Package ‘grf’

June 4, 2020

Title Generalized Random Forests
Version 1.2.0

BugReports https://github.com/grf-labs/grf/issues

Description A pluggable package for forest-based statistical estimation and inference. GRF currently provides methods for non-parametric least-squares regression, quantile regression, survival regression and treatment effect estimation (optionally using instrumental variables), with support for missing values.

Depends R (>= 3.5.0)
License GPL-3

LinkingTo Rcpp, RcppEigen
Imports DiceKriging, lmtest, Matrix, methods, Rcpp (>= 0.12.15), sandwich (>= 2.4-0)

RoxygenNote 7.0.2

Suggests DiagrammeR, testthat

SystemRequirements GNU make

URL https://github.com/grf-labs/grf

NeedsCompilation yes

Author Julie Tibshirani [aut, cre], Susan Athey [aut], Rina Friedberg [ctb], Vitor Hadad [ctb], David Hirshberg [ctb], Luke Miner [ctb], Erik Sverdrup [ctb], Stefan Wager [aut], Marvin Wright [ctb]

Maintainer Julie Tibshirani <jtibs@cs.stanford.edu>

Repository CRAN

Date/Publication 2020-06-04 07:40:11 UTC
R topics documented:

average_late .. 3
average_partial_effect .. 4
average_treatment_effect .. 5
best_linear_projection .. 7
boosted_regression_forest ... 8
causal_forest .. 11
custom_forest .. 15
get_sample_weights ... 17
get_tree ... 18
grf ... 19
instrumental_forest ... 21
leaf_stats.causal_forest .. 24
leaf_stats.default ... 25
leaf_stats.instrumental_forest 25
leaf_stats.regression_forest .. 26
ll_regression_forest .. 26
merge_forests .. 29
plot.grf_tree .. 30
predict.boosted_regression_forest 31
predict.causal_forest .. 32
predict.custom_forest .. 34
predict.instrumental_forest .. 35
predict.ll_regression_forest .. 36
predict.quantile_forest ... 37
predict.regression_forest ... 38
predict.survival_forest .. 40
print.boosted_regression_forest 41
print.grf ... 42
print.grf_tree .. 42
print.tuning_output .. 43
quantile_forest .. 43
regression_forest ... 46
split_frequencies ... 49
survival_forest .. 49
test_calibration ... 52
tune_causal_forest .. 53
tune_forest .. 56
tune_instrumental_forest .. 57
tune_ll_causal_forest .. 60
tune_ll_regression_forest .. 61
tune_regression_forest .. 63
variable_importance .. 65

Index 67
Description

Given an outcome Y, treatment W and instrument Z, the (conditional) local average treatment effect is $\tau(x) = \text{Cov}[Y, Z \mid X = x] / \text{Cov}[W, Z \mid X = x]$. This is the quantity that is estimated with an instrumental forest. It can be interpreted causally in various ways. Given a homogeneity assumption, $\tau(x)$ is simply the CATE at x. When W is binary and there are no "defiers", Imbens and Angrist (1994) show that $\tau(x)$ can be interpreted as an average treatment effect on compliers. This function is about estimating $\tau = E[\tau(X)]$ which, extending standard nomenclature, should perhaps be called the Average (Conditional) Local Average Treatment Effect (ACLATE).

Usage

```r
average_late(forest, compliance.score = NULL, subset = NULL)
```

Arguments

- **forest**: The trained forest.
- **compliance.score**: An estimate of the causal effect of Z on W, i.e., $\Delta(X) = E[W \mid X, Z = 1] - E[W \mid X, Z = 0]$, for each sample $i = 1, ..., n$.
- **subset**: Specifies subset of the training examples over which we estimate the ATE. WARNING: For valid statistical performance, the subset should be defined only using features X_i, not using the instrument Z_i, treatment W_i or outcome Y_i.

Details

We estimate the ACLATE using a doubly robust estimator. See Chernozhukov et al. (2016) for a discussion, and Section 5.2 of Athey and Wager (2017) for an example using forests.

If clusters are specified for the forest, then each cluster gets equal weight. For example, if there are 10 clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each and per-cluster ATE = 0, then the overall ATE is 0.5 (not 0.05).

Value

An estimate of the average (C)LATE, along with standard error.

References

average_partial_effect

Estimate average partial effects using a causal forest

Description

Gets estimates of the average partial effect, in particular the (conditional) average treatment effect (target.sample = all): 1/n sum_i = 1^n Cov[Wi, Yi | X = Xi] / Var[Wi | X = Xi]. Note that for a binary unconfounded treatment, the average partial effect matches the average treatment effect.

Usage

average_partial_effect(
 forest,
 calibrate.weights = TRUE,
 subset = NULL,
 debiasing.weights = NULL,
 num.trees.for.variance = 500
)

Arguments

forest The trained forest.
calibrate.weights Whether to force debiasing weights to match expected moments for 1, W, W.hat, and 1/Var[W|X].
subset Specifies a subset of the training examples over which we estimate the ATE. WARNING: For valid statistical performance, the subset should be defined only using features Xi, not using the treatment Wi or the outcome Yi.
debiasing.weights A vector of length n (or the subset length) of debiasing weights. If NULL (default) these are estimated by a variance forest.
num.trees.for.variance Number of trees used to estimate Var[Wi | Xi = x]. Default is 500. (only applies when debiasing.weights = NULL)
average_treatment_effect

Details

If clusters are specified, then each unit gets equal weight by default. For example, if there are 10 clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each and per-cluster ATE = 0, then the overall ATE is 0.05 (additional sample.weights allow for custom weighting). If equalize.cluster.weights = TRUE each cluster gets equal weight and the overall ATE is 0.5.

Double robust scores are calculated with a component based on a forest estimate of Var[Wi | Xi = x]. These weights can also be passed manually by specifying debiasing.weights.

Value

An estimate of the average partial effect, along with standard error.

Examples

```r
n <- 2000
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 1 / (1 + exp(-X[, 2]))) + rnorm(n)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
tau.forest <- causal_forest(X, Y, W)
tau.hat <- predict(tau.forest)
average_partial_effect(tau.forest)
average_partial_effect(tau.forest, subset = X[, 1] > 0)
```

average_treatment_effect

Estimate average treatment effects using a causal forest

Description

Gets estimates of one of the following.

- The (conditional) average treatment effect (target.sample = all): \[\text{sum}_{i = 1}^{n} \frac{E[Y(1) - Y(0) | X = Xi]}{n} \]
- The (conditional) average treatment effect on the treated (target.sample = treated): \[\text{sum}_{Wi = 1} E[Y(1) - Y(0) | X = Xi] / |i : Wi = 1| \]
- The (conditional) average treatment effect on the controls (target.sample = control): \[\text{sum}_{Wi = 0} E[Y(1) - Y(0) | X = Xi] / |i : Wi = 0| \]
- The overlap-weighted (conditional) average treatment effect \[\text{sum}_{i = 1}^{n} \frac{e(Xi) (1 - e(Xi)) E[Y(1) - Y(0) | X = Xi]}{\text{sum}_{i = 1}^{n} e(Xi) (1 - e(Xi))}, \text{where} \ e(x) = P[Wi = 1 | Xi = x]. \]

This last estimand is recommended by Li, Morgan, and Zaslavsky (JASA, 2017) in case of poor overlap (i.e., when the propensities e(x) may be very close to 0 or 1), as it doesn’t involve dividing by estimated propensities.
average_treatment_effect

Usage

average_treatment_effect(
 forest,
 target.sample = c("all", "treated", "control", "overlap"),
 method = c("AIPW", "TMLE"),
 subset = NULL
)

Arguments

forest The trained forest.
target.sample Which sample to aggregate treatment effects over.
method Method used for doubly robust inference. Can be either augmented inverse-propensity weighting (AIPW), or targeted maximum likelihood estimation (TMLE).
subset Specifies subset of the training examples over which we estimate the ATE. WARNING: For valid statistical performance, the subset should be defined only using features Xi, not using the treatment Wi or the outcome Yi.

