<tr>
<td>MIS</td>
<td>5. MIS - Mean Interval Score (Gneiting &amp; Raftery, 2007),</td>
</tr>
<tr>
<td>MPE</td>
<td>6. MPE - Mean Percentage Error,</td>
</tr>
<tr>
<td>MAPE</td>
<td>7. MAPE - Mean Absolute Percentage Error (See Svetunkov, 2017 for the critique),</td>
</tr>
<tr>
<td>MASE</td>
<td>8. MASE - Mean Absolute Scaled Error (Hyndman &amp; Koehler, 2006),</td>
</tr>
<tr>
<td>RMSSE</td>
<td>9. RMSSE - Root Mean Squared Scaled Error (used in M5 Competition),</td>
</tr>
<tr>
<td>rMAE</td>
<td>10. rMAE - Relative Mean Absolute Error (Davydenko &amp; Fildes, 2013),</td>
</tr>
<tr>
<td>rRMSE</td>
<td>11. rRMSE - Relative Root Mean Squared Error,</td>
</tr>
<tr>
<td>rAME</td>
<td>12. rAME - Relative Absolute Mean Error,</td>
</tr>
<tr>
<td>rMIS</td>
<td>13. rMIS - Relative Mean Interval Score,</td>
</tr>
<tr>
<td>sMSE</td>
<td>14. sMSE - Scaled Mean Squared Error (Petropoulos &amp; Kourentzes, 2015),</td>
</tr>
<tr>
<td>sPIS</td>
<td>15. sPIS - Scaled Periods-In-Stock (Wallstrom &amp; Segerstedt, 2010),</td>
</tr>
<tr>
<td>sCE</td>
<td>16. sCE - Scaled Cumulative Error,</td>
</tr>
<tr>
<td>sMIS</td>
<td>17. sMIS - Scaled Mean Interval Score.</td>
</tr>
</tbody>
</table>

Usage

ME(actual, forecast)
MAE(actual, forecast)
MSE(actual, forecast)
MRE(actual, forecast)
MIS(actual, lower, upper, level = 0.95)
MPE(actual, forecast)
MAPE(actual, forecast)
MASE(actual, forecast, scale)
RMSSE(actual, forecast, scale)
rMAE(actual, forecast, benchmark)
rRMSE(actual, forecast, benchmark)
rAME(actual, forecast, benchmark)
rMIS(actual, lower, upper, benchmarkLower, benchmarkUpper, level = 0.95)
RelMAE(actual, forecast, benchmark)
RelRMSE(actual, forecast, benchmark)
RelAME(actual, forecast, benchmark)
RelMIS(actual, lower, upper, benchmarkLower, benchmarkUpper, level = 0.95)
sMSE(actual, forecast, scale)
sPIS(actual, forecast, scale)
sCE(actual, forecast, scale)
sMIS(actual, lower, upper, scale, level = 0.95)

**Arguments**

- `actual`  
The vector or matrix of actual values.
- `forecast`  
The vector or matrix of forecasts values.
- `lower`  
The lower bound of the prediction interval.
- `upper`  
The upper bound of the prediction interval.
- `level`  
The confidence level of the constructed interval.
- `scale`  
The value that should be used in the denominator of MASE. Can be anything but advised values are: mean absolute deviation of in-sample one step ahead Naive error or mean absolute value of the in-sample actuals.
- `benchmark`  
The vector or matrix of the forecasts of the benchmark model.
- `benchmarkLower`  
The lower bound of the prediction interval of the benchmark model.
- `benchmarkUpper`  
The upper bound of the prediction interval of the benchmark model.
Details

In case of smSE, scale needs to be a squared value. Typical one – squared mean value of in-sample actuals.

If all the measures are needed, then measures function can help.

There are several other measures, see details of pinball and hm.

Value

All the functions return the scalar value.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

References


See Also

pinball, hm, measures

Examples

```r
y <- rnorm(100,10,2)
testForecast <- rep(mean(y[1:90]),10)
```
MAE(y[91:100], testForecast)
MSE(y[91:100], testForecast)
MPE(y[91:100], testForecast)
MAPE(y[91:100], testForecast)

# Measures from Petropoulos & Kourentzes (2015)
MASE(y[91:100], testForecast, mean(abs(y[1:90])))
sMSE(y[91:100], testForecast, mean(abs(y[1:90]))^2)
sPIS(y[91:100], testForecast, mean(abs(y[1:90])))
sCE(y[91:100], testForecast, mean(abs(y[1:90])))

# Original MASE from Hyndman & Koehler (2006)
MASE(y[91:100], testForecast, mean(abs(diff(y[1:90]))))

testForecast2 <- rep(y[91], 10)
# Relative measures, from and inspired by Davydenko & Fildes (2013)
rMAE(y[91:100], testForecast2, testForecast)
rRMSE(y[91:100], testForecast2, testForecast)
rAME(y[91:100], testForecast2, testForecast)

##### Measures for the prediction intervals
# An example with mtcars data
ourModel <- alm(mpg ~ ., mtcars[1:30,], distribution="dnorm")
ourBenchmark <- alm(mpg ~ 1, mtcars[1:30,], distribution="dnorm")

# Produce predictions with the interval
ourForecast <- predict(ourModel, mtcars[-c(1:30),], interval="p")
ourBenchmarkForecast <- predict(ourBenchmark, mtcars[-c(1:30),], interval="p")

MIS(mtcars$mpg[-c(1:30)], ourForecast$lower, ourForecast$upper, 0.95)
sMIS(mtcars$mpg[-c(1:30)], ourForecast$lower, ourForecast$upper, mean(mtcars$mpg[1:30]), 0.95)
rMIS(mtcars$mpg[-c(1:30)], ourForecast$lower, ourForecast$upper, ourBenchmarkForecast$lower, ourBenchmarkForecast$upper, 0.95)

### Also, see pinball function for other measures for the intervals

---

### Error measures for the provided forecasts

**Description**

Function calculates several error measures using the provided forecasts and the data for the holdout sample.

