Package ‘grf’

November 24, 2018

Title Generalized Random Forests (Beta)
Version 0.10.2
Author Julie Tibshirani [aut, cre],
 Susan Athey [aut],
 Stefan Wager [aut],
 Rina Friedberg [ctb],
 Luke Miner [ctb],
 Marvin Wright [ctb]

BugReports https://github.com/grf-labs/grf/issues
Maintainer Julie Tibshirani <jtibs@cs.stanford.edu>

Description A pluggable package for forest-based statistical estimation and inference.
 GRF currently provides methods for non-parametric least-squares regression,
 quantile regression, and treatment effect estimation (optionally using instrumental
 variables). This package is currently in beta, and we expect to make continual
 improvements to its performance and usability.

Depends R (>= 3.3.0)
License GPL-3

LinkingTo Rcpp, RcppEigen
Imports DiagrammeR, DiceKriging, lmtest, Matrix, methods, Rcpp (>= 0.12.15), sandwich (>= 2.4-0)

RoxygenNote 6.1.1
Suggests testthat

SystemRequirements GNU make

URL https://github.com/grf-labs/grf

NeedsCompilation yes
Repository CRAN

Date/Publication 2018-11-24 05:20:03 UTC
average_partial_effect

Estimate average partial effects using a causal forest

Description

Gets estimates of the average partial effect, in particular the (conditional) average treatment effect (target.sample = all): \(1/n \sum_{i=1}^{n} \text{Cov}[W_i, \ Y_i | X = X_i] / \text{Var}[W_i | X = X_i] \). Note that for a binary unconfounded treatment, the average partial effect matches the average treatment effect.

Usage

```r
average_partial_effect(forest, calibrate.weights = TRUE, subset = NULL, num.trees.for.variance = 500)
```
average_treatment_effect

Description

Estimate average treatment effects using a causal forest

Description

Gets estimates of one of the following.

- The (conditional) average treatment effect (target.sample = all): \(\text{sum}_{i = 1}^{n} \frac{E[Y(1) - Y(0) | X = X_i]}{n} \)
- The (conditional) average treatment effect on the treated (target.sample = treated): \(\text{sum}_{W_i = 1} \frac{E[Y(1) - Y(0) | X = X_i]}{|i : W_i = 1|} \)

Arguments

- forest: The trained forest.
- calibrate.weights: Whether to force debiasing weights to match expected moments for 1, \(W, W_{\text{hat}} \), and \(1/\text{Var}[W | X] \).
- subset: Specifies a subset of the training examples over which we estimate the ATE. WARNING: For valid statistical performance, the subset should be defined only using features \(X_i \), not using the treatment \(W_i \) or the outcome \(Y_i \).
- num.trees.for.variance: Number of trees used to estimate \(\text{Var}[W_i | X = x] \).

Details

If clusters are specified, then each cluster gets equal weight. For example, if there are 10 clusters with 1 unit each and per-cluster APE = 1, and there are 10 clusters with 19 units each and per-cluster APE = 0, then the overall APE is 0.5 (not 0.05).

Value

An estimate of the average partial effect, along with standard error.

Examples

```r
## Not run:
n = 2000, p = 10
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 1/(1 + exp(-X[,2]))) + rnorm(n)
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,1], 0) + rnorm(n)
tau.forest = causal_forest(X, Y, W)
tau.hat = predict(tau.forest)
average_partial_effect(tau.forest)
average_partial_effect(tau.forest, subset = X[,1] > 0)
## End(Not run)
```
• The (conditional) average treatment effect on the controls (target.sample = control): \[\text{sum}_W = 0 \frac{E[Y(1) - Y(0) \mid X = X_i]}{|i : W_i = 0|} \]

• The overlap-weighted (conditional) average treatment effect \[\text{sum}_i = 1^n e(X_i) (1 - e(X_i)) \frac{E[Y(1) - Y(0) \mid X = X_i]}{\text{sum}_i = 1^n e(X_i) (1 - e(X_i))} \]

This last estimand is recommended by Li, Morgan, and Zaslavsky (JASA, 2017) in case of poor overlap (i.e., when the propensities \(e(x)\) may be very close to 0 or 1), as it doesn’t involve dividing by estimated propensities.

