Package ‘grf’

May 27, 2019

Title Generalized Random Forests (Beta)
Version 0.10.3
Author Julie Tibshirani [aut, cre],
 Susan Athey [aut],
 Rina Friedberg [ctb],
 Vitor Hadad [ctb],
 Luke Miner [ctb],
 Stefan Wager [aut],
 Marvin Wright [ctb]

BugReports https://github.com/grf-labs/grf/issues
Maintainer Julie Tibshirani <jtibs@cs.stanford.edu>

Description A pluggable package for forest-based statistical estimation and inference.
 GRF currently provides methods for non-parametric least-squares regression,
 quantile regression, and treatment effect estimation (optionally using instrumental
 variables). This package is currently in beta, and we expect to make continual
 improvements to its performance and usability.

Depends R (>= 3.3.0)
License GPL-3
LinkingTo Rcpp, RcppEigen
Imports DiceKriging, lmtest, Matrix, methods, Rcpp (>= 0.12.15),
 sandwich (>= 2.4-0)
RoxygenNote 6.1.1
Suggests DiagrammeR, testthat
SystemRequirements GNU make

URL https://github.com/grf-labs/grf
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-05-27 05:00:07 UTC
R topics documented:

average_partial_effect .. 2
average_treatment_effect .. 3
boosted_regression_forest .. 5
causal_forest ... 7
create_dot_body ... 10
custom_forest ... 11
export_graphviz ... 12
get_sample_weights ... 13
get_tree ... 14
grf ... 15
instrumental_forest ... 17
ll_regression_forest ... 19
merge_forests ... 20
plot.grf_tree ... 21
predict.boosted_regression_forest .. 22
predict.causal_forest ... 23
predict.custom_forest ... 24
predict.instrumental_forest ... 25
predict.ll_regression_forest ... 26
predict.quantile_forest .. 27
predict.regression_forest ... 29
print.boosted_regression_forest ... 30
print.grf ... 31
print.grf_tree ... 31
print.tuning_output ... 32
quantile_forest ... 32
regression_forest ... 34
split_frequencies .. 36
test_calibration ... 37
tune_causal_forest ... 38
tune_ll_regression_forest .. 40
tune_regression_forest .. 41
variable_importance ... 43

Index ... 44

average_partial_effect

Estimate average partial effects using a causal forest

Description

Gets estimates of the average partial effect, in particular the (conditional) average treatment effect (target.sample = all): \(1/n \sum_i = 1^n \text{Cov}[W_i, Y_i | X = X_i] / \text{Var}[W_i | X = X_i]\). Note that for a binary unconfounded treatment, the average partial effect matches the average treatment effect.
average_treatment_effect

Usage

average_partial_effect(forest, calibrate.weights = TRUE, subset = NULL,
num.trees.for.variance = 500)

Arguments

forest The trained forest.

```
calibrate.weights
```
Whether to force debiasing weights to match expected moments for 1, W, W.hat,
and 1/Var[W|X].

subset Specifies a subset of the training examples over which we estimate the ATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

```
num.trees.for.variance
```
Number of trees used to estimate Var[Wi | Xi = x].

Details

If clusters are specified, then each cluster gets equal weight. For example, if there are 10 clusters
with 1 unit each and per-cluster APE = 1, and there are 10 clusters with 19 units each and per-cluster
APE = 0, then the overall APE is 0.5 (not 0.05).

Value

An estimate of the average partial effect, along with standard error.

Examples

```r
## Not run: 
n = 2000; p = 10 
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 1/(1 + exp(-X[,2]))) + rnorm(n)
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
tau.forest = causal_forest(X, Y, W)
tau.hat = predict(tau.forest)
average_partial_effect(tau.forest)
average_partial_effect(tau.forest, subset = X[,1] > 0)
## End(Not run)
```
Description

Gets estimates of one of the following.

- The (conditional) average treatment effect (target.sample = all): \(\sum_i = 1^n \frac{E[Y(1) - Y(0) | X = X_i]}{n} \)
- The (conditional) average treatment effect on the treated (target.sample = treated): \(\sum_{W_i = 1} E[Y(1) - Y(0) | X = X_i] / |i : W_i = 1| \)
- The (conditional) average treatment effect on the controls (target.sample = control): \(\sum_{W_i = 0} E[Y(1) - Y(0) | X = X_i] / |i : W_i = 0| \)
- The overlap-weighted (conditional) average treatment effect \(\sum_i = 1^n \frac{e(X_i)(1 - e(X_i))E[Y(1) - Y(0) | X = X_i]}{\sum_i = 1^n e(X_i)(1 - e(X_i))} \), where \(e(x) = P[W_i = 1 | X_i = x] \).

This last estimand is recommended by Li, Morgan, and Zaslavsky (JASA, 2017) in case of poor overlap (i.e., when the propensities \(e(x) \) may be very close to 0 or 1), as it doesn’t involve dividing by estimated propensities.

Usage

```r
average_treatment_effect(forest, target.sample = c("all", "treated", "control", "overlap"), method = c("AIPW", "TMLE"), subset = NULL)
```

Arguments

- `forest`: The trained forest.
- `target.sample`: Which sample to aggregate treatment effects over.
- `method`: Method used for doubly robust inference. Can be either augmented inverse-propensity weighting (AIPW), or targeted maximum likelihood estimation (TMLE).
- `subset`: Specifies subset of the training examples over which we estimate the ATE. WARNING: For valid statistical performance, the subset should be defined only using features \(X_i \), not using the treatment \(W_i \) or the outcome \(Y_i \).

Details

If clusters are specified, then each cluster gets equal weight. For example, if there are 10 clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each and per-cluster ATE = 0, then the overall ATE is 0.5 (not 0.05).

Value

An estimate of the average treatment effect, along with standard error.