Details

If clusters are specified, then each unit gets equal weight by default. For example, if there are 10 clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each and per-cluster ATE = 0, then the overall ATE is 0.05 (additional sample.weights allow for custom weighting). If equalize.cluster.weights = TRUE each cluster gets equal weight and the overall ATE is 0.5.

Value

An estimate of the average treatment effect, along with standard error.

Examples

Train a causal forest.
N <- 50
P <- 10
X <- matrix(rnorm(N * P), N, P)
W <- rbinom(N, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(N)
c.forest <- causal_forest(X, Y, W)

Predict using the forest.
X.test <- matrix(0, 101, P)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(c.forest, target.sample = "all")

Estimate the conditional average treatment effect on the treated sample (CATT).
We don't expect much difference between the CATE and the CATT in this example, since treatment assignment was randomized.
average_treatment_effect(c.forest, target.sample = "treated")

Estimate the conditional average treatment effect on samples with positive X[1].
average_treatment_effect(c.forest, target.sample = "all", subset = X[, 1] > 0)

best_linear_projection

Estimate the best linear projection of a conditional average treatment effect using a causal forest.

Description

Let $\tau(X_i) = E[Y(1) - Y(0) \mid X = X_i]$ be the CATE, and A_i be a vector of user-provided covariates. This function provides a (doubly robust) fit to the linear model

Usage

```r
best_linear_projection(
  forest,
  A = NULL,
  subset = NULL,
  debiasing.weights = NULL,
  num.trees.for.variance = 500
)
```

Arguments

- **forest** The trained forest.
- **A** The covariates we want to project the CATE onto.
- **subset** Specifies subset of the training examples over which we estimate the ATE. **WARNING:** For valid statistical performance, the subset should be defined only using features X_i, not using the treatment W_i or the outcome Y_i.
- **debiasing.weights** A vector of length n (or the subset length) of debiasing weights. If NULL (default) and the treatment is binary, then inverse-propensity weighting is used, otherwise, if the treatment is continuous, these are estimated by a variance forest.
- **num.trees.for.variance** Number of trees used to estimate $\text{Var}[W_i \mid X_i = x]$. Default is 500. (only applies with continuous treatment and debiasing.weights = NULL)
Details

\[\tau(X_i) \sim \beta_0 + A_i \cdot \beta \]

Procedurally, we do so by regressing doubly robust scores derived from the causal forest against the \(A_i \). Note the covariates \(A_i \) may consist of a subset of the \(X_i \), or they may be distinct. The case of the null model \(\tau(X_i) \sim \beta_0 \) is equivalent to fitting an average treatment effect via AIPW.

In the event the treatment is continuous the inverse-propensity weight component of the double robust scores are replaced with a component based on a forest based estimate of \(\text{Var}[W_i | X_i = x] \). These weights can also be passed manually by specifying debiasing.weights.

Value

An estimate of the best linear projection, along with coefficient standard errors.

References

Examples

```r
n <- 800
p <- 5
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.25 + 0.5 * (X[, 1] > 0))
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
forest <- causal_forest(X, Y, W)
best_linear_projection(forest, X[,1:2])
```

boosted_regression_forest

Boosted regression forest (experimental)

Description

Trains a boosted regression forest that can be used to estimate the conditional mean function \(\mu(X) = E[Y | X = x] \). Selects number of boosting iterations based on cross-validation. This functionality is experimental and will likely change in future releases.
Usage

boosted_regression_forest(
 X,
 Y,
 num.trees = 2000,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
 min.node.size = 5,
 honesty = TRUE,
 honesty.fraction = 0.5,
 honesty.prune.leaves = TRUE,
 alpha = 0.05,
 imbalance.penalty = 0,
 ci.group.size = 2,
 tune.parameters = "none",
 tune.num.trees = 10,
 tune.num.reps = 100,
 tune.num.draws = 1000,
 boost.steps = NULL,
 boost.error.reduction = 0.97,
 boost.max.steps = 5,
 boost.trees.tune = 10,
 num.threads = NULL,
 seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X The covariates used in the regression.
Y The outcome.
num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.
sample.weights Weights given to each observation in estimation. If NULL, each observation receives the same weight. Default is NULL.
clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.cluster.weights If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry

Number of variables tried for each split. Default is \(\sqrt{p} + 20 \) where \(p \) is the number of variables.

min.node.size

A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-forest package. Default is 5.

honesty

Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set \(J_1 \) in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha

A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

ci.group.size

The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters

If true, NULL parameters are tuned by cross-validation; if FALSE NULL parameters are set to defaults. Default is FALSE.

tune.num.trees

The number of trees in each ‘mini forest’ used to fit the tuning model. Default is 10.

tune.num.reps

The number of forests used to fit the tuning model. Default is 100.

tune.num.draws

The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

boost.steps

The number of boosting iterations. If NULL, selected by cross-validation. Default is NULL.

boost.error.reduction

If boost.steps is NULL, the percentage of previous steps’ error that must be estimated by cross validation in order to take a new step, default 0.97.
causal_forest

boost.max.steps

The maximum number of boosting iterations to try when boost.steps=NULL. Default is 5.

boost.trees.tune

If boost.steps is NULL, the number of trees used to test a new boosting step when tuning boost.steps. Default is 10.

num.threads

Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

seed

The seed for the C++ random number generator.

Value

A boosted regression forest object. $error contains the mean debiased error for each step, and $forests contains the trained regression forest for each step.

Examples

```r
# Train a boosted regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
boosted.forest <- boosted_regression_forest(X, Y)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
boost.pred <- predict(boosted.forest, X.test)

# Predict on out-of-bag training samples.
boost.pred <- predict(boosted.forest)

# Check how many boosting iterations were used
print(length(boosted.forest$forests))
```

causal_forest

Causal forest

Description

Trains a causal forest that can be used to estimate conditional average treatment effects \(\tau(X) \). When the treatment assignment \(W \) is binary and unconfounded, we have \(\tau(X) = E[Y(1) - Y(0) | X = x] \), where \(Y(0) \) and \(Y(1) \) are potential outcomes corresponding to the two possible treatment states. When \(W \) is continuous, we effectively estimate an average partial effect \(\text{Cov}[Y, W | X = x] / \text{Var}[W | X = x] \), and interpret it as a treatment effect given unconfoundedness.
Usage

causal_forest(
 X,
 Y,
 W,
 Y.hat = NULL,
 W.hat = NULL,
 num.trees = 2000,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
 min.node.size = 5,
 honesty = TRUE,
 honesty.fraction = 0.5,
 honesty.prune.leaves = TRUE,
 alpha = 0.05,
 imbalance.penalty = 0,
 stabilize.splits = TRUE,
 ci.group.size = 2,
 tune.parameters = "none",
 tune.num.trees = 200,
 tune.num.reps = 50,
 tune.num.draws = 1000,
 compute.oob.predictions = TRUE,
 orthog.boosting = FALSE,
 num.threads = NULL,
 seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X The covariates used in the causal regression.
Y The outcome (must be a numeric vector with no NAs).
W The treatment assignment (must be a binary or real numeric vector with no NAs).
Y.hat Estimates of the expected responses E[Y | Xi], marginalizing over treatment. If Y.hat = NULL, these are estimated using a separate regression forest. See section 6.1.1 of the GRF paper for further discussion of this quantity. Default is NULL.
W.hat Estimates of the treatment propensities E[W | Xi]. If W.hat = NULL, these are estimated using a separate regression forest. Default is NULL.
um.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.
sample.weights (experimental) Weights given to each sample in estimation. If NULL, each observation receives the same weight. Note: To avoid introducing confounding,
weights should be independent of the potential outcomes given X. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).

equalize.cluster.weights If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is \(\sqrt{p} + 20 \) where p is the number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

stabilize.splits Whether or not the treatment should be taken into account when determining the imbalance of a split. Default is TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.
tune.parameters A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "none" (no parameters are tuned).

tune.num.trees The number of trees in each 'mini forest' used to fit the tuning model. Default is 200.

tune.num.reps The number of forests used to fit the tuning model. Default is 50.

tune.num.draws The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

compute.oob.predictions Whether OOB predictions on training set should be precomputed. Default is TRUE.

orthog.boosting (experimental) If TRUE, then when Y.hat = NULL or W.hat is NULL, the missing quantities are estimated using boosted regression forests. The number of boosting steps is selected automatically. Default is FALSE.

num.threads Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained causal forest object. If tune.parameters is enabled, then tuning information will be included through the 'tuning.output' attribute.