**Usage**

measures(holdout, forecast, actual, digits = NULL, benchmark = c("naive", "mean"))
Arguments

holdout The vector of the holdout values.
forecast The vector of forecasts produced by a model.
actual The vector of actual in-sample values.
digits Number of digits of the output. If NULL then no rounding is done.
benchmark The character variable, defining what to use as benchmark for relative measures. Can be either "naive" or "mean" (arithmetic mean of the whole series. The latter can be useful when dealing with intermittent data.

Value

The functions returns the named vector of errors:

• ME,
• MAE,
• MSE
• MPE,
• MAPE,
• MASE,
• sMAE,
• RMSSE,
• sMSE,
• sCE,
• rMAE,
• rRMSE,
• rAME,
• cbias,
• sPIS.

For the details on these errors, see Errors.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

References


Examples

```r
y <- rnorm(100,10,2)
ourForecast <- rep(mean(y[1:90]),10)

measures(y[91:100],ourForecast,y[1:90],digits=5)
```

### nparam

<table>
<thead>
<tr>
<th>nparam</th>
<th>Number of parameters in the model</th>
</tr>
</thead>
</table>

**Description**

This function returns the number of estimated parameters in the model.

**Usage**

```r
nparam(object, ...)
```

**Arguments**

- `object`: Time series model.
- `...`: Some other parameters passed to the method.

**Details**

This is a very basic and a simple function which does what it says: extracts number of parameters in the estimated model.

**Value**

This function returns a numeric value.

**Author(s)**

Ivan Svetunkov, <ivan@svetunkov.ru>
See Also
nobs, logLik

Examples

```r
Simple example
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- lm(y~.,data=as.data.frame(xreg))
nparam(ourModel)
```

<table>
<thead>
<tr>
<th>pAIC</th>
<th>Point AIC</th>
</tr>
</thead>
</table>

Description
This function returns a vector of AIC values for the in-sample observations

Usage
```
pAIC(object, ...)
pAICc(object, ...)
pBIC(object, ...)
pBICc(object, ...)
```

Arguments
- **object**: Time series model.
- **...**: Some stuff.

Details
This is based on pointLik function. The formula for this is: \( pAIC_t = 2 \times k - 2 \times T \times l_t \), where \( k \) is the number of parameters, \( T \) is the number of observations and \( l_t \) is the point likelihood. This way we preserve the property that \( AIC = mean(pAIC) \).

Value
The function returns the vector of point AIC values.
Author(s)
Ivan Svetunkov, <ivan@svetunkov.ru>

See Also
pointLik

Examples

```r
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- alm(y~x1+x2,as.data.frame(xreg))
pAICValues <- pAIC(ourModel)
mean(pAICValues)
AIC(ourModel)
```
Value

The following list of values is returned:

- `value` - Matrix of the coefficients of partial correlations;
- `p.value` - The p-values for the parameters;
- `method` - The method used in the calculations.

Author(s)

Ivan Svetunkov, ivan@svetunkov.ru

See Also

mcor, cramer, association

Examples

pcor(mtcars)

---

**pinball**  
*Pinball function*

Description

The function returns the value from the pinball function for the specified level and the type of loss

Usage

pinball(holdout, forecast, level, loss = 1)

Arguments

- **holdout**  
The vector or matrix of the holdout values.
- **forecast**  
The forecast of prediction interval (should be the same length as the holdout).
- **level**  
The level of the prediction interval associated with the forecast.
- **loss**  
The type of loss to use. The number which corresponds to L1, L2 etc.

Value

The function returns the scalar value.

Author(s)

Ivan Svetunkov, ivan@svetunkov.ru
Examples

# An example with mtcars data
ourModel <- alm(mpg ~., mtcars[1:30,], distribution="dnorm")

# Produce predictions with the interval
ourForecast <- predict(ourModel, mtcars[-c(1:30),], interval="p")

# Pinball with the L1 (quantile value)
pinball(mtcars$mpg[-c(1:30)],ourForecast$upper,level=0.975,loss=1)
pinball(mtcars$mpg[-c(1:30)],ourForecast$lower,level=0.025,loss=1)

# Pinball with the L2 (expectile value)
pinball(mtcars$mpg[-c(1:30)],ourForecast$upper,level=0.975,loss=2)
pinball(mtcars$mpg[-c(1:30)],ourForecast$lower,level=0.025,loss=2)

plot.greybox

Plots of the fit and residuals

Description

The function produces fitted values and plots for the residuals of the greybox functions.

Usage

## S3 method for class 'greybox'
plot(x, which = c(1, 2, 4, 6), level = 0.95, legend = FALSE, ask = prod(par("mfcol")) < length(which) & & dev.interactive(), lowess = TRUE, ...)