Examples

```r
## Not run:
# Train a causal forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 0.5)
```
\[
Y = \text{pmax}(X[1], 0) \ast W + X[2] + \text{pmin}(X[3], 0) + \text{rnorm}(n)
\]
\[
c.\text{forest} = \text{causal_forest}(X, Y, W)
\]

Predict using the forest.
X.test = \text{matrix}(\emptyset, 101, p)
X.test[, 1] = \text{seq}(-2, 2, \text{length.out} = 101)
c.pred = \text{predict}(c.\text{forest}, X.\text{test})

Estimate the conditional average treatment effect on the full sample (CATE).
\text{average_treatment_effect}(c.\text{forest}, \text{target.sample} = "all")

Estimate the conditional average treatment effect on the treated sample (CATT).
We don't expect much difference between the CATE and the CATT in this example,
since treatment assignment was randomized.
\text{average_treatment_effect}(c.\text{forest}, \text{target.sample} = "treated")

Estimate the conditional average treatment effect on samples with positive X[1].
\text{average_treatment_effect}(c.\text{forest}, \text{target.sample} = "all", X[1] > 0)

End(Not run)

boosted_regression_forest

Boosted regression forest (experimental)

Description

Trains a boosted regression forest that can be used to estimate the conditional mean function \(\mu(x) = E(Y \mid X = x) \). Selects number of boosting iterations based on cross-validation. This functionality is experimental and will likely change in future releases.

Usage

```r
boosted_regression_forest(X, Y, sample.weights = \emptyset,
                           sample.fraction = 0.5, mtry = \emptyset, num.trees = 2000,
                           num.threads = \emptyset, min.node.size = \emptyset, honesty = \text{TRUE},
                           honesty.fraction = \emptyset, ci.group.size = 2, alpha = \emptyset,
                           imbalance.penalty = \emptyset, seed = \emptyset, clusters = \emptyset,
                           samples.per.cluster = \emptyset, tune.parameters = \text{FALSE},
                           num.fit.trees = 10, num.fit.reps = 100, num.optimize.reps = 1000,
                           boost.steps = \emptyset, boost.error.reduction = 0.97,
                           boost.max.steps = 5, boost.trees.tune = 10)
```

Arguments

- **X**: The covariates used in the regression.
- **Y**: The outcome.
sample.weights Weights given to each observation in estimation. If NULL, each observation receives the same weight.

sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.

mtry Number of variables tried for each split.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.

num.threads Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original randomForest package.

honesty Whether to use honest splitting (i.e., sub-sample splitting).

honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2.

alpha A tuning parameter that controls the maximum imbalance of a split.

imbalance.penalty A tuning parameter that controls how harshly imbalanced splits are penalized.

seed The seed for the C++ random number generator.

clusters Vector of integers or factors specifying which cluster each observation corresponds to.

samples.per.cluster If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples.per.cluster to the size of the smallest cluster. If some clusters are smaller than samples.per.cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples.per.cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples.per.cluster.

tune.parameters If true, NULL parameters are tuned by cross-validation; if false NULL parameters are set to defaults.

num.fit.trees The number of trees in each ‘mini forest’ used to fit the tuning model.

num.fit.reps The number of forests used to fit the tuning model.

num.optimize.reps The number of random parameter values considered when using the model to select the optimal parameters.
causal_forest

Description

Trains a causal forest that can be used to estimate conditional average treatment effects $\tau(X)$. When the treatment assignment W is binary and unconfounded, we have $\tau(X) = \mathbb{E}[Y(1) - Y(0) \mid X = x]$, where $Y(0)$ and $Y(1)$ are potential outcomes corresponding to the two possible treatment states. When W is continuous, we effectively estimate an average partial effect $\text{Cov}[Y, W \mid X = x] / \text{Var}[W \mid X = x]$, and interpret it as a treatment effect given unconfoundedness.

Value

A boosted regression forest object. $error contains the mean debiased error for each step, and $forests contains the trained regression forest for each step.

Examples

```r
## Not run:
# Train a boosted regression forest.
set.seed(1)
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
boosted_forest = boosted_regression_forest(X, Y)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
boost.pred = predict(boosted_forest, X.test)

# Predict on out-of-bag training samples.
boost.pred = predict(boosted_forest)

# Check how many boosting iterations were used
print(length(boosted_forest$forests))

## End(Not run)
```
Usage

causal_forest(X, Y, W, Y.hat = NULL, W.hat = NULL,
sample.weights = NULL, orthog.boosting = FALSE,
sample.fraction = 0.5, mtry = NULL, num.trees = 2000,
min.node.size = NULL, honesty = TRUE, honesty.fraction = NULL,
ci.group.size = 2, alpha = NULL, imbalance.penalty = NULL,
stabilize.splits = TRUE, clusters = NULL,
samples.per.cluster = NULL, tune.parameters = FALSE,
num.fit.trees = 200, num.fit.reps = 50, num.optimize.reps = 1000,
compute.oob.predictions = TRUE, num.threads = NULL, seed = NULL)

Arguments

X The covariates used in the causal regression.
Y The outcome (must be a numeric vector with no NAs).
W The treatment assignment (must be a binary or real numeric vector with no NAs).
Y.hat Estimates of the expected responses E[Y | Xi], marginalizing over treatment. If Y.hat = NULL, these are estimated using a separate regression forest. See section 6.1.1 of the GRF paper for further discussion of this quantity.
W.hat Estimates of the treatment propensities E[W | Xi]. If W.hat = NULL, these are estimated using a separate regression forest.
sample.weights (experimental) Weights given to each sample in estimation. If NULL, each observation receives the same weight. Note: To avoid introducing confounding, weights should be independent of the potential outcomes given X.
orthog.boosting (experimental) If TRUE, then when Y.hat = NULL or W.hat is NULL, the missing quantities are estimated using boosted regression forests. The number of boosting steps is selected automatically.
sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.
mtry Number of variables tried for each split.
um.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.
min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.
honesty Whether to use honest splitting (i.e., sub-sample splitting).
honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.
ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2.
causal_forest

alpha
A tuning parameter that controls the maximum imbalance of a split.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized.

stabilize.splits
Whether or not the treatment should be taken into account when determining the imbalance of a split.

clusters
Vector of integers or factors specifying which cluster each observation corresponds to.

samples.per.cluster
If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples.per.cluster to the size of the smallest cluster. If some clusters are smaller than samples.per.cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples.per.cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples.per.cluster.

tune.parameters
If true, NULL parameters are tuned by cross-validation; if false NULL parameters are set to defaults.

num.fit.trees
The number of trees in each 'mini forest' used to fit the tuning model.

num.fit.reps
The number of forests used to fit the tuning model.

num.optimize.reps
The number of random parameter values considered when using the model to select the optimal parameters.

compute.oob.predictions
Whether OOB predictions on training set should be precomputed.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed
The seed of the C++ random number generator.

Value
A trained causal forest object. If tune.parameters is enabled, then tuning information will be included through the 'tuning.output' attribute.