Examples

Train a causal forest.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

c.pred <- predict(c.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.forest <- causal_forest(X, Y, W, num.trees = 4000)
c.pred <- predict(c.forest, X.test, estimate.variance = TRUE)
In some examples, pre-fitting models for Y and W separately may be helpful (e.g., if different models use different covariates). In some applications, one may even want to get Y.hat and W.hat using a completely different method (e.g., boosting).

```r
n <- 2000
p <- 20
X <- matrix(rnorm(n * p), n, p)
TAU <- 1 / (1 + exp(-X[, 3]))
W <- rbinom(n, 1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y <- pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)

forest.W <- regression_forest(X, W, tune.parameters = "all")
W.hat <- predict(forest.W)$predictions

forest.Y <- regression_forest(X, Y, tune.parameters = "all")
Y.hat <- predict(forest.Y)$predictions

forest.Y.varimp <- variable_importance(forest.Y)

# Note: Forests may have a hard time when trained on very few variables (e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive in selection.
selected.vars <- which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)

tau.forest <- causal_forest(X[, selected.vars], Y, W,
  W.hat = W.hat, Y.hat = Y.hat,
  tune.parameters = "all"
)
tau.hat <- predict(tau.forest)$predictions
```

Custom forest

Description

Trains a custom forest model.

Usage

```r
custom_forest(
  X,
  Y,
  sample.fraction = 0.5,
  mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
  num.trees = 2000,
  min.node.size = 5,
  honesty = TRUE,
)```
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
clusters = NULL,
equalize.cluster.weights = FALSE,
compute.oob.predictions = TRUE,
umthreads = NULL,
seed = runif(1, 0, .Machine$integer.max)
)

**Arguments**

**X**
The covariates used in the regression.

**Y**
The outcome.

**sample.fraction**
Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

**mtry**
Number of variables tried for each split. Default is $\sqrt{p} + 20$ where $p$ is the number of variables.

**num.trees**
Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.

**min.node.size**
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

**honesty**
Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

**honesty.fraction**
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set $J_1$ in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

**honesty.prune.leaves**
If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

**alpha**
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

**imbalance.penalty**
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

**clusters**
Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.cluster.weights
If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster. If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same.

compute.oob.predictions
Whether OOB predictions on training set should be precomputed. Default is TRUE.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency

seed
The seed of the C++ random number generator.

Value
A trained regression forest object.

Examples

```r
Train a custom forest.
N <- 50
P <- 10
X <- matrix(rnorm(N * P), N, P)
Y <- X[, 1] * rnorm(N)
c.forest <- custom_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, P)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)
```

get_sample_weights
Given a trained forest and test data, compute the training sample weights for each test point.

Description
During normal prediction, these weights are computed as an intermediate step towards producing estimates. This function allows for examining the weights directly, so they could be potentially be used as the input to a different analysis.

Usage

```r
get_sample_weights(forest, newdata = NULL, num.threads = NULL)
```
Arguments

forest  The trained forest.

newdata  Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example).

num. threads  Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

Value

A sparse matrix where each row represents a test sample, and each column is a sample in the training data. The value at (i, j) gives the weight of training sample j for test sample i.

Examples

```r
p <- 10
n <- 100
X <- matrix(2 * runif(n * p) - 1, n, p)
Y <- (X[, 1] > 0) + 2 * rnorm(n)
rrf <- regression_forest(X, Y, mtry = p)
sample.weights.oob <- get_sample_weights(rrf)

n.test <- 15
X.test <- matrix(2 * runif(n.test * p) - 1, n.test, p)
sample.weights <- get_sample_weights(rrf, X.test)
```

get_tree

Retrieve a single tree from a trained forest object.

Description

Retrieve a single tree from a trained forest object.

Usage

get_tree(forest, index)

Arguments

forest  The trained forest.

index  The index of the tree to retrieve.
Value

A GRF tree object containing the below attributes. `drawn_samples`: a list of examples that were used in training the tree. This includes examples that were used in choosing splits, as well as the examples that populate the leaf nodes. Put another way, if honesty is enabled, this list includes both subsamples from the split (J1 and J2 in the notation of the paper). `num_samples`: the number of examples used in training the tree. `nodes`: a list of objects representing the nodes in the tree, starting with the root node. Each node will contain an 'is_leaf' attribute, which indicates whether it is an interior or leaf node. Interior nodes contain the attributes 'left_child' and 'right_child', which give the indices of their children in the list, as well as 'split_variable', and 'split_value', which describe the split that was chosen. Leaf nodes only have the attribute 'samples', which is a list of the training examples that the leaf contains. Note that if honesty is enabled, this list will only contain examples from the second subsample that was used to 'repopulate' the tree (J2 in the notation of the paper).

Examples

```r
Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Examine a particular tree.
q.tree <- get_tree(q.forest, 3)
q.tree$nodes
```

Description

A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods for least-squares regression, quantile regression, and treatment effect estimation (optionally using instrumental variables).

In addition, GRF supports 'honest' estimation (where one subset of the data is used for choosing splits, and another for populating the leaves of the tree), and confidence intervals for least-squares regression and treatment effect estimation.

Some helpful links for getting started:

* The R package documentation contains usage examples and method reference ([https://grf-labs.github.io/grf](https://grf-labs.github.io/grf)).

* The GRF reference gives a detailed description of the GRF algorithm and includes troubleshooting suggestions ([https://grf-labs.github.io/grf/REFERENCE.html](https://grf-labs.github.io/grf/REFERENCE.html)).

* For community questions and answers around usage, see Github issues labelled 'question' ([https://github.com/grf-labs/grf/issues?q=label%3Aquestion](https://github.com/grf-labs/grf/issues?q=label%3Aquestion)).
Examples

```r
Not run:
library(grf)

The following script demonstrates how to use GRF for heterogeneous treatment
effect estimation. For examples of how to use other types of forest, as for
quantile regression and causal effect estimation using instrumental variables,
please consult the documentation on the relevant forest methods (quantile_forest,
instrumental_forest, etc.).

Generate data.
n = 2000; p = 10
X = matrix(rnorm(n*p), n, p)
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)

Train a causal forest.
W = rbinom(n, 1, 0.4 + 0.2 * (X[,1] > 0))
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
tau.forest = causal_forest(X, Y, W)

Estimate treatment effects for the training data using out-of-bag prediction.
tau.hat.oob = predict(tau.forest)
hist(tau.hat.oob$predictions)

Estimate treatment effects for the test sample.
tau.hat = predict(tau.forest, X.test)
plot(X.test[,1], tau.hat$predictions, ylim = range(tau.hat$predictions, 0, 2),
xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 2)

Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(tau.forest, target.sample = "all")

Estimate the conditional average treatment effect on the treated sample (CATT).
Here, we don't expect much difference between the CATE and the CATT, since
treatment assignment was randomized.
average_treatment_effect(tau.forest, target.sample = "treated")

Add confidence intervals for heterogeneous treatment effects; growing more
trees is now recommended.
tau.forest = causal_forest(X, Y, W, num.trees = 4000)
tau.hat = predict(tau.forest, X.test, estimate.variance = TRUE)
sigma.hat = sqrt(tau.hat$variance.estimates)
ylim = range(tau.hat$predictions + 1.96 * sigma.hat, tau.hat$predictions - 1.96 * sigma.hat, 0, 2),
plot(X.test[,1], tau.hat$predictions, ylim = ylim, xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], tau.hat$predictions + 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], tau.hat$predictions - 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 1)

In some examples, pre-fitting models for Y and W separately may
In some applications, one may even want to get $Y.hat$ and $W.hat$ using a completely different method (e.g., boosting).