Usage

```r
average_treatment_effect(forest, target.sample = c("all", "treated", "control", "overlap"), method = c("AIPW", "TMLE"), subset = NULL)
```

Arguments

- `forest`: The trained forest.
- `target.sample`: Which sample to aggregate treatment effects over.
- `method`: Method used for doubly robust inference. Can be either augmented inverse-propensity weighting (AIPW), or targeted maximum likelihood estimation (TMLE).
- `subset`: Specifies subset of the training examples over which we estimate the ATE.

WARNING: For valid statistical performance, the subset should be defined only using features \(X_i\), not using the treatment \(W_i\) or the outcome \(Y_i\).

Details

If clusters are specified, then each cluster gets equal weight. For example, if there are 10 clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each and per-cluster ATE = 0, then the overall ATE is 0.5 (not 0.05).

Value

An estimate of the average treatment effect, along with standard error.

Examples

```r
### Not run:
# Train a causal forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 0.5)
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
c.forest = causal_forest(X, Y, W)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
c.pred = predict(c.forest, X.test)
# Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(c.forest, target.sample = "all")
```
Estimate the conditional average treatment effect on the treated sample (CATT).

We don't expect much difference between the CATE and the CATT in this example,
since treatment assignment was randomized.

```
average_treatment_effect(c.forest, target.sample = "treated")
```

Estimate the conditional average treatment effect on samples with positive $X[1]$.

```
average_treatment_effect(c.forest, target.sample = "all", $X[1] > 0$
```

End (Not run)

causal_forest
* Causal forest

Description

Trains a causal forest that can be used to estimate conditional average treatment effects $\tau(X)$. When the treatment assignment W is binary and unconfounded, we have $\tau(X) = E[Y(1) - Y(0) | X = x]$, where $Y(0)$ and $Y(1)$ are potential outcomes corresponding to the two possible treatment states. When W is continuous, we effectively estimate an average partial effect $\frac{Cov[Y, W | X = x]}{Var[W | X = x]}$ and interpret it as a treatment effect given unconfoundedness.

Usage

```
causal_forest(X, Y, W, Y.hat = NULL, W.hat = NULL, 
sample.fraction = 0.5, mtry = NULL, num.trees = 2000, 
num.threads = NULL, min.node.size = NULL, honesty = TRUE, 
honesty.fraction = NULL, ci.group.size = 2, alpha = NULL, 
imbalance.penalty = NULL, stabilize.splits = TRUE, 
compute.oob.predictions = TRUE, seed = NULL, clusters = NULL, 
samples_per_cluster = NULL, tune.parameters = FALSE, 
num.fit.trees = 200, num.fit.reps = 50, num.optimize.reps = 1000)
```

Arguments

- **X**
 The covariates used in the causal regression.

- **Y**
 The outcome.

- **W**
 The treatment assignment (may be binary or real).

- **Y.hat**
 Estimates of the expected responses $E[Y | X_i]$, marginalizing over treatment. If Y.hat = NULL, these are estimated using a separate regression forest. See section 6.1.1 of the GRF paper for further discussion of this quantity.

- **W.hat**
 Estimates of the treatment propensities $E[W | X_i]$. If W.hat = NULL, these are estimated using a separate regression forest.