Examples

```r
## Not run:
# Train a causal forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 0.5)
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
c.forest = causal_forest(X, Y, W)

# Predict using the forest.
```
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
c.pred = predict(c.forest, X.test)

Predict on out-of-bag training samples.
c.pred = predict(c.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.forest = causal_forest(X, Y, W, num.trees = 4000)
c.pred = predict(c.forest, X.test, estimate.variance = TRUE)

In some examples, pre-fitting models for Y and W separately may
be helpful (e.g., if different models use different covariates).
In some applications, one may even want to get Y.hat and W.hat
using a completely different method (e.g., boosting).
n = 2000; p = 20
X = matrix(rnorm(n * p), n, p)
TAU = 1 / (1 + exp(-X[, 3]))
W = rbinom(n, 1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y = pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)

forest.W = regression_forest(X, W, tune.parameters = TRUE)
W.hat = predict(forest.W)$predictions

forest.Y = regression_forest(X, Y, tune.parameters = TRUE)
Y.hat = predict(forest.Y)$predictions

forest.Y.varimp = variable_importance(forest.Y)

Note: Forests may have a hard time when trained on very few variables
(e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
in selection.
selected.vars = which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)

tau.forest = causal_forest(X[,selected.vars], Y, W,
W.hat = W.hat, Y.hat = Y.hat,
tune.parameters = TRUE)
tau.hat = predict(tau.forest)$predictions

End(Not run)

create_dot_body

create_dot_body

Description

Writes each node information If it is a leaf node: show it in different color, show number of samples, show leaf id If it is a non-leaf node: show its splitting variable and splitting value
custom_forest

Usage

create_dot_body(tree, index = 1)

Arguments

tree the tree to convert
index the index of the current node

custom_forest Custom forest

Description

Trains a custom forest model.

Usage

custom_forest(X, Y, sample.fraction = 0.5, mtry = NULL,
num.trees = 2000, min.node.size = NULL, honesty = TRUE,
honesty.fraction = NULL, alpha = 0.05, imbalance.penalty = 0,
clusters = NULL, samples.per.cluster = NULL,
compute.oob.predictions = TRUE, num.threads = NULL, seed = NULL)

Arguments

X The covariates used in the regression.
Y The outcome.
sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction.
mtry Number of variables tried for each split.
num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions.
min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package.
honesty Whether to use honest splitting (i.e., sub-sample splitting).
honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits
alpha A tuning parameter that controls the maximum imbalance of a split.
imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized.

clusters
Vector of integers or factors specifying which cluster each observation corresponds to.

samples.per.cluster
If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples.per.cluster to the size of the smallest cluster. If some clusters are smaller than samples.per.cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples.per.cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples.per.cluster.

compute.oob.predictions
Whether OOB predictions on training set should be precomputed.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency

seed
The seed of the C++ random number generator.

Value
A trained regression forest object.

Examples
```r
## Not run:
# Train a custom forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
c.forest = custom_forest(X, Y)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
c.pred = predict(c.forest, X.test)

## End(Not run)
```

export_graphviz

Export a tree in DOT format. This function generates a GraphViz representation of the tree, which is then written into `dot_string`.

Description

Export a tree in DOT format. This function generates a GraphViz representation of the tree, which is then written into `dot_string`.
get_sample_weights

Usage

export_graphviz(tree)

Arguments

tree the tree to convert

get_sample_weights Given a trained forest and test data, compute the training sample weights for each test point.

Description

During normal prediction, these weights are computed as an intermediate step towards producing estimates. This function allows for examining the weights directly, so they could be potentially be used as the input to a different analysis.

Usage

generate_sample_weights(forecast, newdata = NULL, num.threads = NULL)

Arguments

forest The trained forest.
newdata Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example).#’ @param max.depth Maximum depth of splits to consider.
num.threads Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

Value

A sparse matrix where each row represents a test sample, and each column is a sample in the training data. The value at (i, j) gives the weight of training sample j for test sample i.

Examples

Not run:
p = 10
n = 100
X = matrix(2 * runif(n * p) - 1, n, p)
Y = (X[,1] > 0) + 2 * rnorm(n)
rrf = regression_forest(X, Y, mtry=p)
sample.weights.oob = get_sample_weights(rrf)
n.test = 15
get_tree

Retrieve a single tree from a trained forest object.

Description

Retrieve a single tree from a trained forest object.

Usage

get_tree(forest, index)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>forest</td>
<td>The trained forest.</td>
</tr>
<tr>
<td>index</td>
<td>The index of the tree to retrieve.</td>
</tr>
</tbody>
</table>

Value

A GRF tree object containing the below attributes:
- `drawn_samples`: a list of examples that were used in training the tree. This includes examples that were used in choosing splits, as well as the examples that populate the leaf nodes. Put another way, if honesty is enabled, this list includes both subsamples from the split (J1 and J2 in the notation of the paper).
- `num_samples`: the number of examples used in training the tree.
- `nodes`: a list of objects representing the nodes in the tree, starting with the root node. Each node will contain an `is_leaf` attribute, which indicates whether it is an interior or leaf node. Interior nodes contain the attributes `left_child` and `right_child`, which give the indices of their children in the list, as well as `split_variable`, and `split_value`, which describe the split that was chosen. Leaf nodes only have the attribute `samples`, which is a list of the training examples that the leaf contains. Note that if honesty is enabled, this list will only contain examples from the second subsample that was used to 'repopulate' the tree (J2 in the notation of the paper).

Examples

```r
## Not run:
# Train a quantile forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

# Examine a particular tree.
q.tree = get_tree(q.forest, 3)
q.tree$nodes
```
Description

A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods for least-squares regression, quantile regression, and treatment effect estimation (optionally using instrumental variables).

In addition, GRF supports ‘honest’ estimation (where one subset of the data is used for choosing splits, and another for populating the leaves of the tree), and confidence intervals for least-squares regression and treatment effect estimation.

This package is currently in beta, and we expect to make continual improvements to its performance and usability. For a practical description of the GRF algorithm, including explanations of model parameters and troubleshooting suggestions, please see the [GRF reference](https://github.com/grf-labs/grf/blob/master/REFERENCE.md).