Generate new data.

```r
n = 4000; p = 20
X = matrix(rnorm(n * p), n, p)
TAU = 1 / (1 + exp(-X[, 3]))
W = rbinom(n, 1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y = pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)
```

```r
forest.W = regression_forest(X, W, tune.parameters = "all")
W.hat = predict(forest.W)$predictions
```

```r
forest.Y = regression_forest(X, Y, tune.parameters = "all")
Y.hat = predict(forest.Y)$predictions
```

```r
forest.Y.varimp = variable_importance(forest.Y)
```

Note: Forests may have a hard time when trained on very few variables
(e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
in selection.

```r
selected.vars = which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)
```

```r
tau.forest = causal_forest(X[, selected.vars], Y, W,
                         W.hat = W.hat, Y.hat = Y.hat,
                         tune.parameters = "all")
```

Check whether causal forest predictions are well calibrated.
```
 test_calibration(tau.forest)

## End(Not run)
Y.hat = NULL,
W.hat = NULL,
Z.hat = NULL,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
stabilize.splits = TRUE,
ci.group.size = 2,
reduced.form.weight = 0,
tune.parameters = "none",
tune.num.trees = 200,
tune.num.reps = 50,
tune.num.draws = 1000,
compute.oob.predictions = TRUE,
um-threads = NULL,
seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X  The covariates used in the instrumental regression.
Y  The outcome.
W  The treatment assignment (may be binary or real).
Z  The instrument (may be binary or real).
Y.hat Estimates of the expected responses $E[Y | X_i]$, marginalizing over treatment. If Y.hat = NULL, these are estimated using a separate regression forest. Default is NULL.
W.hat Estimates of the treatment propensities $E[W | X_i]$. If W.hat = NULL, these are estimated using a separate regression forest. Default is NULL.
Z.hat Estimates of the instrument propensities $E[Z | X_i]$. If Z.hat = NULL, these are estimated using a separate regression forest. Default is NULL.
num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.
sample.weights (experimental) Weights given to each observation in estimation. If NULL, each observation receives equal weight. Default is NULL.
clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
**equalize.cluster.weights**

If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster. If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

**sample.fraction**

Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

**mtry**

Number of variables tried for each split. Default is \( \sqrt{p} + 20 \) where \( p \) is the number of variables.

**min.node.size**

A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

**honesty**

Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

**honesty.fraction**

The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

**honesty.prune.leaves**

If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

**alpha**

A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

**imbalance.penalty**

A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

**stabilize.splits**

Whether or not the instrument should be taken into account when determining the imbalance of a split. Default is TRUE.

**ci.group.size**

The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

**reduced.form.weight**

Whether splits should be regularized towards a naive splitting criterion that ignores the instrument (and instead emulates a causal forest).
leaf_stats.causal_forest

## S3 method for class 'causal_forest'
leaf_stats(forest, samples, ...)

### Arguments
- **forest**
  - The GRF forest
- **samples**
  - The samples to include in the calculations.
- **...**
  - Additional arguments (currently ignored).

### Value
- A named vector containing summary stats
leaf_stats.default

A default leaf_stats for forests classes without a leaf_stats method that always returns NULL.

Description

A default leaf_stats for forests classes without a leaf_stats method that always returns NULL.

Usage

## Default S3 method:
leaf_stats(forest, samples, ...)

Arguments

- `forest`: Any forest
- `samples`: The samples to include in the calculations.
- `...`: Additional arguments (currently ignored).

leaf_stats.instrumental_forest

Calculate summary stats given a set of samples for instrumental forests.

Description

Calculate summary stats given a set of samples for instrumental forests.

Usage

## S3 method for class 'instrumental_forest'
leaf_stats(forest, samples, ...)

Arguments

- `forest`: The GRF forest
- `samples`: The samples to include in the calculations.
- `...`: Additional arguments (currently ignored).

Value

A named vector containing summary stats
leaf_stats.regression_forest

*Calculate summary stats given a set of samples for regression forests.*

**Description**

Calculate summary stats given a set of samples for regression forests.

**Usage**

```r
S3 method for class 'regression_forest'
leaf_stats(forest, samples, ...)
```

**Arguments**

- `forest` The GRF forest
- `samples` The samples to include in the calculations.
- `...` Additional arguments (currently ignored).

**Value**

A named vector containing summary stats

---

ll_regression_forest  
*Local Linear forest*

**Description**

Trains a local linear forest that can be used to estimate the conditional mean function \( \mu(x) = \mathbb{E}[Y \mid X = x] \)

**Usage**

```r
ll_regression_forest(
 X,
 Y,
 enable.ll.split = FALSE,
 ll.split.weight.penalty = FALSE,
 ll.split.lambda = 0.1,
 ll.split.variables = NULL,
 ll.split.cutoff = NULL,
 num.trees = 2000,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
)```
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
ci.group.size = 2,
tune.parameters = "none",
tune.num.trees = 50,
tune.num.reps = 100,
tune.num.draws = 1000,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)
}

Arguments

X The covariates used in the regression.
Y The outcome.
enable.ll.split
(experimental) Optional choice to make forest splits based on ridge residuals as
opposed to standard CART splits. Defaults to FALSE.
ll.split.weight.penalty
If using local linear splits, user can specify whether or not to use a covariance
ridge penalty, analogously to the prediction case. Defaults to FALSE.
ll.split.lambda
Ridge penalty for splitting. Defaults to 0.1.
ll.split.variables
Linear correction variables for splitting. Defaults to all variables.
ll.split.cutoff
Enables the option to use regression coefficients from the full dataset for LL
splitting once leaves get sufficiently small. Leaf size after which we use the
overall beta. Defaults to the square root of the number of samples. If desired,
users can enforce no regulation (i.e., using the leaf betas at each step) by setting
this parameter to zero.
num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.
sample.weights (experimental) Weights given to an observation in estimation. If NULL, each
observation is given the same weight. Default is NULL.
clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).
equalize.cluster.weights
If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn cluster. If the smallest cluster has \(K \) units, then when we sample a cluster during training, we only give a random \(K \) elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight \(1/\text{cluster size} \), so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

sample.fraction
Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry
Number of variables tried for each split. Default is \(\sqrt{p} + 20 \) where \(p \) is the number of variables.

min.node.size
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

honesty
Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set \(J_1 \) in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves
If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

ci.group.size
The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 1.

tune.parameters
If true, NULL parameters are tuned by cross-validation; if FALSE NULL parameters are set to defaults. Default is FALSE. Currently, local linear tuning does not take local linear splits into account.

tune.num.trees
The number of trees in each 'mini forest' used to fit the tuning model. Default is 10.

tune.num.reps
The number of forests used to fit the tuning model. Default is 100.

tune.num.draws
The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.
num. threads Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value
A trained local linear forest object.

Examples

```r
# Train a standard regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
forest <- ll_regression_forest(X, Y)
```

merge_forests Merges a list of forests that were grown using the same data into one large forest.

Description
Merges a list of forests that were grown using the same data into one large forest.

Usage

```r
merge_forests(forest_list, compute.oob.predictions = TRUE)
```

Arguments

forest_list A ‘list’ of forests to be concatenated. All forests must be of the same type, and the type must be a subclass of ‘grf’. In addition, all forests must have the same ‘ci.group.size’. Other tuning parameters (e.g. alpha, mtry, min.node.size, imbalance.penalty) are allowed to differ across forests.

compute.oob.predictions Whether OOB predictions on training set should be precomputed. Note that even if OOB predictions have already been precomputed for the forests in ‘forest_list’, those predictions are not used. Instead, a new set of oob predictions is computed anew using the larger forest. Default is TRUE.