- **sample.fraction**
 Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.
causal_forest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtry</td>
<td>Number of variables tried for each split.</td>
</tr>
<tr>
<td>num.trees</td>
<td>Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.</td>
</tr>
<tr>
<td>num.threads</td>
<td>Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.</td>
</tr>
<tr>
<td>min.node.size</td>
<td>A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.</td>
</tr>
<tr>
<td>honesty</td>
<td>Whether to use honest splitting (i.e., sub-sample splitting).</td>
</tr>
<tr>
<td>honesty.fraction</td>
<td>The fraction of data that will be used for determining splits if honesty = TRUE. Correlates to setting J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.</td>
</tr>
<tr>
<td>ci.group.size</td>
<td>The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2.</td>
</tr>
<tr>
<td>alpha</td>
<td>A tuning parameter that controls the maximum imbalance of a split.</td>
</tr>
<tr>
<td>imbalance.penalty</td>
<td>A tuning parameter that controls how harshly imbalanced splits are penalized.</td>
</tr>
<tr>
<td>stabilize.splits</td>
<td>Whether or not the treatment should be taken into account when determining the imbalance of a split (experimental).</td>
</tr>
<tr>
<td>compute.oob.predictions</td>
<td>Whether OOB predictions on training set should be precomputed.</td>
</tr>
<tr>
<td>seed</td>
<td>The seed of the C++ random number generator.</td>
</tr>
<tr>
<td>clusters</td>
<td>Vector of integers or factors specifying which cluster each observation corresponds to.</td>
</tr>
<tr>
<td>samples_per_cluster</td>
<td>If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples_per_cluster to the size of the smallest cluster. If some clusters are smaller than samples_per_cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples_per_cluster observations get relatively smaller weight than others in the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples_per_cluster.</td>
</tr>
<tr>
<td>tune.parameters</td>
<td>If true, NULL parameters are tuned by cross-validation; if false NULL parameters are set to defaults.</td>
</tr>
<tr>
<td>num.fit.trees</td>
<td>The number of trees in each 'mini forest' used to fit the tuning model.</td>
</tr>
<tr>
<td>num.fit.reps</td>
<td>The number of forests used to fit the tuning model.</td>
</tr>
<tr>
<td>num.optimize.reps</td>
<td>The number of random parameter values considered when using the model to select the optimal parameters.</td>
</tr>
</tbody>
</table>
causal_forest

Value

A trained causal forest object.

Examples

```r
## Not run:
# Train a causal forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 0.5)
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
c.forest = causal_forest(X, Y, W)

# Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
c.pred = predict(c.forest, X.test)

# Predict on out-of-bag training samples.
c.pred = predict(c.forest)

# Predict with confidence intervals; growing more trees is now recommended.
c.forest = causal_forest(X, Y, W, num.trees = 4000)
c.pred = predict(c.forest, X.test, estimate.variance = TRUE)

# In some examples, pre-fitting models for Y and W separately may
# be helpful (e.g., if different models use different covariates).
# In some applications, one may even want to get Y.hat and W.hat
# using a completely different method (e.g., boosting).
n = 2000; p = 20
X = matrix(rnorm(n * p), n, p)
TAU = 1 / (1 + exp(-X[, 3]))
W = rbinom(n, 1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y = pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)

forest.W = regression_forest(X, W, tune.parameters = TRUE)
W.hat = predict(forest.W)$predictions

forest.Y = regression_forest(X, Y, tune.parameters = TRUE)
Y.hat = predict(forest.Y)$predictions

forest.Y.varimp = variable_importance(forest.Y)

tau.forest = causal_forest(X[, selected.vars], Y, W,
                           W.hat = W.hat, Y.hat = Y.hat,
                           tune.parameters = TRUE)
tau.hat = predict(tau.forest)$predictions
```

Note: Forests may have a hard time when trained on very few variables
(e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
in selection.

selected.vars = which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)
```
create_dot_body

Writes each node information. If it is a leaf node: show it in different color, show number of samples, show leaf id. If it is a non-leaf node: show its splitting variable and splitting value.

Description

Writes each node information. If it is a leaf node: show it in different color, show number of samples, show leaf id. If it is a non-leaf node: show its splitting variable and splitting value.

Usage

create_dot_body(tree, index = 1)

Arguments

tree: the tree to convert

index: the index of the current node

custom_forest

Custom forest

Description

Trains a custom forest model.

Usage

custom_forest(X, Y, sample.fraction = 0.5, mtry = NULL, num.trees = 2000, num.threads = NULL, min.node.size = NULL, honesty = TRUE, honesty.fraction = NULL, alpha = 0.05, imbalance.penalty = 0, seed = NULL, clusters = NULL, samples_per_cluster = NULL)
custom_forest

Arguments

\textbf{X} \quad \text{The covariates used in the regression.}

\textbf{Y} \quad \text{The outcome.}

\textbf{sample.fraction} \quad \text{Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.}

\textbf{mtry} \quad \text{Number of variables tried for each split.}

\textbf{num.trees} \quad \text{Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.}

\textbf{num.threads} \quad \text{Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.}

\textbf{min.node.size} \quad \text{A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original randomForest package.}

\textbf{honesty} \quad \text{Whether to use honest splitting (i.e., sub-sample splitting).}

\textbf{honesty.fraction} \quad \text{The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits}

\textbf{alpha} \quad \text{A tuning parameter that controls the maximum imbalance of a split.}

\textbf{imbalance.penalty} \quad \text{A tuning parameter that controls how harshly imbalanced splits are penalized.}

\textbf{seed} \quad \text{The seed for the C++ random number generator.}

\textbf{clusters} \quad \text{Vector of integers or factors specifying which cluster each observation corresponds to.}

\textbf{samples_per_cluster} \quad \text{If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples_per_cluster to the size of the smallest cluster. If some clusters are smaller than samples_per_cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples_per_cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples_per_cluster.}

Value

A trained regression forest object.

Examples