Arguments

x Time series model for which forecasts are required.

which Which of the plots to produce. The possible options (see details for explanations):

1. Fitted over time;
2. Standardised residuals vs Fitted;
3. Studentised residuals vs Fitted;
4. Absolute residuals vs Fitted;
5. Squared residuals vs Fitted;
6. Q-Q plot with the specified distribution;
7. ACF of the residuals;
8. PACF of the residuals.

level Confidence level. Defines width of confidence interval. Used in plots (1), (2), (6) and (7).
legend
If TRUE, then the legend is produced on plots (1), (2) and (3).
ask
Logical; if TRUE, the user is asked to press Enter before each plot.
lowess
Logical; if TRUE, LOWESS lines are drawn on scatterplots, see lowess.

... The parameters passed to the plot functions. Recommended to use with separate plots.

Details
The list of produced plots includes:

1. Fitted over time. Plots actuals (black line), fitted values (purple line) and prediction interval (red lines) of width \textit{level}, but only in the case, when there are some values lying outside of it. Can be used in order to make sure that the model did not miss any important events over time;
2. Standardised residuals vs Fitted. Plots the points and the confidence bounds (red lines) for the specified confidence level. Useful for the analysis of outliers;
3. Studentised residuals vs Fitted. This is similar to the previous plot, but with the residuals divided by the scales with the leave-one-out approach. Should be more sensitive to outliers;
4. Absolute residuals vs Fitted. Useful for the analysis of heteroscedasticity;
5. Squared residuals vs Fitted - similar to (3), but with squared values;
6. Q-Q plot with the specified distribution. Can be used in order to see if the residuals follow the assumed distribution. The type of distribution depends on the one used in the estimation (see \texttt{distribution} parameter in \texttt{alm});
7. ACF of the residuals. Are the residuals autocorrelated? See \texttt{acf} for details;
8. PACF of the residuals. No, really, are they autocorrelated? See \texttt{pacf} for details;

Which of the plots to produce, is specified via the \texttt{which} parameter. The plots 1, 2, 3, 7 and 8 also use the parameters \textit{level}, which specifies the confidence level for the intervals.

Value
The function produces the number of plots, specified in the parameter \texttt{which}.

Author(s)
Ivan Svetunkov, <ivan@svetunkov.ru>

See Also
\texttt{plot.lm}, \texttt{rstandard}, \texttt{rstudent}

Examples

\begin{verbatim}
xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rlaplace(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
\end{verbatim}
ourModel <- alm(y~x1+x2, xreg, distribution="dlaplace")
par(mfcol=c(2,3))
plot(ourModel, c(1,2,4,5,7,8))

## pointLik

### Point likelihood values

**Description**

This function returns a vector of logarithms of likelihoods for each observation.

**Usage**

pointLik(object, ...)

**Arguments**

- **object**: Time series model.
- **...**: Some stuff.

**Details**

Instead of taking the expected log-likelihood for the whole series, this function calculates the individual value for each separate observation. Note that these values are biased, so you would possibly need to take number of degrees of freedom into account in order to have an unbiased estimator.

This value is based on the general likelihood (not its concentrated version), so the sum of these values may slightly differ from the output of logLik.

**Value**

This function returns a vector.

**Author(s)**

Ivan Svetunkov, <ivan@svetunkov.ru>

**See Also**

AIC, BIC
Examples

```r
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- alm(y~x1+x2,as.data.frame(xreg))

pointLik(ourModel)

Bias correction
pointLik(ourModel) - nparam(ourModel)

Bias correction in AIC style
2*(npparam(ourModel)/nobs(ourModel) - pointLik(ourModel))

BIC calculation based on pointLik
log(nobs(ourModel))*npparam(ourModel) - 2*sum(pointLik(ourModel))
```

---

**polyprod**

*This function calculates parameters for the polynomials*

**Description**

The function accepts two vectors with the parameters for the polynomials and returns the vector of parameters after their multiplication. This can be especially useful, when working with ARIMA models.

**Usage**

```r
polyprod(x, y)
```

**Arguments**

- `x` The vector of parameters of the first polynomial.
- `y` The vector of parameters of the second polynomial.

**Value**

The function returns a matrix with one column with the parameters for the polynomial, starting from the 0-order.

**Author(s)**

Ivan Svetunkov, <ivan@svetunkov.ru>

**See Also**

`convolve`
Examples

polyprod(c(1,-2,-1),c(1,0.5,0.3))

predict.alm
Forecasting using greybox functions

Description

The functions allow producing forecasts based on the provided model and newdata.

Usage

## S3 method for class 'alm'
predict(object, newdata = NULL, interval = c("none", "confidence", "prediction"), level = 0.95, side = c("both", "upper", "lower"), ...)

## S3 method for class 'greybox'
predict(object, newdata = NULL, interval = c("none", "confidence", "prediction"), level = 0.95, side = c("both", "upper", "lower"), ...)