Value
A single forest containing all the trees in each forest in the input list.
Examples

Train standard regression forests
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest1 <- regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)
r.forest2 <- regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)

Join the forests together. The resulting forest will contain 200 trees.
big_rf <- merge_forests(list(r.forest1, r.forest2))

plot.grf_tree

Plot a GRF tree object.

Description

The direction NAs are sent are indicated with the arrow fill. An empty arrow indicates that NAs are sent that way. If trained without missing values, both arrows are filled.

Usage

S3 method for class 'grf_tree'
plot(x, include.na.path = NULL, ...)

Arguments

x The tree to plot
include.na.path
 A boolean toggling whether to include the path of missing values or not. It defaults to whether the forest was trained with NAs.
... Additional arguments (currently ignored).

Examples

Not run:
Plot a tree in the forest (requires the `DiagrammeR` package).
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)
plot(tree <- get_tree(c.forest, 1))
Saving a plot in .svg can be done with the `DiagrammeR.svg` package.
install.packages("DiagrammeRsvg")

tree.plot = plot(tree)

cat(DiagrammeRsvg::export_svg(tree.plot), file = 'plot.svg')

End(Not run)

predict.boosted_regression_forest

Predict with a boosted regression forest.

Description

Gets estimates of $E[Y|X=x]$ using a trained regression forest.

Usage

```r
## S3 method for class 'boosted_regression_forest'
predict(
  object,
  newdata = NULL,
  boost.predict.steps = NULL,
  num.threads = NULL,
  ...
)
```

Arguments

- `object`
 The trained forest.
- `newdata`
 Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at X_i using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- `boost.predict.steps`
 Number of boosting iterations to use for prediction. If blank, uses the full number of steps for the object given.
- `num.threads`
 the number of threads used in prediction
- `...`
 Additional arguments (currently ignored).

Value

A vector of predictions.
Examples

```r
# Train a boosted regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.boosted.forest <- boosted_regression_forest(X, Y)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.boosted.forest, X.test)

# Predict on out-of-bag training samples.
r.pred <- predict(r.boosted.forest)
```
linear.correction.variables
Optional subset of indexes for variables to be used in local linear prediction. If NULL, standard GRF prediction is used. Otherwise, we run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.

ll.lambda
Ridge penalty for local linear predictions. Defaults to NULL and will be cross-validated.

ll.weight.penalty
Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Penalizes equally by default.

num.threads
Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

estimate.variance
Whether variance estimates for hattau(x) are desired (for confidence intervals).

Value
Vector of predictions, along with estimates of the error and (optionally) its variance estimates. Column 'predictions' contains estimates of the conditional average treatent effect (CATE). The square-root of column 'variance.estimate' is the standard error of CATE. For out-of-bag estimates, we also output the following error measures. First, column 'debiased.error' contains estimates of the 'R-loss' criterion, (See Nie and Wager 2017 for a justification). Second, column 'excess.error' contains jackknife estimates of the Monte-carlo error (Wager, Hastie, Efron 2014), a measure of how unstable estimates are if we grow forests of the same size on the same data set. The sum of 'debiased.error' and 'excess.error' is the raw error attained by the current forest, and 'debiased.error' alone is an estimate of the error attained by a forest with an infinite number of trees. We recommend that users grow enough forests to make the 'excess.error' negligible.

Examples

Train a causal forest.
 n <- 100
 p <- 10
 X <- matrix(rnorm(n * p), n, p)
 W <- rbinom(n, 1, 0.5)
 Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
 c.forest <- causal_forest(X, Y, W)

Predict using the forest.
 X.test <- matrix(0, 101, p)
 X.test[, 1] <- seq(-2, 2, length.out = 101)
 c.pred <- predict(c.forest, X.test)

Predict on out-of-bag training samples.
 c.pred <- predict(c.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.forest <- causal_forest(X, Y, W, num.trees = 500)
c.pred <- predict(c.forest, X.test, estimate.variance = TRUE)

custom_forest

Description

Predict with a custom forest.

Usage

```r
## S3 method for class 'custom_forest'
predict(object, newdata = NULL, num.threads = NULL, ...)
```

Arguments

- `object` The trained forest.
- `newdata` Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- `num.threads` Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- `...` Additional arguments (currently ignored).

Value

Vector of predictions.

Examples

```r
# Train a custom forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
c.forest <- custom_forest(X, Y)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)
```
predict.instrumental_forest

Predict with an instrumental forest

Description

Gets estimates of \(\tau(x) \) using a trained instrumental forest.

Usage

S3 method for class 'instrumental_forest'
predict(
 object,
 newdata = NULL,
 num.threads = NULL,
 estimate.variance = FALSE,
 ...
)

Arguments

object

The trained forest.

newdata

Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at \(X_i \) using only trees that did not use the \(i \)-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.

num.threads

Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

estimate.variance

Whether variance estimates for \(\hat{\tau}(x) \) are desired (for confidence intervals).

...

Additional arguments (currently ignored).

Value

Vector of predictions, along with (optional) variance estimates.
predict.ll_regression_forest

Predict with a local linear forest

Description

Gets estimates of $E[Y|X=x]$ using a trained regression forest.

Usage

```r
## S3 method for class 'll_regression_forest'
predict(
  object,
  newdata = NULL,
  linear.correction.variables = NULL,
  ll.lambda = NULL,
  ll.weight.penalty = FALSE,
  num.threads = NULL,
  estimate.variance = FALSE,
  ...)
```

Arguments

- `object`: The trained forest.
- `newdata`: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at X_i using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- `linear.correction.variables`: Optional subset of indexes for variables to be used in local linear prediction. If left NULL, all variables are used. We run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.
- `ll.lambda`: Ridge penalty for local linear predictions
- `ll.weight.penalty`: Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.
- `num.threads`: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- `estimate.variance`: Whether variance estimates for $\hat{y}(x)$ are desired (for confidence intervals).
- `...`: Additional arguments (currently ignored).
predict.quantile_forest

Value

A vector of predictions.

Examples

```r
# Train the forest.
n <- 50
p <- 5
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
forest <- ll_regression_forest(X, Y)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
predictions <- predict(forest, X.test)

# Predict on out-of-bag training samples.
predictions.oob <- predict(forest)
```

predict.quantile_forest

Predict with a quantile forest

Description

Gets estimates of the conditional quantiles of Y given X using a trained forest.

Usage

```r
## S3 method for class 'quantile_forest'
predict(object, newdata = NULL, quantiles = NULL, num.threads = NULL, ...)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at X_i using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- **quantiles**: Vector of quantiles at which estimates are required. If NULL, the quantiles used to train the forest is used. Default is NULL.
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **...**: Additional arguments (currently ignored).
Value

Predictions at each test point for each desired quantile.

Examples

```r
# Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

# Predict on out-of-bag training samples.
q.pred <- predict(q.forest)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
q.pred <- predict(q.forest, X.test)
```

predict.regression_forest

Predict with a regression forest

Description

Gets estimates of $E[Y|X=x]$ using a trained regression forest.

Usage

```r
## S3 method for class 'regression_forest'
predict(
  object,
  newdata = NULL,
  linear.correction.variables = NULL,
  ll.lambda = NULL,
  ll.weight.penalty = FALSE,
  num.threads = NULL,
  estimate.variance = FALSE,
  ...
)
```
predict.regression_forest

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at \(X_i \) using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.

linear.correction.variables Optional subset of indexes for variables to be used in local linear prediction. If NULL, standard GRF prediction is used. Otherwise, we run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.

ll.lambda Ridge penalty for local linear predictions

ll.weight.penalty Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.

num.threads Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

estimate.variance Whether variance estimates for \(\hat{h}(x) \) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

Vector of predictions, along with estimates of the error and (optionally) its variance estimates. Column 'predictions' contains estimates of \(E[Y|X=x] \). The square-root of column 'variance.estimates' is the standard error the test mean-squared error. Column 'excess.error' contains jackknife estimates of the Monte-carlo error. The sum of 'debiased.error' and 'excess.error' is the raw error attained by the current forest, and 'debiased.error' alone is an estimate of the error attained by a forest with an infinite number of trees. We recommend that users grow enough forests to make the 'excess.error' negligible.

Examples