```r
Not run:
Train a custom forest.
n = 50; p = 10
```
\[
X = \text{matrix}(\text{rnorm}(n*p), n, p) \\
Y = X[,1] * \text{rnorm}(n) \\
c.\text{forest} = \text{custom_forest}(X, Y)
\]

# Predict using the forest.
\[
X.\text{test} = \text{matrix}(0, 101, p) \\
X.\text{test[,1]} = \text{seq}(-2, 2, \text{length.out} = 101) \\
c.\text{pred} = \text{predict}(c.\text{forest}, X.\text{test})
\]

## End(Not run)

---

**export_graphviz**

*Export a tree in DOT format. This function generates a GraphViz representation of the tree, which is then written into 'dot_string'.*

### Description

Export a tree in DOT format. This function generates a GraphViz representation of the tree, which is then written into 'dot_string'.

### Usage

```r
eexport_graphviz(tree)
```  

### Arguments

- **tree**: the tree to convert

---

**get_sample_weights**

*Given a trained forest and test data, compute the training sample weights for each test point.*

### Description

During normal prediction, these weights are computed as an intermediate step towards producing estimates. This function allows for examining the weights directly, so they could be potentially be used as the input to a different analysis.

### Usage

```r
gget_sample_weights(forest, newdata = NULL, num.threads = NULL)
```
get_tree

Retrieve a single tree from a trained forest object.

Description

Retrieve a single tree from a trained forest object.

Usage

get_tree(forest, index)

Arguments

- forest: The trained forest.
- index: The index of the tree to retrieve.

Examples

```r
Not run:
p = 10
n = 100
X = matrix(2 * runif(n * p) - 1, n, p)
Y = (X[,1] > 0) + 2 * rnorm(n)
rrf = regression_forest(X, Y, mtry=p)
sample.weights.oob = get_sample_weights(rrf)

n.test = 15
X.test = matrix(2 * runif(n.test * p) - 1, n.test, p)
sample.weights = get_sample_weights(rrf, X.test)

End(Not run)
```
Value

A GRF tree object containing the below attributes. drawn_samples: a list of examples that were used in training the tree. This includes examples that were used in choosing splits, as well as the examples that populate the leaf nodes. Put another way, if honesty is enabled, this list includes both subsamples from the split (J1 and J2 in the notation of the paper). num_samples: the number of examples used in training the tree. nodes: a list of objects representing the nodes in the tree, starting with the root node. Each node will contain an 'is_leaf' attribute, which indicates whether it is an interior or leaf node. Interior nodes contain the attributes 'left_child' and 'right_child', which give the indices of their children in the list, as well as 'split_variable', and 'split_value', which describe the split that was chosen. Leaf nodes only have the attribute 'samples', which is a list of the training examples that the leaf contains. Note that if honesty is enabled, this list will only contain examples from the second subsample that was used to 'repopulate' the tree (J2 in the notation of the paper).

Examples

```r
Not run:
Train a quantile forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

Examine a particular tree.
q.tree = get_tree(q.forest, 3)
q.tree$nodes

End(Not run)
```

Description

A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods for least-squares regression, quantile regression, and treatment effect estimation (optionally using instrumental variables).

In addition, GRF supports 'honest' estimation (where one subset of the data is used for choosing splits, and another for populating the leaves of the tree), and confidence intervals for least-squares regression and treatment effect estimation.

This package is currently in beta, and we expect to make continual improvements to its performance and usability. For a practical description of the GRF algorithm, including explanations of model parameters and troubleshooting suggestions, please see the [GRF reference](https://github.com/grf-labs/grf/blob/master/REFERENCE.md).
Examples

```r
Not run:
library(grf)

The following script demonstrates how to use GRF for heterogeneous treatment
effect estimation. For examples of how to use other types of forest, as for
quantile regression and causal effect estimation using instrumental variables,
please consult the documentation on the relevant forest methods (quantile_forest,
instrumental_forest, etc.).