## S3 method for class 'greybox'
forecast(object, newdata = NULL, h = NULL, ...)

## S3 method for class 'alm'
forecast(object, newdata = NULL, h = NULL, ...)

Arguments

object Time series model for which forecasts are required.
newdata Forecast horizon
interval Type of intervals to construct: either "confidence" or "prediction". Can be abbreviated
level Confidence level. Defines width of prediction interval.
side What type of interval to produce: "both" - produces both lower and upper bounds of the interval, "upper" - upper only, "lower" - respectively lower only. In the "both" case the probability is split into two parts: ((1-level)/2, (1+level)/2). When "upper" is specified, then the intervals for (0, level) are constructed Finally, with "lower" the interval for (1-level, 1) is returned.
... Other arguments.
h The forecast horizon.
Details

predict produces predictions for the provided model and newdata. If newdata is not provided, then the data from the model is extracted and the fitted values are reproduced. This might be useful when confidence / prediction intervals are needed for the in-sample values.

forecast function produces forecasts for \( h \) steps ahead. There are four scenarios in this function:

1. If the newdata is not provided, then it will produce forecasts of the explanatory variables to the horizon \( h \) (using \texttt{es} from smooth package or using Naive if smooth is not installed) and use them as newdata.
2. If \( h \) and newdata are provided, then the number of rows to use will be regulated by \( h \).
3. If \( h \) is \texttt{NULL}, then it is set equal to the number of rows in newdata.
4. If both \( h \) and newdata are not provided, then it will use the data from the model itself, reproducing the fitted values.

After forming the newdata the forecast function calls for predict, so you can provide parameters interval, level and side in the call for forecast.

Value

\texttt{predict.greybox()} returns object of class "predict.greybox", which contains:

- \texttt{model} - the estimated model.
- \texttt{mean} - the expected values.
- \texttt{fitted} - fitted values of the model.
- \texttt{lower} - lower bound of prediction / confidence intervals.
- \texttt{upper} - upper bound of prediction / confidence intervals.
- \texttt{level} - confidence level.
- \texttt{newdata} - the data provided in the call to the function.
- \texttt{variances} - conditional variance for the holdout sample. In case of \texttt{interval="prediction"} includes variance of the error.

\texttt{predict.alm()} is based on \texttt{predict.greybox()} and returns object of class "predict.alm", which in addition contains:

- \texttt{location} - the location parameter of the distribution.
- \texttt{scale} - the scale parameter of the distribution.
- \texttt{distribution} - name of the fitted distribution.

\texttt{forecast()} functions return the same "predict.alm" and "predict.greybox" classes, with the same set of output variables.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

See Also

\texttt{predict.lm}, \texttt{forecast}
Examples

```r
xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
colnames(xreg) <- c("y","x1","x2","Noise")
inSample <- xreg[1:80,]
outSample <- xreg[-c(1:80),]

ourModel <- alm(y~x1+x2, inSample, distribution="dlaplace")
predict(ourModel,inSample)
predict(ourModel,outSample,interval="c")
plot(predict(ourModel,outSample,interval="p"))
plot(forecast(ourModel,h=10,interval="p"))
```

Description

RMCB stands for "Regression for Multiple Comparison with the Best", referring to the comparison of forecasting methods. This is a regression-based version of the Nemenyi / MCB test relies on the ranks of variables. This test is based on Nemenyi / MCB test (Demsar, 2006). It transforms the data into ranks and then constructs a regression on them of the type:

Usage

```r
rmcb(data, level = 0.95, outplot = c("mcb", "lines", "none"),
 select = NULL, ...)

S3 method for class 'rmcb'
plot(x, outplot = c("mcb", "lines"), select = NULL, ...)
```

Arguments

- `data` : Matrix or data frame with observations in rows and variables in columns.
- `level` : The width of the confidence interval. Default is 0.95.
- `outplot` : What type of plot to use after the calculations. This can be either "MCB" ("mcb"), or "Vertical lines" ("lines"), or nothing ("none"). You can also use plot method on the produced object in order to get the same effect.
- `select` : What column of data to highlight on the plot. If NULL, then the method with the lowest value is selected.
- `...` : Other parameters passed to `rank` function.
- `x` : The produced `rmcb` model.
Details

\[ y = b' X + e, \]

where \( y \) is the vector of the ranks of provided data (as.vector(data)), \( X \) is the matrix of dummy variables for each column of the data (forecasting method), \( b \) is the vector of coefficients for the dummies and \( e \) is the error term of the model. Given that the data is ranked, it test the differences in medians between the methods and then produces plots based on that.

There is also a plot() method that allows producing either "mcb" or "lines" style of plot. This can be regulated via plot(x, outplot="lines").

Value

If outplot!="none", then the function plots the results after all the calculations using plot.rmcb() function.

Function returns a list of a class "rmcb", which contains the following variables:

- meanMean values for each method.
- intervalConfidence intervals for each method.
- vlinesCoordinates used for outplot="l", marking the groups of methods.
- groupsThe table containing the groups. TRUE - methods are in the same group, FALSE - they are not.
- methodsSimilar to group parameter, but with a slightly different presentation.
- p.valuep-value for the test of the significance of the model. This is the value from the F test of the linear regression.
- levelConfidence level.
- modellm model produced for the calculation of the intervals.
- outplotStyle of the plot to produce.
- selectThe selected variable to highlight.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

References


Examples

```r
N <- 50
M <- 4
ourData <- matrix(rnorm(N*M, mean=0, sd=1), N, M)
ourData[,2] <- ourData[,2]+4
ourData[,3] <- ourData[,3]+3
ourData[,4] <- ourData[,4]+2
```
colnames(ourData) <- c("Method A","Method B","Method C - long name","Method D")
ourTest <- rmcb(ourData, level=0.95)