Examples

```r
## Not run:
library(grf)

# The following script demonstrates how to use GRF for heterogeneous treatment
# effect estimation. For examples of how to use other types of forest, as for
# quantile regression and causal effect estimation using instrumental variables,
# please consult the documentation on the relevant forest methods (quantile_forest,
# instrumental_forest, etc.).

# Generate data.
n = 2000; p = 10
X = matrix(rnorm(n*p), n, p)
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)

# Train a causal forest.
W = rbinom(n, 1, 0.4 + 0.2 * (X[,1] > 0))
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
tau.forest = causal_forest(X, Y, W)

# Estimate treatment effects for the training data using out-of-bag prediction.
tau.hat.oob = predict(tau.forest)
hist(tau.hat.oob$predictions)

# Estimate treatment effects for the test sample.
tau.hat = predict(tau.forest, X.test)
plot(X.test[,1], tau.hat$predictions, ylim = range(tau.hat$predictions, 0, 2),
```
xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 2)

Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(tau_forest, target_sample = "all")

Estimate the conditional average treatment effect on the treated sample (CATT).
Here, we don’t expect much difference between the CATE and the CATT, since
treatment assignment was randomized.
average_treatment_effect(tau_forest, target_sample = "treated")

Add confidence intervals for heterogeneous treatment effects; growing more
trees is now recommended.
tau.hat = predict(tau_forest, X.test, estimate.variance = TRUE)
sigma.hat = sqrt(tau.hat$variance.estimate)

ylim = range(tau.hat$predictions + 1.96 * sigma.hat, tau.hat$predictions - 1.96 * sigma.hat, 0, 2),
plot(X.test[,1], tau.hat$predictions, ylim = ylim, xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], tau.hat$predictions + 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], tau.hat$predictions - 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 1)

In some examples, pre-fitting models for Y and W separately may
be helpful (e.g., if different models use different covariates).
In some applications, one may even want to get Y.hat and W.hat
using a completely different method (e.g., boosting).

Generate new data.
n = 4000; p = 20
X = matrix(rnorm(n * p), n, p)
TAU = 1 / (1 + exp(-X[, 3]))
W = rbinom(n, 1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y = pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)

forest.W = regression_forest(X, W, tune.parameters = TRUE)
W.hat = predict(forest.W)$predictions

forest.Y = regression_forest(X, Y, tune.parameters = TRUE)
Y.hat = predict(forest.Y)$predictions

forest.Y.varimp = variable_importance(forest.Y)

Note: Forests may have a hard time when trained on very few variables
(e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
in selection.
selected.vars = which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)

tau_forest = causal_forest(X[, selected.vars], Y, W,
W.hat = W.hat, Y.hat = Y.hat, tune.parameters = TRUE)

Check whether causal forest predictions are well calibrated.
instrumental_forest

```r
test_calibration(tau_forest)
## End(Not run)
```

instrumental_forest
Intrumental forest

Description

Trains an instrumental forest that can be used to estimate conditional local average treatment effects tau(X) identified using instruments. Formally, the forest estimates
\[
\text{tau}(X) = \frac{\text{Cov}[Y, Z | X = x]}{\text{Cov}[W, Z | X = x]}.
\]
Note that when the instrument Z and treatment assignment W coincide, an instrumental forest is equivalent to a causal forest.

Usage

```r
instrumental_forest(X, Y, W, Z, Y.hat = NULL, W.hat = NULL, 
Z.hat = NULL, sample.weights = NULL, sample.fraction = 0.5, 
mtry = NULL, num.trees = 2000, min.node.size = NULL, 
honesty = TRUE, honesty.fraction = NULL, ci.group.size = 2, 
reduced.form.weight = 0, alpha = 0.05, imbalance.penalty = 0, 
stabilize.splits = TRUE, clusters = NULL, 
samples.per.cluster = NULL, compute.oob.predictions = TRUE, 
num.threads = NULL, seed = NULL)
```

Arguments

- **X**
 The covariates used in the instrumental regression.

- **Y**
 The outcome.

- **W**
 The treatment assignment (may be binary or real).

- **Z**
 The instrument (may be binary or real).

- **Y.hat**
 Estimates of the expected responses E[Y | X_i], marginalizing over treatment. If Y.hat = NULL, these are estimated using a separate regression forest.

- **W.hat**
 Estimates of the treatment propensities E[W | X_i]. If W.hat = NULL, these are estimated using a separate regression forest.

- **Z.hat**
 Estimates of the instrument propensities E[Z | X_i]. If Z.hat = NULL, these are estimated using a separate regression forest.

- **sample.weights**
 (experimental) Weights given to each observation in estimation. If NULL, each observation receives equal weight.

- **sample.fraction**
 Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.

- **mtry**
 Number of variables tried for each split.

- **num.trees**
 Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.
min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.

honesty Whether to use honest splitting (i.e., sub-sample splitting).

honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2.

reduced.form.weight Whether splits should be regularized towards a naive splitting criterion that ignores the instrument (and instead emulates a causal forest).

alpha A tuning parameter that controls the maximum imbalance of a split.

imbalance.penalty A tuning parameter that controls how harshly imbalanced splits are penalized.

stabilize.splits Whether or not the instrument should be taken into account when determining the imbalance of a split.

clusters Vector of integers or factors specifying which cluster each observation corresponds to.

samples.per.cluster If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples.per.cluster to the size of the smallest cluster. If some clusters are smaller than samples.per.cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples.per.cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples.per.cluster.

compute.oob.predictions Whether OOB predictions on training set should be precomputed.

num.threads Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained instrumental forest object.
ll_regression_forest

Local Linear forest

Description

Trains a local linear forest that can be used to estimate the conditional mean function $\mu(x) = E[Y | X = x]$.

Usage

```r
ll_regression_forest(X, Y, sample.fraction = 0.5, mtry = NULL,
num.trees = 2000, min.node.size = NULL, honesty = TRUE,
honesty.fraction = NULL, ci.group.size = 1, alpha = NULL,
imbalance.penalty = NULL, clusters = NULL,
samples.per.cluster = NULL, tune.parameters = FALSE,
num.fit.trees = 10, num.fit.reps = 100, num.optimize.reps = 1000,
um threads = NULL, seed = NULL)
```

Arguments

- **X**: The covariates used in the regression.
- **Y**: The outcome.
- **sample.fraction**: Fraction of the data used to build each tree. Note: If honesty is used, these subsamples will further be cut in half.
- **mtry**: Number of variables tried for each split.
- **num.trees**: Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.
- **min.node.size**: A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.
- **honesty**: Whether or not honest splitting (i.e., sub-sample splitting) should be used.
- **honesty.fraction**: The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J_1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.
- **ci.group.size**: The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2.
- **alpha**: A tuning parameter that controls the maximum imbalance of a split.
- **imbalance.penalty**: A tuning parameter that controls how harshly imbalanced splits are penalized.
- **clusters**: Vector of integers or factors specifying which cluster each observation corresponds to.
merge_forests

Merges a list of forests that were grown using the same data into one large forest.