Generate data.
n = 2000; p = 10
X = matrix(rnorm(n*p), n, p)
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)

Train a causal forest.
W = rbinom(n, 1, 0.4 + 0.2 * (X[,1] > 0))
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
tau.forest = causal_forest(X, Y, W)

Estimate treatment effects for the training data using out-of-bag prediction.
tau.hat.oob = predict(tau.forest)
hist(tau.hat.oob$predictions)

Estimate treatment effects for the test sample.
tau.hat = predict(tau.forest, X.test)
plot(X.test[,1], tau.hat$predictions, ylim = range(tau.hat$predictions, 0, 2),
 xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 2)

Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(tau.forest, target.sample = "all")

Estimate the conditional average treatment effect on the treated sample (CATT).
Here, we don’t expect much difference between the CATE and the CATT, since
treatment assignment was randomized.
average_treatment_effect(tau.forest, target.sample = "treated")

Add confidence intervals for heterogeneous treatment effects; growing more
trees is now recommended.
tau.forest = causal_forest(X, Y, W, num.trees = 4000)
tau.hat = predict(tau.forest, X.test, estimate.variance = TRUE)
sigma.hat = sqrt(tau.hat$variance.estimates)

ylim = range(tau.hat$predictions + 1.96 * sigma.hat, tau.hat$predictions - 1.96 * sigma.hat, 0, 2),
plot(X.test[,1], tau.hat$predictions, ylim = ylim, xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], tau.hat$predictions + 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], tau.hat$predictions - 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 1)

In some examples, pre-fitting models for Y and W separately may
```
# be helpful (e.g., if different models use different covariates).
# In some applications, one may even want to get Y.hat and W.hat
# using a completely different method (e.g., boosting).

# Generate new data.
n = 4000; p = 20
X = matrix(rnorm(n * p), n, p)
TAU = 1 / (1 + exp(-X[, 3]))
W = rbinom(n, 1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y = pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) + W * TAU + rnorm(n)

forest.W = regression_forest(X, W, tune.parameters = TRUE)
W.hat = predict(forest.W)$predictions

forest.Y = regression_forest(X, Y, tune.parameters = TRUE)
Y.hat = predict(forest.Y)$predictions

forest.Y.varimp = variable_importance(forest.Y)

# Note: Forests may have a hard time when trained on very few variables
# (e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
# in selection.
selected.vars = which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)

tau.forest = causal_forest(X[, selected.vars], Y, W,
W.hat = W.hat, Y.hat = Y.hat,
tune.parameters = TRUE)

# Check whether causal forest predictions are well calibrated.
test_calibration(tau.forest)

## End(Not run)

instrumental_forest  
*Intrumental forest*

**Description**

Trains an instrumental forest that can be used to estimate conditional local average treatment effects
\( \tau(X) \) identified using instruments. Formally, the forest estimates \( \tau(X) = \frac{\text{Cov}[Y, Z | X = x]}{\text{Cov}[W, Z | X = x]} \). Note that when the instrument \( Z \) and treatment assignment \( W \) coincide, an instrumental forest is equivalent to a causal forest.

**Usage**