```r
# Train a standard regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest <- regression_forest(X, Y)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.forest, X.test)
```
Predict on out-of-bag training samples.
r.pred <- predict(r.forest)

Predict with confidence intervals; growing more trees is now recommended.
r.forest <- regression_forest(X, Y, num.trees = 100)
r.pred <- predict(r.forest, X.test, estimate.variance = TRUE)

predict.survival_forest

Predict with a survival forest

Description

Gets estimates of the conditional survival function $S(t, x)$ using a trained survival forest (estimated using Kaplan-Meier).

Usage

S3 method for class 'survival_forest'
predict(object, newdata = NULL, failure.times = NULL, num.threads = NULL, ...)

Arguments

- **object**
 - The trained forest.

- **newdata**
 - Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at X_i using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.

- **failure.times**
 - A vector of failure times to make predictions at. If NULL, then the failure times used for training the forest is used. Default is NULL.

- **num.threads**
 - Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

- **...**
 - Additional arguments (currently ignored).

Value

- Vector of predictions.
Examples

```r
# Train a standard survival forest.
n <- 2000
p <- 5
X <- matrix(rnorm(n * p), n, p)
failure.time <- exp(0.5 * X[, 1]) * rexp(n)
censor.time <- 2 * rexp(n)
Y <- pmin(failure.time, censor.time)
D <- as.integer(failure.time <= censor.time)
s.forest <- survival_forest(X, Y, D)

# Predict using the forest.
X.test <- matrix(0, 3, p)
X.test[, 1] <- seq(-2, 2, length.out = 3)
s.pred <- predict(s.forest, X.test)

# Plot the survival curve.
plot(NA, NA, xlab = "failure time", ylab = "survival function",
xlim = range(s.pred$failure.times),
ylim = c(0, 1))
for(i in 1:3) {
  lines(s.pred$failure.times, s.pred$predictions[i,], col = i)
  s.true <- exp(-s.pred$failure.times / exp(0.5 * X.test[i, 1]))
  lines(s.pred$failure.times, s.true, col = i, lty = 2)
}

# Predict on out-of-bag training samples.
s.pred <- predict(s.forest)

# Plot the survival curve for the first five individuals.
matplot(s.pred$failure.times, t(s.pred$predictions[1:5,]),
         xlab = "failure time", ylab = "survival function (OOB)",
type = "l", lty = 1)

# Train the forest on a less granular grid.
failure.summary <- summary(Y[D == 1])
events <- seq(failure.summary["Min."], failure.summary["Max."], by = 0.1)
s.forest.grid <- survival_forest(X, Y, D, failure.times = events)
s.pred.grid <- predict(s.forest.grid)
matpoints(s.pred.grid$failure.times, t(s.pred.grid$predictions[1:5,]),
          type = "l", lty = 2)
```

`print.boosted_regression_forest`

Print a boosted regression forest
Description
Print a boosted regression forest

Usage

S3 method for class 'boosted_regression_forest'
print(x, ...)

Arguments

x The boosted forest to print.
... Additional arguments (currently ignored).

print.grf
Print a GRF forest object.

Description
Print a GRF forest object.

Usage

S3 method for class 'grf'
print(x, decay.exponent = 2, max.depth = 4, ...)

Arguments

x The tree to print.
decay.exponent A tuning parameter that controls the importance of split depth.
max.depth The maximum depth of splits to consider.
... Additional arguments (currently ignored).

print.grf_tree
Print a GRF tree object.

Description
Print a GRF tree object.

Usage

S3 method for class 'grf_tree'
print(x, ...)
Arguments

x The tree to print.

Additional arguments (currently ignored).

print.tuning_output
Print tuning output. Displays average error for q-quantiles of tuned parameters.

Description

Print tuning output. Displays average error for q-quantiles of tuned parameters.

Usage

S3 method for class 'tuning_output'
print(x, tuning.quantiles = seq(0, 1, 0.2), ...)

Arguments

x The tuning output to print.
tuning.quantiles vector of quantiles to display average error over. Default: seq(0, 1, 0.2) (quintiles)

Additional arguments (currently ignored).

quantile_forest
Quantile forest

Description

Trains a regression forest that can be used to estimate quantiles of the conditional distribution of Y given X = x.

Usage

quantile_forest(
 x,
 Y,
 num.trees = 2000,
 quantiles = c(0.1, 0.5, 0.9),
 regression.splittng = FALSE,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
quantile_forest

mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
compute.oob.predictions = FALSE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X The covariates used in the quantile regression.
Y The outcome.
num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.
quantiles Vector of quantiles used to calibrate the forest. Default is (0.1, 0.5, 0.9).
regression.splitting Whether to use regression splits when growing trees instead of specialized splits based on the quantiles (the default). Setting this flag to true corresponds to the approach to quantile forests from Meinshausen (2006). Default is FALSE.
clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.cluster.weights If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same.
sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.
mtry Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.
min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.
honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.
quantile_forest

honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves
If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

compute.oob.predictions
Whether OOB predictions on training set should be precomputed. Default is FALSE.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed
The seed of the C++ random number generator.

Value
A trained quantile forest object.

Examples

```r
# Generate data.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
Y <- X[, 1] * rnorm(n)

# Train a quantile forest.
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

# Make predictions.
qu.hat <- predict(q.forest, X.test)

# Make predictions for different quantiles than those used in training.
qu.hat <- predict(q.forest, X.test, quantiles = c(0.1, 0.9))

# Train a quantile forest using regression splitting instead of quantile-based splits, emulating the approach in Meinshausen (2006).
meins.forest <- quantile_forest(X, Y, regression.splitting = TRUE)
```
Make predictions for the desired quantiles.
q.hat <- predict(meins.forest, X.test, quantiles = c(0.1, 0.5, 0.9))

regression_forest Regression forest

Description

Trains a regression forest that can be used to estimate the conditional mean function \(\mu(x) = E[Y \mid X = x] \)

Usage

regression_forest(
 X,
 Y,
 num.trees = 2000,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
 min.node.size = 5,
 honesty = TRUE,
 honesty.fraction = 0.5,
 honesty.prune.leaves = TRUE,
 alpha = 0.05,
 imbalance.penalty = 0,
 ci.group.size = 2,
 tune.parameters = "none",
 tune.num.trees = 50,
 tune.num.reps = 100,
 tune.num.draws = 1000,
 compute.oob.predictions = TRUE,
 num.threads = NULL,
 seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X The covariates used in the regression.
Y The outcome.
num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.
sample.weights (experimental) Weights given to an observation in estimation. If NULL, each observation is given the same weight. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).

equalize.cluster.weights If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

equalize.cluster.weights

sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction",

regression_forest

mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "im-
balance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned.
Default is "none" (no parameters are tuned).

tune.num.trees The number of trees in each 'mini forest' used to fit the tuning model. Default
is 50.

tune.num.reps The number of forests used to fit the tuning model. Default is 100.

tune.num.draws The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

compute.oob.predictions Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained regression forest object. If tune.parameters is enabled, then tuning information will be
included through the 'tuning.output' attribute.

Examples

Train a standard regression forest.
```
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest <- regression_forest(X, Y)
```

Predict using the forest.
```
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.forest, X.test)
```

Predict on out-of-bag training samples.
```
r.pred <- predict(r.forest)
```

Predict with confidence intervals; growing more trees is now recommended.
```
r.forest <- regression_forest(X, Y, num.trees = 100)
r.pred <- predict(r.forest, X.test, estimate.variance = TRUE)
```
split_frequencies

Calculate which features the forest split on at each depth.

Description

Calculate which features the forest split on at each depth.

Usage