  # See the mean ranks:
  ourTest$mean
  # The same is for the intervals:
  ourTest$interval

  # You can also reproduce plots in different styles:
  plot(ourTest, outplot="lines")

  # Or you can use the default "mcb" style and set additional parameters for the plot():
  par(mar=c(2,2,4,0)+0.1)
  plot(ourTest, main="Four methods")

---

**ro**

*Rolling Origin*

Description

The function does rolling origin for any forecasting function

Usage

```r
ro(data, h = 10, origins = 10, call, value = NULL, ci = FALSE,
 co = FALSE, silent = TRUE, parallel = FALSE, ...)
```

Arguments

- **data**: Data vector or ts object passed to the function.
- **h**: The forecasting horizon.
- **origins**: The number of rolling origins.
- **call**: The call that is passed to the function. The call must be in quotes. Example: “forecast(ets(data),h)”. Here data shows where the data is and h defines where the horizon should be passed in the call. Some hidden parameters can also be specified in the call. For example, parameters `counti`, `counto` and `countf` are used in the inner loop and can be used for the regulation of exogenous variables sizes. See examples for the details.
- **value**: The variable or set of variables returned by the call. For example, mean for functions of forecast package. This can also be a vector of variables. See examples for the details. If the parameter is `NULL`, then all the values from the call are returned (could be really messy!). Note that if your function returns a list with matrices, then `ro` will return an array. If your function returns a list, then you will have a list of lists in the end. So it makes sense to understand what you want to get before running the function.
ci  The parameter defines if the in-sample window size should be constant. If TRUE, then with each origin one observation is added at the end of series and another one is removed from the beginning.

c  The parameter defines whether the holdout sample window size should be constant. If TRUE, the rolling origin will stop when less than h observations are left in the holdout.

silent  If TRUE, nothing is printed out in the console.

parallel  If TRUE, then the model fitting is done in parallel. WARNING! Packages foreach and either doMC (Linux and Mac only) or doParallel are needed in order to run the function in parallel.

...  This is temporary and is needed in order to capture "silent" parameter if it is provided.

Details

This function produces rolling origin forecasts using the data and a call passed as parameters. The function can do all of that either in serial or in parallel, but it needs foreach and either doMC (Linux only), doParallel or doSNOW packages installed in order to do the latter.

This is a dangerous function, so be careful with the call that you pass to it, and make sure that it is well formulated before the execution.

For more details and more examples of usage, please see vignette for the function. In order to do that, just run the command: vignette("ro", "greybox")

Value

Function returns the following variables:

- actuals - the data provided to the function.
- holdout - the matrix of actual values corresponding to the produced forecasts from each origin.
- value - the matrices / array / lists with the produced data from each origin. Name of each object corresponds to the names in the parameter value.

Author(s)

Yves Sagaert

Ivan Svetunkov, <ivan@svetunkov.ru>

References

Examples

```r
x <- rnorm(100,0,1)
ourCall <- "predict(arima(x=data,order=c(0,1,1)),n.ahead=h)"

The default call and values
ourValue <- "pred"
ourRO <- ro(x, h=5, origins=5, ourCall, ourValue)

We can now plot the results of this evaluation:
plot(ourRO)

You can also use dollar sign
ourValue <- "$pred"
And you can have constant in-sample size
ro(x, h=5, origins=5, ourCall, ourValue, ci=TRUE)

You can ask for several values
ourValue <- c("pred","se")
And you can have constant holdout size
ro(x, h=5, origins=20, ourCall, ourValue, ci=TRUE, co=TRUE)

The following code will give exactly the same result as above,
but computed in parallel using all but 1 core of CPU:
Not run: ro(x, h=5, origins=20, ourCall, ourValue, ci=TRUE, co=TRUE, parallel=TRUE)

If you want to use functions from forecast package, please note that you need to
set the values that need to be returned explicitly. There are two options for this.
Example 1:
Not run: ourCall <- "forecast(ets(data), h=h, level=95)"
ourValue <- c("mean", "lower", "upper")
ro(x,h=5,origins=5,ourCall,ourValue)
End(Not run)

Example 2:
Not run: ourCall <- "forecast(ets(data), h=h, level=c(80,95))"
ourValue <- c("mean", "lower[,1]", "upper[,1]", "lower[,2]", "upper[,2]"")
ro(x,h=5,origins=5,ourCall,ourValue)
End(Not run)

A more complicated example using the for loop and
several time series
x <- matrix(rnorm(120*3,0,1), 120, 3)

Form an array for the forecasts we will produce
We will have 4 origins with 6-steps ahead forecasts
forecasts <- array(NA,c(6,4,3))

Define models that need to be used for each series
ourModels <- list(c(0,1,1), c(0,0,1), c(0,1,0))

This call uses specific models for each time series
```

---

ro
## Start the loop. The important thing here is to use the same variable 'i' as in ourCall.
for(i in 1:3){
    ourdata <- x[,i]
    ourForecasts[,,i] <- ro(data=ourdata,h=6,origins=4,call=ourCall,
                            value=ourValue,co=TRUE,silent=TRUE)$pred
}