```r
instrumental_forest(X, Y, W, Z, Y.hat = NULL, W.hat = NULL,
Z.hat = NULL, sample.fraction = 0.5, mtry = NULL,
num.trees = 2000, num.threads = NULL, min.node.size = NULL,
honesty = TRUE, honesty.fraction = NULL, ci.group.size = 2,
reduced.form.weight = 0, alpha = 0.05, imbalance.penalty = 0,
```
stabilize.splits = TRUE, compute.oob.predictions = TRUE, 
seed = NULL, clusters = NULL, samples_per_cluster = NULL)

Arguments

X The covariates used in the instrumental regression.
Y The outcome.
W The treatment assignment (may be binary or real).
Z The instrument (may be binary or real).
Y.hat Estimates of the expected responses $E[Y | X_i]$, marginalizing over treatment. If $Y.hat = NULL$, these are estimated using a separate regression forest.
W.hat Estimates of the treatment propensities $E[W | X_i]$. If $W.hat = NULL$, these are estimated using a separate regression forest.
Z.hat Estimates of the instrument propensities $E[Z | X_i]$. If $Z.hat = NULL$, these are estimated using a separate regression forest.
sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.

mtry Number of variables tried for each split.
num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.
num.threads Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original randomForest package.

honesty Whether to use honest splitting (i.e., sub-sample splitting).
honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2.

reduced.form.weight Whether splits should be regularized towards a naive splitting criterion that ignores the instrument (and instead emulates a causal forest).
alpha A tuning parameter that controls the maximum imbalance of a split.
imbalance.penalty A tuning parameter that controls how harshly imbalanced splits are penalized.
stabilize.splits Whether or not the instrument should be taken into account when determining the imbalance of a split (experimental).
Local Linear forest

Description

Trains a local linear forest that can be used to estimate the conditional mean function \( \mu(x) = E[Y \mid X = x] \).

Usage

local_linear_forest(X, Y, sample.fraction = 0.5, mtry = NULL, num.trees = 2000, num.threads = NULL, min.node.size = NULL, honesty = TRUE, honesty.fraction = NULL, ci.group.size = 1, alpha = NULL, imbalance.penalty = NULL, compute.oob.predictions = FALSE, seed = NULL, clusters = NULL, samples_per_cluster = NULL, tune.parameters = FALSE, num.fit.trees = 10, num.fit.reps = 100, num.optimize.reps = 1000)

Arguments

X The covariates used in the regression.
Y The outcome.
sample.fraction Fraction of the data used to build each tree. Note: If honesty is used, these subsamples will further be cut in half.
mtry Number of variables tried for each split.

Value

A trained instrumental forest object.
**num.trees**  Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.

**num.threads**  Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

**min.node.size**  A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.

**honesty**  Whether or not honest splitting (i.e., sub-sample splitting) should be used.

**honesty.fraction**  The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.

**ci.group.size**  The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2.

**alpha**  A tuning parameter that controls the maximum imbalance of a split.

**imbalance.penalty**  A tuning parameter that controls how harshly imbalanced splits are penalized.

**compute.oob.predictions**  Whether OOB predictions on training set should be precomputed.

**seed**  The seed for the C++ random number generator.

**clusters**  Vector of integers or factors specifying which cluster each observation corresponds to.

**samples_per_cluster**  If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples_per_cluster to the size of the smallest cluster. If some clusters are smaller than samples_per_cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples_per_cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples_per_cluster.

**tune.parameters**  If true, NULL parameters are tuned by cross-validation; if false NULL parameters are set to defaults.

**num.fit.trees**  The number of trees in each ‘mini forest’ used to fit the tuning model.

**num.fit.reps**  The number of forests used to fit the tuning model.

**num.optimize.reps**  The number of random parameter values considered when using the model to select the optimal parameters.

**Value**

A trained local linear forest object.
Examples

```r
Not run:
Train a standard regression forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
forest = local_linear_forest(X, Y)

End(Not run)
```

---

### plot.grf_tree

Plot a GRF tree object.

**Usage**

```r
S3 method for class 'grf_tree'
plot(x, ...)
```

**Arguments**

- `x` The tree to plot
- `...` Additional arguments (currently ignored).

---

### predict.causal_forest

Predict with a causal forest

**Description**

Gets estimates of tau(x) using a trained causal forest.

**Usage**

```r
S3 method for class 'causal_forest'
predict(object, newdata = NULL,
 num.threads = NULL, estimate.variance = FALSE, ...)
```
predict.custom_forest

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at $X_i$ using only trees that did not use the $i$-th training example).
- **num. threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **estimate.variance**: Whether variance estimates for $\hat{h}(x)$ are desired (for confidence intervals).
- **...**: Additional arguments (currently ignored).

Value

Vector of predictions, along with (optional) variance estimates.

Examples

```r
Not run:
Train a causal forest.
set.seed(1)
X = matrix(rnorm(n*p), n, p)
Y = pmax(X[,1], 0) * X[1,] + X[,2] + pmin(X[,3], 0) + rnorm(n)
c.forest = causal_forest(X, Y, W)

Predict using the forest.
X.test = matrix(0, 101, p)
X.test[1] = seq(-2, 2, length.out = 101)
c.pred = predict(c.forest, X.test)