```r
split_frequencies(forest, max.depth = 4)
```

Arguments

- `forest` The trained forest.
- `max.depth` Maximum depth of splits to consider.

Value

A matrix of split depth by feature index, where each value is the number of times the feature was split on at that depth.

Examples

```r
# Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

# Calculate the split frequencies for this forest.
split_frequencies(q.forest)
```

survival_forest

Survival forest

Description

Trains a forest for right-censored survival data that can be used to estimate the conditional survival function $S(t, x) = P[Y > t \mid X = x]$.
Usage

survival_forest(
 X,
 Y,
 D,
 failure.times = NULL,
 num.trees = 1000,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
 min.node.size = 15,
 honesty = TRUE,
 honesty.fraction = 0.5,
 honesty.prune.leaves = TRUE,
 alpha = 0.05,
 compute.oob.predictions = TRUE,
 num.threads = NULL,
 seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X The covariates.
Y The event time (may be negative).
D The event type (0: censoring, 1: failure).
failure.times A vector of event times to fit the survival curve at. If NULL, then all the observed failure times are used. This speeds up forest estimation by constraining the event grid. Observed event times are rounded down to the last sorted occurrence less than or equal to the specified failure time. The time points should be in increasing order. Default is NULL.
num.trees Number of trees grown in the forest. Default is 1000.
sample.weights (experimental) Weights given to an observation in prediction. If NULL, each observation is given the same weight. Default is NULL.
clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.cluster.weights If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted
survival_forest

via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction
Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry
Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the
number of variables.

min.node.size
A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 15.

honesty
Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J_1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves
If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha
A tuning parameter that controls the maximum imbalance of a split. Default is
0.05 (meaning the count of failures on each side of a split has to be at least 5 %
of the total observation count in a node)

compute.oob.predictions
Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads
Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed
The seed of the C++ random number generator.

Value
A trained survival_forest forest object. The attribute 'failure.times' contains the unique failure times
in the data set.

References
Examples

```r
# Train a standard survival forest.
n <- 2000
p <- 5
X <- matrix(rnorm(n * p), n, p)
failure.time <- exp(0.5 * X[, 1]) * rexp(n)
censor.time <- 2 * rexp(n)
Y <- pmin(failure.time, censor.time)
D <- as.integer(failure.time <= censor.time)
s.forest <- survival_forest(X, Y, D)

# Predict using the forest.
X.test <- matrix(0, 3, p)
X.test[, 1] <- seq(-2, 2, length.out = 3)
s.pred <- predict(s.forest, X.test)

# Plot the survival curve.
plot(NA, NA, xlab = "failure time", ylab = "survival function",
     xlim = range(s.pred$failure.times), ylim = c(0, 1))
for(i in 1:3) {
  lines(s.pred$failure.times, s.pred$predictions[i,], col = i)
  lines(s.pred$failure.times, exp(-s.pred$failure.times / exp(0.5 * X.test[i, 1])), col = i, lty = 2)
}

# Predict on out-of-bag training samples.
s.pred <- predict(s.forest)

# Plot the survival curve for the first five individuals.
matplot(s.pred$failure.times, t(s.pred$predictions[1:5,]), xlab = "failure time", ylab = "survival function (OOB)", type = "l", lty = 1)

# Train the forest on a less granular grid.
failure.summary <- summary(Y[D == 1])
events <- seq(failure.summary["Min."], failure.summary["Max."], by = 0.1)
s.forest.grid <- survival_forest(X, Y, D, failure.times = events)
s.pred.grid <- predict(s.forest.grid)
matpoints(s.pred.grid$failure.times, t(s.pred.grid$predictions[1:5,]), type = "l", lty = 2)
```

test_calibration

Omnibus evaluation of the quality of the random forest estimates via calibration.
Description

Test calibration of the forest. Computes the best linear fit of the target estimand using the forest prediction (on held-out data) as well as the mean forest prediction as the sole two regressors. A coefficient of 1 for 'mean.forest.prediction' suggests that the mean forest prediction is correct, whereas a coefficient of 1 for 'differential.forest.prediction' additionally suggests that the forest has captured heterogeneity in the underlying signal. The p-value of the 'differential.forest.prediction' coefficient also acts as an omnibus test for the presence of heterogeneity: If the coefficient is significantly greater than 0, then we can reject the null of no heterogeneity.

Usage

test_calibration(forest)

Arguments

forest The trained forest.

Value

A heteroskedasticity-consistent test of calibration.

References

Examples

```r
n <- 800
p <- 5
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.25 + 0.5 * (X[, 1] > 0))
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
forest <- causal_forest(X, Y, W)
test_calibration(forest)
```

Usage

tune_causal_forest(
 X,
 Y,
 W,
 Y.hat,
 W.hat,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = min(ceiling(sqrt(ncol(X))) + 20), ncol(X)),
 min.node.size = 5,
 honesty = TRUE,
 honesty.fraction = 0.5,
 honesty.prune.leaves = TRUE,
 alpha = 0.05,
 imbalance.penalty = 0,
 stabilize.splits = TRUE,
 ci.group.size = 2,
 tune.parameters = "all",
 tune.num.trees = 200,
 tune.num.reps = 50,
 tune.num.draws = 1000,
 num.threads = NULL,
 seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X The covariates used in the regression.
Y The outcome.
W The treatment assignment (may be binary or real).
Y.hat Estimates of the expected responses E[Y | X], marginalizing over treatment. See section 6.1.1 of the GRF paper for further discussion of this quantity.
W.hat Estimates of the treatment propensities E[W | X].
sample.weights (experimental) Weights given to an observation in estimation. If NULL, each observation is given the same weight. Default is NULL.
clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.cluster.weights
If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry

Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.

min.node.size

A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

honesty

Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J_1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha

A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

stabilize.splits

Whether or not the treatment should be taken into account when determining the imbalance of a split. Default is TRUE.

ci.group.size

The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters

A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "all".

tune.num.trees

The number of trees in each 'mini forest' used to fit the tuning model. Default is 50.

tune.num.reps

The number of forests used to fit the tuning model. Default is 100.
tune_forest

Tune a forests

Description

Finds the optimal parameters to be used in training a forest.

Usage

tune_forest(data, nrow.X, ncol.X, args,
tune_instrumental_forest

tune.parameters,
tune.parameters.defaults,
num.fit.trees,
num.fit.reps,
num.optimize.reps,
train
)

Arguments

- **data**
 The data arguments (output from create_train_matrices) for the forest.
- **nrow.X**
 The number of observations.
- **ncol.X**
 The number of variables.
- **args**
 The remaining call arguments for the forest.
- **tune.parameters**
 The vector of parameter names to tune.
- **tune.parameters.defaults**
 The grf default values for the vector of parameter names to tune.
- **num.fit.trees**
 The number of trees in each 'mini forest' used to fit the tuning model.
- **num.fit.reps**
 The number of forests used to fit the tuning model.
- **num.optimize.reps**
 The number of random parameter values considered when using the model to select the optimal parameters.
- **train**
 The grf forest training function.

Value

tuning output

Description

Instrumental forest tuning

Usage

tune_instrumental_forest(
 X,
 Y,
 W,
 Z,
 Y.hat,
W.hat,
Z.hat,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
stabilize.splits = TRUE,
pi.group.size = 2,
reduced.form.weight = 0,
tune.parameters = "all",
tune.num.trees = 200,
tune.num.reps = 50,
tune.num.draws = 1000,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)
}

Arguments

X The covariates used in the regression.

Y The outcome.

W The treatment assignment (may be binary or real).

Z The instrument (may be binary or real).

Y.hat Estimates of the expected responses $E[Y | X_i]$, marginalizing over treatment. See section 6.1.1 of the GRF paper for further discussion of this quantity.

sample.weights (experimental) Weights given to an observation in estimation. If NULL, each observation is given the same weight. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).

equalize.cluster.weights If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight $1/\text{cluster size}$, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

sample.fraction
Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry
Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.

min.node.size
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original randomForest package. Default is 5.

honesty
Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J_1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves
If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leaf is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

stabilize.splits
Whether or not the treatment should be taken into account when determining the imbalance of a split. Default is TRUE.

ci.group.size
The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

reduced.form.weight
Whether splits should be regularized towards a naive splitting criterion that ignores the instrument (and instead emulates a causal forest).

tune.parameters
A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "all".

tune.num.trees
The number of trees in each 'mini forest' used to fit the tuning model. Default is 50.
tune.num.reps The number of forests used to fit the tuning model. Default is 100.

tune.num.draws The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

num.threads Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A list consisting of the optimal parameter values ('params') along with their debiased error ('error').

Examples