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set `samples.per.cluster` to the size of the smallest cluster. If some clusters are smaller than `samples.per.cluster`, the whole cluster is used every time the cluster is drawn. Note that clusters with less than `samples.per.cluster` observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and `samples.per.cluster`.

tune.parameters

If true, NULL parameters are tuned by cross-validation; if false NULL parameters are set to defaults.

num.fit.trees

The number of trees in each 'mini forest' used to fit the tuning model.

num.fit.reps

The number of forests used to fit the tuning model.

num.optimize.reps

The number of random parameter values considered when using the model to select the optimal parameters.

num.threads

Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed

The seed of the C++ random number generator.

Value

A trained local linear forest object.

Examples

```r
## Not run:
# Train a standard regression forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
forest = ll_regression_forest(X, Y)

## End(Not run)
```

merge_forests

Merges a list of forests that were grown using the same data into one large forest.

Description

Merges a list of forests that were grown using the same data into one large forest.
merge_forests(forest_list, compute.oob.predictions = TRUE)

Arguments

forest_list A 'list' of forests to be concatenated. All forests must be of the same type, and the type must be a subclass of 'grf'. In addition, all forests must have the same 'ci.group.size'. Other tuning parameters (e.g. alpha, mtry, min.node.size, imbalance.penalty) are allowed to differ across forests.

compute.oob.predictions Whether OOB predictions on training set should be precomputed. Note that even if OOB predictions have already been precomputed for the forests in 'forest_list', those predictions are not used. Instead, a new set of oob predictions is computed anew using the larger forest.

Value

A single forest containing all the trees in each forest in the input list.

Examples

Not run:
Train standard regression forests
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)

r.forest1 = regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)

r.forest2 = regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)

Join the forests together. The resulting forest will contain 200 trees.
big_rf = merge_forests(list(r.forest1, r.forest2))

End(Not run)

plot.grf_tree

Plot a GRF tree object.

Description

Plot a GRF tree object.

Usage

S3 method for class 'grf_tree'
plot(x, ...)

plot.grf_tree

Plot a GRF tree object.
predict.boosted_regression_forest

Predict with a boosted regression forest.

Description

Gets estimates of E[Y|X=x] using a trained regression forest.

Usage

```r
## S3 method for class 'boosted_regression_forest'
predict(object, newdata = NULL,
    boost.predict.steps = NULL, num.threads = NULL, ...)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- **boost.predict.steps**: Number of boosting iterations to use for prediction. If blank, uses the full number of steps for the object given.
- **num.threads**: the number of threads used in prediction.
- **...**: Additional arguments (currently ignored).

Value

A vector of predictions.

Examples

```r
## Not run:
# Train a boosted regression forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
r.boosted.forest = boosted_regression_forest(X, Y)

# Predict using the forest.
```
predict.causal_forest

X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
rrr = predict(r.boosted.forest, X.test)

Predict on out-of-bag training samples.
r.predict = predict(r.boosted.forest)

End(Not run)

descr

Description

Gets estimates of $\tau(x)$ using a trained causal forest.

Usage

```r
## S3 method for class 'causal_forest'
predict(object, newdata = NULL,
    linear.correction.variables = NULL, ll.lambda = 0.1,
    ll.weight.penalty = FALSE, num.threads = NULL,
    estimate.variance = FALSE, ...)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at X_i using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- **linear.correction.variables**: Optional subset of indexes for variables to be used in local linear prediction. If NULL, standard GRF prediction is used. Otherwise, we run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.
- **ll.lambda**: Ridge penalty for local linear predictions
- **ll.weight.penalty**: Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Penalizes equally by default.
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
predict.custom_forest

Predict with a custom forest.

Description

Predict with a custom forest.

estimate.variance
 Whether variance estimates for \(\hat{\tau}(x) \) are desired (for confidence intervals).
 Additional arguments (currently ignored).

Value

Vector of predictions, along with estimates of the error and (optionally) its variance estimates. Column 'predictions' contains estimates of the conditional average treatent effect (CATE). The square-root of column 'variance.estimates' is the standard error of CATE. For out-of-bag estimates, we also output the following error measures. First, column 'debiased.error' contains estimates of the 'R-loss' criterion, (See Nie and Wager 2017 for a justification). Second, column 'excess.error' contains jackknife estimates of the Monte-carlo error (Wager, Hastie, Efron 2014), a measure of how unstable estimates are if we grow forests of the same size on the same data set. The sum of 'debiased.error' and 'excess.error' is the raw error attained by the current forest, and 'debiased.error' alone is an estimate of the error attained by a forest with an infinite number of trees. We recommend that users grow enough forests to make the 'excess.error' negligible.

Examples

```r
## Not run:
# Train a causal forest.
n = 100; p = 10
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 0.5)
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
c.forest = causal_forest(X, Y, W)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,] = seq(-2, 2, length.out = 101)
c.pred = predict(c.forest, X.test)

# Predict on out-of-bag training samples.
c.pred = predict(c.forest)

# Predict with confidence intervals; growing more trees is now recommended.
c.forest = causal_forest(X, Y, W, num.trees = 500)
c.pred = predict(c.forest, X.test, estimate.variance = TRUE)

## End(Not run)
```
predict.in instrumental_forest

Usage

```r
## S3 method for class 'custom_forest'
predict(object, newdata = NULL,
         num.threads = NULL, ...)
```

Arguments

- `object`: The trained forest.
- `newdata`: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- `num.threads`: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- `...`: Additional arguments (currently ignored).

Value

Vector of predictions.