## ourForecasts array now contains rolling origin forecasts from specific # models.

##### An example with exogenous variables
x <- rnorm(100,0,1)
xreg <- rnorm(100,0,1)

## 'counti' is used to define in-sample size of xreg,
## 'counto' - the size of the holdout sample of xreg

ourCall <- "predict(arima(x=data, order=c(0,1,1), xreg=xreg[counti]),
                    n.ahead=h, newxreg=xreg[counto])"
ourValue <- "pred"
ro(x,h=5,origins=5,ourCall,ourValue)

## 'countf' is used to take xreg of the size corresponding to the whole
## sample on each iteration
## This is useful when working with functions from smooth package.
## The following call will return the forecasts from es() function of smooth.
## Not run: ourCall <- "es(data=data, h=h, xreg=xreg[countf])"
ourValue <- "forecast"
ro(x,h=5,origins=5,ourCall,ourValue)
## End(Not run)

---

spread

Construct scatterplot / boxplots for the data

### Description

Function constructs the plots depending on the types of variables in the provided matrix / data frame.

### Usage

spread(data, histograms = FALSE, log = FALSE, lowess = FALSE, ...)
Arguments

- **data**: Either matrix or data frame with the data.
- **histograms**: If `TRUE`, then the histograms and barplots are produced on the diagonal of the matrix. Otherwise the names of the variables are written there.
- **log**: If `TRUE`, then the logarithms of all numerical variables are taken.
- **lowess**: If `TRUE`, then LOWESS lines are added to scatterplots and means are connected with lines on boxplots, see `lowess` for details.
- **...**: Other parameters passed to the plot function. Currently only "main" parameter is accepted.

Details

If both variables are in metric scale, then the classical scatterplot is constructed. If one of them is either integer (up to 10 values) or categorical (aka 'factor'), then boxplots (with grey dots corresponding to mean values) are constructed. Finally, for the two categorical variables the tableplot is returned (see `tableplot` function for the details). All of this is packed in a matrix.

See details in the vignette "Marketing analytics with greybox": `vignette("maUsingGreybox","greybox")`

Value

Function does not return anything. It just plots things.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

See Also

`plot, table, tableplot`

Examples

```r
Simple example
spread(mtcars)
spread(mtcars, log=TRUE)
```

Description

Function selects variables that give linear regression with the lowest information criteria. The selection is done stepwise (forward) based on partial correlations. This should be a simpler and faster implementation than `step()` function from 'stats' package.
Usage

```r
stepwise(data, ic = c("AICc", "AIC", "BIC", "BICc"), silent = TRUE,
 df = NULL, method = c("pearson", "kendall", "spearman"),
 distribution = c("dnorm", "dlogis", "dlaplace", "dalaplace", "ds", "dt",
 "dfnorm", "dlnorm", "dllaplace", "dls", "dbcnorm", "dinvgauss", "dpois",
 "dnbinom", "plogis", "pnorm"), occurrence = c("none", "plogis", "pnorm"),
 ...)```

Arguments

- `data`: Data frame containing dependant variable in the first column and the others in the rest.
- `ic`: Information criterion to use.
- `silent`: If `silent=FALSE`, then nothing is silent, everything is printed out. `silent=TRUE` means that nothing is produced.
- `df`: Number of degrees of freedom to add (should be used if stepwise is used on residuals).
- `method`: Method of correlations calculation. The default is Kendall’s Tau, which should be applicable to a wide range of data in different scales.
- `distribution`: Distribution to pass to `alm()`. See `alm` for details.
- `...`: This is temporary and is needed in order to capture "silent" parameter if it is provided.

Details

The algorithm uses `alm()` to fit different models and `cor()` to select the next regressor in the sequence. Some details and examples of application are also given in the vignette "Greybox": `vignette("greybox","greybox")`

Value

Function returns `model` - the final model of the class "alm". See `alm` for details of the output.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

References

See Also

`step, xregExpander, lmCombine`
Examples

```r
### Simple example
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
stepwise(xreg)

### Mixture distribution of Log Normal and Cumulative Logit
xreg[,1] <- xreg[,1] * round(exp(xreg[,1]-70) / (1 + exp(xreg[,1]-70)),0)
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- stepwise(xreg, distribution="dlnorm", occurrence=stepwise(xreg, distribution="plogis"))
summary(ourModel)

### Fat regression example
xreg <- matrix(rnorm(20000,10,3),100,200)
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y",paste0("x",c(1:200)),"Noise")
ourModel <- stepwise(xreg,ic="AICc")
plot(ourModel$ICs,type="l",ylim=range(min(ourModel$ICs),max(ourModel$ICs)+5))
points(ourModel$ICs)
text(c(1:length(ourModel$ICs))+0.1,ourModel$ICs+5,names(ourModel$ICs))
```

tableplot

Construct a plot for categorical variable

Description

Function constructs a plot for two categorical variables based on table function

Usage