```r
# Find the optimal tuning parameters.
n <- 3000; p <- 5
X <- matrix(rbinom(n*p, 1, 0.5), n, p)
Z <- rbinom(n, 1, 0.5)
Q <- rbinom(n, 1, 0.5)
T <- Q * Z
eps <- rnorm(n)
TAU <- X[,1] / 2
Y <- rowSums(X[,1:3]) + TAU * T + Q + eps
Y.hat <- predict(regression_forest(X, Y, num.trees = 500))$predictions
W.hat <- predict(regression_forest(X, T, num.trees = 500))$predictions
Z.hat <- predict(regression_forest(X, Z, num.trees = 500))$predictions
tuned.iv.forest <- instrumental_forest(X, Y, T, Z, Y.hat, W.hat, Z.hat, tune.parameters = "all")
```

tune.ll_causal_forest Local linear forest tuning

Description

Finds the optimal ridge penalty for local linear causal prediction.

Usage

```r
tune.ll_causal_forest(
  forest,
  linear.correction.variables = NULL,
  ll.weight.penalty = FALSE,
  num.threads = NULL,
  lambda.path = NULL
)
```
Arguments

- **forest**: The forest used for prediction.
- **linear.correction.variables**: Variables to use for local linear prediction. If left null, all variables are used. Default is NULL.
- **ll.weight.penalty**: Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **lambda.path**: Optional list of lambdas to use for cross-validation.

Value

A list of lambdas tried, corresponding errors, and optimal ridge penalty lambda.

Examples

```r
# Find the optimal tuning parameters.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)

forest <- causal_forest(X, Y, W)
tuned.lambda <- tune_ll_causal_forest(forest)

# Use this parameter to predict from a local linear causal forest.
predictions <- predict(forest, linear.correction.variables = 1:p,
                       ll.lambda = tuned.lambda$lambda.min)
```

Description

Finds the optimal ridge penalty for local linear prediction.
tune_ll_regression_forest

Usage

tune_ll_regression_forest(
 forest,
 linear.correction.variables = NULL,
 ll.weight.penalty = FALSE,
 num.threads = NULL,
 lambda.path = NULL
)

Arguments

 forest The forest used for prediction.
 linear.correction.variables
 Variables to use for local linear prediction. If left null, all variables are used. Default is NULL.
 ll.weight.penalty Option to standardize ridge penalty by covariance (TRUE), or penalize all co-
 variates equally (FALSE). Defaults to FALSE.
 num.threads Number of threads used in training. If set to NULL, the software automatically
 selects an appropriate amount.
 lambda.path Optional list of lambdas to use for cross-validation.

Value

 A list of lambdas tried, corresponding errors, and optimal ridge penalty lambda.

Examples

 # Find the optimal tuning parameters.
 n <- 500
 p <- 10
 X <- matrix(rnorm(n * p), n, p)
 Y <- X[, 1] * rnorm(n)
 forest <- regression_forest(X, Y)
 tuned.lambda <- tune_ll_regression_forest(forest)

 # Use this parameter to predict from a local linear forest.
 predictions <- predict(forest, linear.correction.variables = 1:p,
 ll.lambda = tuned.lambda$lambda.min)
tune_regression_forest

Regression forest tuning

Description

Trains a regression forest that can be used to estimate the conditional mean function \(\mu(x) = \mathbb{E}[Y \mid X = x] \)

Usage

\[
tune_regression_forest(\\
 X, \\
 Y, \\
 sample.weights = NULL, \\
 clusters = NULL, \\
 equalize.cluster.weights = FALSE, \\
 sample.fraction = 0.5, \\
 mtry = \min(\text{ceiling}(\sqrt{\text{ncol}(X) + 20}), \text{ncol}(X)), \\
 min.node.size = 5, \\
 honesty = \text{TRUE}, \\
 honesty.fraction = 0.5, \\
 honesty.prune.leaves = \text{TRUE}, \\
 alpha = 0.05, \\
 imbalance.penalty = 0, \\
 ci.group.size = 2, \\
 tune.parameters = "all", \\
 tune.num.trees = 50, \\
 tune.num.reps = 100, \\
 tune.num.draws = 1000, \\
 num.threads = NULL, \\
 seed = \text{runif}(1, 0, \text{.Machine}\$\text{integer.max}) \\
)
\]

Arguments

- **X**: The covariates used in the regression.
- **Y**: The outcome.
- **sample.weights** (experimental): Weights given to an observation in estimation. If NULL, each observation is given the same weight. Default is NULL.
- **clusters**: Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
- **equalize.cluster.weights**: If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

tune.parameters
A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "all".

tune.num.trees
The number of trees in each 'mini forest' used to fit the tuning model. Default is 50.

tune.num.reps
The number of forests used to fit the tuning model. Default is 100.
tune.num.draws The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

num.threads Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A list consisting of the optimal parameter values (`params`) along with their debiased error (`error`).

Examples

```r
# Find the optimal tuning parameters.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
params <- tune_regression_forest(X, Y)$params

# Use these parameters to train a regression forest.
tuned.forest <- regression_forest(X, Y,
  num.trees = 1000,
  min.node.size = as.numeric(params["min.node.size"]),
  sample.fraction = as.numeric(params["sample.fraction"]),
  mtry = as.numeric(params["mtry"]),
  alpha = as.numeric(params["alpha"]),
  imbalance.penalty = as.numeric(params["imbalance.penalty"])
)
```

variable_importance Calculate a simple measure of 'importance' for each feature.

Description

A simple weighted sum of how many times feature i was split on at each depth in the forest.

Usage

`variable_importance(forest, decay.exponent = 2, max.depth = 4)`

Arguments

- `forest`: The trained forest.
- `decay.exponent`: A tuning parameter that controls the importance of split depth.
- `max.depth`: Maximum depth of splits to consider.
Value

A list specifying an 'importance value' for each feature.

Examples

```r
# Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

# Calculate the 'importance' of each feature.
variable_importance(q.forest)
```
Index

average_late, 3
average_partial_effect, 4
average_treatment_effect, 5
best_linear_projection, 7
boosted_regression_forest, 8
causal_forest, 11
custom_forest, 15
gerandomized_late, 23
gerandomized_partial_effect, 23
gerandomized_treatment_effect, 23
get_sample_weights, 17
get_tree, 18
grf, 19

instrumental_forest, 21
leaf_stats.causal_forest, 24
leaf_stats.default, 25
leaf_stats.instrumental_forest, 25
leaf_stats.regression_forest, 26
ll_regression_forest, 26

merge_forests, 29

plot.grf_tree, 30
predict.boosted_regression_forest, 31
predict.causal_forest, 32
predict.custom_forest, 34
predict.instrumental_forest, 35
predict.ll_regression_forest, 36
predict.quantile_forest, 37
predict.regression_forest, 38
predict.survival_forest, 40
print.boosted_regression_forest, 41
print.grf, 42
print.grf_tree, 42
print.tuning_output, 43
quantile_forest, 43
regression_forest, 46

split_frequencies, 49
survival_forest, 49
test_calibration, 52
tune_causal_forest, 53
tune_forest, 56
tune_instrumental_forest, 57
tune.ll_causal_forest, 60
tune.ll_regression_forest, 61
tune_regression_forest, 63

variable_importance, 65