Examples

```r
## Not run:
# Train a custom forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
c.forest = custom_forest(X, Y)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
c.pred = predict(c.forest, X.test)

## End(Not run)
```

predict.in instrumental_forest

Predict with an instrumental forest

Description

Gets estimates of tau(x) using a trained instrumental forest.
Usage

```r
## S3 method for class 'instrumental_forest'
predict(object, newdata = NULL,
    num.threads = NULL, estimate.variance = FALSE, ...)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **estimate.variance**: Whether variance estimates for \(\hat{Y}(x) \) are desired (for confidence intervals).
- **...**: Additional arguments (currently ignored).

Value

A vector of predictions, along with (optional) variance estimates.

predict.ll_regression_forest

Predict with a local linear forest

Description

Gets estimates of \(E[Y|X=x] \) using a trained regression forest.

Usage

```r
## S3 method for class 'll_regression_forest'
predict(object, newdata = NULL,
    linear.correction.variables = NULL, ll.lambda = NULL,
    ll.weight.penalty = FALSE, num.threads = NULL,
    estimate.variance = FALSE, ...)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
predict.quantile_forest

Predict with a quantile forest

Description

Gets estimates of the conditional quantiles of Y given X using a trained forest.

linear.correction.variables

Optional subset of indexes for variables to be used in local linear prediction. If left NULL, all variables are used. We run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.

ll.lambda

Ridge penalty for local linear predictions

ll.weight.penalty

Option to standardize ridge penalty by covariance (TRUE), or penalize all co-variates equally (FALSE). Defaults to FALSE.

num.threads

Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

estimate.variance

Whether variance estimates for hattau(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

A vector of predictions.

Examples

```r
## Not run:
# Train the forest.
n = 50; p = 5
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
forest = ll_regression_forest(X, Y)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
predictions = predict(forest, X.test)

# Predict on out-of-bag training samples.
predictions.oob = predict(forest)

## End(Not run)
```
predict.quantile_forest

Usage

```r
## S3 method for class 'quantile_forest'
predict(object, newdata = NULL,
     quantiles = c(0.1, 0.5, 0.9), num.threads = NULL, ...)
```

Arguments

- `object`: The trained forest.
- `newdata`: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- `quantiles`: Vector of quantiles at which estimates are required.
- `num.threads`: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- `...`: Additional arguments (currently ignored).

Value

Predictions at each test point for each desired quantile.

Examples

```r
## Not run:
# Train a quantile forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

# Predict on out-of-bag training samples.
q.pred = predict(q.forest)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
q.pred = predict(q.forest, X.test)

## End(Not run)
```
predict.regression_forest

Predict with a regression forest

Description

Gets estimates of $E[Y|X=x]$ using a trained regression forest.

Usage

```r
# S3 method for class 'regression_forest'
predict(object, newdata = NULL,
         linear.correction.variables = NULL, ll.lambda = NULL,
         ll.weight.penalty = FALSE, num.threads = NULL,
         estimate.variance = FALSE, ...)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at X_i using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- **linear.correction.variables**: Optional subset of indexes for variables to be used in local linear prediction. If NULL, standard GRF prediction is used. Otherwise, we run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.
- **ll.lambda**: Ridge penalty for local linear predictions
- **ll.weight.penalty**: Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **estimate.variance**: Whether variance estimates for $\hat{h}(x)$ are desired (for confidence intervals).
- **...**: Additional arguments (currently ignored).

Value

Vector of predictions, along with estimates of the error and (optionally) its variance estimates. Column 'predictions' contains estimates of $E[Y|X=x]$. The square-root of column 'variance.estimates' is the standard error the test mean-squared error. Column 'excess.error' contains jackknife estimates
of the Monte-carlo error. The sum of 'debiased.error' and 'excess.error' is the raw error attained by the current forest, and 'debiased.error' alone is an estimate of the error attained by a forest with an infinite number of trees. We recommend that users grow enough forests to make the 'excess.error' negligible.

Examples

```r
## Not run:
# Train a standard regression forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
r_forest = regression_forest(X, Y)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
r_pred = predict(r_forest, X.test)

# Predict on out-of-bag training samples.
r_pred = predict(r_forest)

# Predict with confidence intervals; growing more trees is now recommended.
r_forest = regression_forest(X, Y, num.trees = 100)
r_pred = predict(r_forest, X.test, estimate.variance = TRUE)

## End(Not run)
```

print.boosted_regression_forest

Print a boosted regression forest

Description

Print a boosted regression forest

Usage

```r
## S3 method for class 'boosted_regression_forest'
print(x, ...)
```

Arguments

- `x` The boosted forest to print.
- `...` Additional arguments (currently ignored).
print.grf

Print a GRF forest object.

Description

Print a GRF forest object.

Usage

```r
## S3 method for class 'grf'
print(x, decay.exponent = 2, max.depth = 4, ...)
```

Arguments

- `x`: The tree to print.
- `decay.exponent`: A tuning parameter that controls the importance of split depth.
- `max.depth`: The maximum depth of splits to consider.
- `...`: Additional arguments (currently ignored).

print.grf_tree

Print a GRF tree object.

Description

Print a GRF tree object.

Usage

```r
## S3 method for class 'grf_tree'
print(x, ...)  # x, ...)
```

Arguments

- `x`: The tree to print.
- `...`: Additional arguments (currently ignored).
print.tuning_output

Description

Print tuning output. Displays average error for q-quantiles of tuned parameters.

Usage

```r
## S3 method for class 'tuning_output'
print(x, tuning.quantiles = seq(0, 1, 0.2), ...)
```

Arguments

- `x` The tuning output to print.
- `tuning.quantiles` vector of quantiles to display average error over. Default: seq(0, 1, 0.2) (quantiles)
- `...` Additional arguments (currently ignored).

quantile_forest

Quantile forest

Description

Trains a regression forest that can be used to estimate quantiles of the conditional distribution of Y given $X = x$.

Usage

```r
quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9),
                 regression.splitting = FALSE, sample.fraction = 0.5, mtry = NULL,
                 num.trees = 2000, min.node.size = NULL, honesty = TRUE,
                 honesty.fraction = NULL, alpha = 0.05, imbalance.penalty = 0,
                 clusters = NULL, samples.per.cluster = NULL, num.threads = NULL,
                 seed = NULL)
```

Arguments

- `X` The covariates used in the quantile regression.
- `Y` The outcome.
- `quantiles` Vector of quantiles used to calibrate the forest.
regression.splitting
Whether to use regression splits when growing trees instead of specialized splits based on the quantiles (the default). Setting this flag to true corresponds to the approach to quantile forests from Meinshausen (2006).

sample.fraction
Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.

mtry
Number of variables tried for each split.

num.trees
Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.

min.node.size
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.

honesty
Whether to use honest splitting (i.e., sub-sample splitting).

honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.

alpha
A tuning parameter that controls the maximum imbalance of a split.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized.

clusters
Vector of integers or factors specifying which cluster each observation corresponds to.

samples.per.cluster
If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples.per.cluster to the size of the smallest cluster. If some clusters are smaller than samples.per.cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples.per.cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples.per.cluster.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed
The seed of the C++ random number generator.

Value
A trained quantile forest object.

Examples