```r
tableplot(x, y = NULL, labels = TRUE, legend = FALSE, ...)
```

Arguments

- **x**: First categorical variable. Can be either vector, factor, matrix or a data frame. If y is NULL and x is either matrix of a data frame, then the first two variables of the data will be plotted against each other.
- **y**: Second categorical variable. If not provided, then only x will be plotted.
- **labels**: Whether to print table labels inside the plot or not.
- **legend**: If TRUE, then the legend for the tableplot is drawn. The plot is then produced on a separate canvas (new par()).
- **...**: Other parameters passed to the plot function.
Details

The function produces the plot of the `table()` function with colour densities corresponding to the respective frequencies of appearance. If the value appears more often than the other (e.g. 0.5 vs 0.15), then it will be darker. The frequency of 0 corresponds to the white colour, the frequency of 1 corresponds to the black.

See details in the vignette "Marketing analytics with greybox": `vignette("maUsingGreybox","greybox")`

Value

Function does not return anything. It just plots things.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

See Also

`plot, table, spread`

Examples

```r
tableplot(mtcars$am, mtcars$gear)
```

xregExpander

Exogenous variables expander

Description

Function expands the provided matrix or vector of variables, producing values with lags and leads specified by `lags` variable.

Usage

```r
xregExpander(xreg, lags = c(-frequency(xreg):frequency(xreg)), silent = TRUE, gaps = c("auto", "NAs", "zero", "naive", "extrapolate"), ...)```

Arguments

- **xreg**
  Vector / matrix / data.frame, containing variables that need to be expanded. In case of vector / matrix it is recommended to provide `ts` object, so the frequency of the data is taken into account.

- **lags**
  Vector of lags / leads that we need to have. Negative values mean lags, positive ones mean leads.
silent If silent=FALSE, then the progress is printed out. Otherwise the function won’t print anything in the console.
gaps Defines how to fill in the gaps in the data. "NAs" will leave missing values, "zero" will substitute them by zeroes, "naive" will use the last / the first actual value, while "extrapolate" will use es function from smooth package (if present, otherwise - naive) in order to fill in values. Finally, "auto" will let the function select between "extrapolate" and "NAs" depending on the length of series.

Details
This function could be handy when you want to check if lags and leads of a variable influence the dependent variable. Can be used together with xregDo="select" in es, ces, gum and ssarima. All the missing values in the beginning and at the end of lagged series are substituted by mean forecasts produced using es.

Value
ts matrix with the expanded variables is returned.

Author(s)
Ivan Svetunkov,<ivan@svetunkov.ru>

See Also
es,stepwise

Examples
# Create matrix of two variables, make it ts object and expand it
x <- cbind(rnorm(100,100,1),rnorm(100,50,3))
x <- ts(x,frequency=12)
xregExpander(x)

---

xregMultiplier Exogenous variables cross-products

Description
Function generates the cross-products of the provided exogenous variables.

Usage
xregMultiplier(xreg, silent = TRUE, ...)
Arguments

- **xreg**: matrix or data.frame, containing variables that need to be expanded. This matrix needs to contain at least two columns.
- **silent**: If silent=FALSE, then the progress is printed out. Otherwise the function won’t print anything in the console.
  - This is temporary and is needed in order to capture “silent” parameter if it is provided.

Details

This function might be useful if you have several variables and want to introduce their cross-products. This might be useful when introducing the interactions between dummy and continuous variables.

Value

A ts matrix with the transformed and the original variables is returned.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

See Also

es, stepwise, xregExpander, xregTransformer

Examples

```r
Create matrix of two variables and expand it
x <- cbind(rnorm(100,100,1),rnorm(100,50,3))
xregMultiplier(x)
```

---

**xregTransformer**  
*Exogenous variables transformer*

Description

Function transforms each variable in the provided matrix or vector, producing non-linear values, depending on the selected pool of functions.

Usage

```r
xregTransformer(xreg, functions = c("log", "exp", "inv", "sqrt", "square"), silent = TRUE, ...)
```
**Arguments**

- **xreg**: Vector / matrix / data.frame, containing variables that need to be expanded. In case of vector / matrix it is recommended to provide ts object, so the frequency of the data is taken into account.
- **functions**: Vector of names for functions used.
- **silent**: If silent=FALSE, then the progress is printed out. Otherwise the function won’t print anything in the console.
- **...**: This is temporary and is needed in order to capture "silent" parameter if it is provided.

**Details**

This function could be useful when you want to automatically select the necessary transformations of the variables. This can be used together with xregDo="select" in es, ces, gum and ssarima. However, this might be dangerous, as it might lead to the overfitting the data. So be reasonable when you produce the transformed variables.

**Value**

ts matrix with the transformed and the original variables is returned.

**Author(s)**

Ivan Svetunkov, <ivan@svetunkov.ru>

**See Also**

es, stepwise, xregExpander

**Examples**

```r
Create matrix of two variables and expand it
x <- cbind(rnorm(100,100,1),rnorm(100,50,3))
xregTransformer(x)
```
Index