```r
## Not run:
# Generate data.
n = 50; p = 10
```
X = matrix(rnorm(n*p), n, p)
X.test = matrix(rnorm(101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
Y = X[,1] * rnorm(n)

Train a quantile forest.
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

Make predictions.
q.hat = predict(q.forest, X.test)

Make predictions for different quantiles than those used in training.
q.hat = predict(q.forest, X.test, quantiles=c(0.1, 0.9))

Train a quantile forest using regression splitting instead of quantile-based
splits, emulating the approach in Meinshausen (2006).
meins.forest = quantile_forest(X, Y, regression.splitting=TRUE)

Make predictions for the desired quantiles.
q.hat = predict(meins.forest, X.test, quantiles=c(0.1, 0.5, 0.9))

End(Not run)

regression_forest

Regression forest

Description

Trains a regression forest that can be used to estimate the conditional mean function $\mu(x) = \mathbb{E}[Y | X = x]$.

Usage

```r
regression_forest(X, Y, sample.weights = NULL, sample.fraction = 0.5,
                   mtry = NULL, num.trees = 2000, min.node.size = NULL,
                   honesty = TRUE, honesty.fraction = NULL, ci.group.size = 2,
                   alpha = NULL, imbalance.penalty = NULL, clusters = NULL,
                   samples.per.cluster = NULL, tune.parameters = FALSE,
                   num.fit.trees = 10, num.fit.reps = 100, num.optimize.reps = 1000,
                   compute.oob.predictions = TRUE, num.threads = NULL, seed = NULL)
```

Arguments

- **X**: The covariates used in the regression.
- **Y**: The outcome.
- **sample.weights**: (experimental) Weights given to an observation in estimation. If NULL, each observation is given the same weight.
sample.fraction
Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.

mtry
Number of variables tried for each split.

num.trees
Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.

min.node.size
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.

honesty
Whether to use honest splitting (i.e., sub-sample splitting).

honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.

ci.group.size
The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2.

alpha
A tuning parameter that controls the maximum imbalance of a split.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized.

clusters
Vector of integers or factors specifying which cluster each observation corresponds to.

samples.per.cluster
If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples.per.cluster to the size of the smallest cluster. If some clusters are smaller than samples.per.cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples.per.cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples.per.cluster.

tune.parameters
If true, NULL parameters are tuned by cross-validation; if false NULL parameters are set to defaults.

num.fit.trees
The number of trees in each 'mini forest' used to fit the tuning model.

num.fit.reps
The number of forests used to fit the tuning model.

num.optimize.reps
The number of random parameter values considered when using the model to select the optimal parameters.

compute.oob.predictions
Whether OOB predictions on training set should be precomputed.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed
The seed of the C++ random number generator.
split_frequencies

Value

A trained regression forest object. If tune.parameters is enabled, then tuning information will be included through the ‘tuning.output’ attribute.

Examples

```r
# Not run:
# Train a standard regression forest.
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
forest = regression_forest(X, Y)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
pred = predict(forest, X.test)

# Predict on out-of-bag training samples.
pred = predict(forest)

# Predict with confidence intervals; growing more trees is now recommended.
forest = regression_forest(X, Y, num.trees = 100)
pred = predict(forest, X.test, estimate.variance = TRUE)
```

End(Not run)

split_frequencies

Calculate which features the forest split on at each depth.

Description

Calculate which features the forest split on at each depth.

Usage

```
split_frequencies(forest, max.depth = 4)
```

Arguments

- `forest` The trained forest.
- `max.depth` Maximum depth of splits to consider.

Value

A matrix of split depth by feature index, where each value is the number of times the feature was split on at that depth.
test_calibration

Examples

```r
## Not run:
# Train a quantile forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
qu.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

# Calculate the split frequencies for this forest.
split_frequencies(q.forest)

## End(Not run)
```

test_calibration

Omnibus evaluation of the quality of the random forest estimates via calibration.

Description

Test calibration of the forest. Computes the best linear fit of the target estimand using the forest prediction (on held-out data) as well as the mean forest prediction as the sole two regressors. A coefficient of 1 for 'mean.forest.prediction' suggests that the mean forest prediction is correct, whereas a coefficient of 1 for 'differential.forest.prediction' additionally suggests that the forest has captured heterogeneity in the underlying signal. The p-value of the 'differential.forest.prediction' coefficient also acts as an omnibus test for the presence of heterogeneity: If the coefficient is significantly greater than 0, then we can reject the null of no heterogeneity.

Usage

test_calibration(forest)

Arguments

- **forest** The trained forest.

Value

A heteroskedasticity-consistent test of calibration.

References

Examples

```r
## Not run:
n = 800; p = 5
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 0.25 + 0.5 * (X[,1] > 0))
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
forest = causal_forest(X, Y, W)
test_calibration(forest)
```

End(Not run)

Description

Finds the optimal parameters to be used in training a regression forest. This method currently tunes over min.node.size, mtry, sample.fraction, alpha, and imbalance.penalty. Please see the method 'causal_forest' for a description of the standard causal forest parameters. Note that if fixed values can be supplied for any of the parameters mentioned above, and in that case, that parameter will not be tuned. For example, if this method is called with min.node.size = 10 and alpha = 0.7, then those parameter values will be treated as fixed, and only sample.fraction and imbalance.penalty will be tuned.

Usage

```r
tune_causal_forest(X, Y, W, Y.hat, W.hat, sample.weights = NULL,
num.fit.trees = 200, num.fit.reps = 50, num.optimize.reps = 1000,
min.node.size = NULL, sample.fraction = 0.5, mtry = NULL,
alpha = NULL, imbalance.penalty = NULL, stabilize.splits = TRUE,
honesty = TRUE, honesty.fraction = NULL, clusters = NULL,
samples.per.cluster = NULL, num.threads = NULL, seed = NULL)
```

Arguments

- **X**: The covariates used in the causal regression.
- **Y**: The outcome.
- **W**: The treatment assignment (may be binary or real).
- **Y.hat**: Estimates of the expected responses $E[Y \mid X_i]$, marginalizing over treatment. See section 6.1.1 of the GRF paper for further discussion of this quantity.
- **W.hat**: Estimates of the treatment propensities $E[W \mid X_i]$.
- **sample.weights**: Weights defining the population on which we want our estimator of $\tau(x)$ to perform well on average. If NULL, this is the population from which $X_1 \ldots X_n$ are sampled. Otherwise, it is a reweighted version, in which we observe X_i with probability proportional to sample.weights[i].
num.fit.trees The number of trees in each 'mini forest' used to fit the tuning model.
num.fit.reps The number of forests used to fit the tuning model.
num.optimize.reps
The number of random parameter values considered when using the model to
select the optimal parameters.
min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package.
sample.fraction
Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction.
mtry
Number of variables tried for each split.
alpha
A tuning parameter that controls the maximum imbalance of a split.
imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized.
stabilize.splits
Whether or not the treatment should be taken into account when determining the
imbalance of a split (experimental).
honesty Whether to use honest splitting (i.e., sub-sample splitting).
honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits
clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to.
samples.per.cluster
If sampling by cluster, the number of observations to be sampled from each
cluster. Must be less than the size of the smallest cluster. If set to NULL software
will set this value to the size of the smallest cluster.#'
num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.
seed
The seed of the C++ random number generator.

Value
A list consisting of the optimal parameter values ('params') along with their debiased error ('error').

Examples

```r
## Not run:
# Find the optimal tuning parameters.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 0.5)
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
```
Y.hat = predict(regression_forest(X, Y))$predictions
W.hat = rep(0.5, n)
params = tune_causal_forest(X, Y, W, Y.hat, W.hat)$params

Use these parameters to train a regression forest.
tuned.forest = causal_forest(X, Y, W,
 Y.hat = Y.hat, W.hat = W.hat, num.trees = 1000,
 min.node.size = as.numeric(params["min.node.size"]),
 sample.fraction = as.numeric(params["sample.fraction"]),
 mtry = as.numeric(params["mtry"]),
 alpha = as.numeric(params["alpha"]),
 imbalance.penalty = as.numeric(params["imbalance.penalty"]))

End(Not run)
tune_regression_forest 41

Examples

Not run:
Find the optimal tuning parameters.
n = 500; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
forest = regression_forest(X,Y)
tuned.lambda = tune_ll_regression_forest(forest)

Use this parameter to predict from a local linear forest.
predictions = predict(forest, linear.correction.variables = 1:p, lambda = tuned.lambda)

End(Not run)

tune_regression_forest

Regression forest tuning

Description

Finds the optimal parameters to be used in training a regression forest. This method currently tunes over min.node.size, mtry, sample.fraction, alpha, and imbalance.penalty. Please see the method ‘regression_forest’ for a description of the standard forest parameters. Note that if fixed values can be supplied for any of the parameters mentioned above, and in that case, that parameter will not be tuned. For example, if this method is called with min.node.size = 10 and alpha = 0.7, then those parameter values will be treated as fixed, and only sample.fraction and imbalance.penalty will be tuned.

Usage

tune_regression_forest(X, Y, sample.weights = NULL, num.fit.trees = 10, num.fit.reps = 100, num.optimize.reps = 1000, min.node.size = NULL, sample.fraction = 0.5, mtry = NULL, alpha = NULL, imbalance.penalty = NULL, honesty = TRUE, honesty.fraction = NULL, clusters = NULL, samples.per.cluster = NULL, num.threads = NULL, seed = NULL)

Arguments

- **X** The covariates used in the regression.
- **Y** The outcome.
- **sample.weights** (experimental) Weights given to an observation in estimation. If NULL, each observation is given the same weight.
- **num.fit.trees** The number of trees in each ‘mini forest’ used to fit the tuning model.
- **num.fit.reps** The number of forests used to fit the tuning model.
num.optimize.reps

The number of random parameter values considered when using the model to select the optimal parameters.

min.node.size

A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.

mtry

Number of variables tried for each split.

alpha

A tuning parameter that controls the maximum imbalance of a split.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.

honesty

Whether or not honest splitting (i.e., sub-sample splitting) should be used.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.

clusters

Vector of integers or factors specifying which cluster each observation corresponds to.

samples.per.cluster

If sampling by cluster, the number of observations to be sampled from each cluster. Must be less than the size of the smallest cluster. If set to NULL software will set this value to the size of the smallest cluster.

num.threads

Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed

The seed of the C++ random number generator.

Value

A list consisting of the optimal parameter values (‘params’) along with their debiased error (‘error’).

Examples

```r
## Not run:
# Find the optimal tuning parameters.

n = 500; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
params = tune_regression_forest(X, Y)$params

# Use these parameters to train a regression forest.
tuned.forest = regression_forest(X, Y, num.trees = 1000, 
                               min.node.size = as.numeric(params["min.node.size"]),
                               sample.fraction = as.numeric(params["sample.fraction"]),
                               mtry = as.numeric(params["mtry"]),
```
variable_importance

alpha = as.numeric(params["alpha"]),
imbalance.penalty = as.numeric(params["imbalance.penalty"])

End(Not run)

variable_importance Calculate a simple measure of 'importance' for each feature.

Description

Calculate a simple measure of 'importance' for each feature.

Usage

variable_importance(forest, decay.exponent = 2, max.depth = 4)

Arguments

- **forest** The trained forest.
- **decay.exponent** A tuning parameter that controls the importance of split depth.
- **max.depth** Maximum depth of splits to consider.

Value

A list specifying an 'importance value' for each feature.

Examples

Not run:
Train a quantile forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

Calculate the 'importance' of each feature.
variable_importance(q.forest)

End(Not run)
Index

average_partial_effect, 2
average_treatment_effect, 3
tune_ll_regression_forest, 40
tune_regression_forest, 41
boosted_regression_forest, 5
variable_importance, 43
causal_forest, 7
custom_forest, 11
export_graphviz, 12
get_sample_weights, 13
get_tree, 14
grf, 15
instrumental_forest, 17
ll_regression_forest, 19
merge_forests, 20
plot.grf_tree, 21
predict.boosted_regression_forest, 22
predict.causal_forest, 23
predict.custom_forest, 24
predict.instrumental_forest, 25
predict.ll_regression_forest, 26
predict.quantile_forest, 27
predict.regression_forest, 29
print.boosted_regression_forest, 30
print.grf, 31
print.grf_tree, 31
print.tuning_output, 32
quantile_forest, 32
regression_forest, 34
split_frequencies, 36
test_calibration, 37
tune.causal_forest, 38