*Topic distribution
dalaplace, 12
dbcnorm, 13
dfnorm, 16
dlaplace, 18
ds, 19
dtplnorm, 21
*Topic graph
graphmaker, 23
spread, 54
tableplot, 57
*Topic htest
AICc, 4
association, 9
cramer, 11
mcor, 33
mparm, 39
pAIC, 40
pcor, 41
pointLik, 45
rmcb, 49
*Topic linear
graphmaker, 23
*Topic models
alm, 5
determination, 15
errorType, 22
greybox, 25
lmCombine, 28
lmDynamic, 30
stepwise, 55
xregExpander, 58
xregMultiplier, 59
xregTransformer, 60
*Topic nonlinear
alm, 5
errorType, 22
greybox, 25
lmCombine, 28
lmDynamic, 30
stepwise, 55
xregExpander, 58
xregMultiplier, 59
xregTransformer, 60
*Topic plots
graphmaker, 23
spread, 54
tableplot, 57
*Topic regression
alm, 5
errorType, 22
greybox, 25
lmCombine, 28
lmDynamic, 30
stepwise, 55
xregExpander, 58
xregMultiplier, 59
xregTransformer, 60
*Topic ts
alm, 5
errorType, 22
greybox, 25
is.greybox, 27
lmCombine, 28
lmDynamic, 30
plot.greybox, 43
predict.alm, 47
ro, 51
stepwise, 55
xregExpander, 58
xregMultiplier, 59
xregTransformer, 60
*Topic univar
is.greybox, 27
plot.greybox, 43
predict.alm, 47
acf, 44
actuals, 3
INDEX

AIC, 5, 45
AICc, 4, 25
alm, 5, 25, 28, 29, 31, 44, 56
assoc, 26
assoc (association), 9
association, 9, 11, 33, 42
BIC, 5, 45
BICc, 25
BICc (AICc), 4
cbias (hm), 26
ces, 59, 61
convolve, 46
cor, 9–11, 16, 33, 41
cramer, 9, 10, 11, 33, 42
dalaplace, 6, 12, 25
dbcnorm, 6, 13, 25
dbeta, 6
determ (determination), 15
determination, 15, 25
dfnorm, 6, 16, 25
dinvgauss, 6
dlaplace, 6, 18, 25
dnorm, 6
dlogis, 6
dnbinom, 7
dnorm, 5, 6
dpois, 6
ds, 6, 19, 25
dt, 6
dtplnorm, 21, 25, 26

Errors, 38
Errors (ME), 34
errorType, 22
es, 59–61
forecast, 48
forecast (predict.alm), 47
glm, 7
graphmaker, 23
greybox, 25
gum, 59, 61

ham (hm), 26
hm, 26, 36

is.alm (is.greybox), 27
is.greybox, 27
is.greyboxC (is.greybox), 27
is.greyboxD (is.greybox), 27
is.occurrence (is.greybox), 27
is.rmc (is.greybox), 27
is.rollingOrigin (is.greybox), 27
lm, 6
lmCombine, 7, 25, 26, 28, 31, 32, 56
lmDynamic, 25, 28, 30
loglik, 40
lowess, 44, 55
MAE (ME), 34
MAPE (ME), 34
MASE (ME), 34
mcor, 9–11, 16, 33, 42
ME, 34
measures, 36, 37
MIS (ME), 34
MPE (ME), 34
MRE (ME), 34
MSE (ME), 34
na.exclude, 5
na.fail, 5
na.omit, 5
nloptr, 6
nobs, 40
nparam, 39
options, 5
pacf, 44
pAIC, 25, 40
pAICc, 25
pAICc (pAIC), 40
palaplace, 25
palaplace (dalaplace), 12
pbcnorm, 25
pbcnorm (dbcnorm), 13
pBIC, 25
pBIC (pAIC), 40
pBICc, 25
pBICc (pAIC), 40
pcor, 41
pfnorm, 25
pfnorm (dfnorm), 16
pinball, 36, 42
plaplace, 25
plaplace (dlaplace), 18
plogis, 7
plot, 55, 58
plot.alm (plot.greybox), 43
plot.greybox, 43
plot.lm, 44
plot.rmb (rmb), 49
pnorm, 7
pointLik, 25, 40, 41, 45
polyprod, 46
predict.alm, 47
predict.greybox (predict.aln), 47
predict.lm, 48
ps, 25
ps (ds), 19
ptplnorm, 25, 26
ptplnorm (dtplnorm), 21
qalaplace, 25
qalaplace (dlaplace), 12
qbcnorm, 25
qbcnorm (dbcnorm), 13
qfnorm, 25
qfnorm (dfnorm), 16
qlaplace, 25
qlaplace (dlaplace), 18
qs, 25
qs (ds), 19
qtplnorm, 25, 26
qtplnorm (dtplnorm), 21
ralaplace, 25
ralaplace (dlaplace), 12
rAME (ME), 34
rank, 49
rbcnorm, 25
rbcnorm (dbcnorm), 13
RelAME (ME), 34
RelMAE (ME), 34
RelMIS (ME), 34
RelRMSE (ME), 34
rfnorm, 25
rfnorm (dfnorm), 16
rlaplace, 25
rlaplace (dlaplace), 18
deAME (ME), 34
drmb, 49
rMIS (ME), 34
RMSSE (ME), 34
ro, 25, 51
rRMSE (ME), 34
rs, 25
rs (ds), 19
rstandard, 44
rstudent, 44
rtplnorm, 25, 26
rtplnorm (dtplnorm), 21
sCE (ME), 34
sMIS (ME), 34
sMSE (ME), 34
sPIS (ME), 34
spread, 10, 11, 26, 33, 54, 58
ssarima, 59, 61
step, 30, 56
stepwise, 7, 15, 16, 25, 26, 30, 32, 55, 59–61
table, 10, 11, 23, 55, 58
tableplot, 10, 11, 23, 55, 57
ts, 24
xregExpander, 25, 30, 56, 58, 60, 61
xregMultiplier, 25, 59
xregTransformer, 7, 25, 60, 60