Predict on out-of-bag training samples.
c.pred = predict(c.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.forest = causal_forest(X, Y, W, num.trees = 500)
c.pred = predict(c.forest, X.test, estimate.variance = TRUE)

End(Not run)
```

predict.custom_forest Predict with a custom forest.

Description

Predict with a custom forest.
Usage

```r
S3 method for class 'custom_forest'
predict(object, newdata = NULL,
 num.threads = NULL, ...)
```

Arguments

- `object`: The trained forest.
- `newdata`: Points at which predictions should be made. If `NULL`, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example).
- `num.threads`: Number of threads used in training. If set to `NULL`, the software automatically selects an appropriate amount.
- `...`: Additional arguments (currently ignored).

Value

Vector of predictions.

Examples

```r
Not run:
Train a custom forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
c.forest = custom_forest(X, Y)

Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
c.pred = predict(c.forest, X.test)
```

Description

Gets estimates of \( \tau(x) \) using a trained instrumental forest.
predict.local_linear_forest

Usage

```r
S3 method for class 'instrumental_forest'
predict(object, newdata = NULL,
 num.threads = NULL, estimate.variance = FALSE, ...)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at \( X_i \) using only trees that did not use the \( i \)-th training example).
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **estimate.variance**: Whether variance estimates for \( \hat{\tau}(x) \) are desired (for confidence intervals).
- ... Additional arguments (currently ignored).

Value

A vector of predictions, along with (optional) variance estimates.

---

**predict.local_linear_forest**

*Predict with a local linear forest*

Description

Gets estimates of \( E[Y | X = x] \) using a trained regression forest.

Usage

```r
S3 method for class 'local_linear_forest'
predict(object, newdata = NULL,
 linear.correction.variables = NULL, ll.lambda = NULL,
 ll.weight.penalty = FALSE, num.threads = NULL,
 estimate.variance = FALSE, ...)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at \( X_i \) using only trees that did not use the \( i \)-th training example).
 predict.quantile_forest

Description

Gets estimates of the conditional quantiles of \(Y\) given \(X\) using a trained forest.

linear.correction.variables
Optional subset of indexes for variables to be used in local linear prediction. If left NULL, all variables are used. We run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.

ll.lambda
Ridge penalty for local linear predictions

ll.weight.penalty
Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.

num.threads
Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

estimate.variance
Whether variance estimates for \(\hat{h}(\tau)(x)\) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value
A vector of predictions.

Examples

```r
Not run:
Train the forest.
n = 50; p = 5
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
forest = local_linear_forest(X, Y)

Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
predictions = predict(forest, X.test)

Predict on out-of-bag training samples.
predictions.oob = predict(forest)

End(Not run)
```
Usage

## S3 method for class 'quantile_forest'
predict(object, newdata = NULL,
         quantiles = c(0.1, 0.5, 0.9), num.threads = NULL, ...)

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example).
- **quantiles**: Vector of quantiles at which estimates are required.
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **...**: Additional arguments (currently ignored).

Value

Predictions at each test point for each desired quantile.

Examples

```r
Not run:
Train a quantile forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

Predict on out-of-bag training samples.
q.pred = predict(q.forest)

Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
q.pred = predict(q.forest, X.test)

End(Not run)
```

predict.regression_forest

**Predict with a regression forest**

Description

Gets estimates of E[Y|X=x] using a trained regression forest.
Usage

```r
S3 method for class 'regression_forest'
predict(object, newdata = NULL,
 linear.correction.variables = NULL, ll.lambda = NULL,
 ll.weight.penalty = FALSE, num.threads = NULL,
 estimate.variance = FALSE, ...)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example).
- **linear.correction.variables**: Optional subset of indexes for variables to be used in local linear prediction. If NULL, standard GRF prediction is used. Otherwise, we run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.
- **ll.lambda**: Ridge penalty for local linear predictions
- **ll.weight.penalty**: Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **estimate.variance**: Whether variance estimates for hattau(x) are desired (for confidence intervals).
- **...**: Additional arguments (currently ignored).

Value

A vector of predictions.

Examples

```r
Not run:
Train a standard regression forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
r.forest = regression_forest(X, Y)

Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
r.pred = predict(r.forest, X.test)

Predict on out-of-bag training samples.
```
print.grf

r.pred = predict(r.forest)

# Predict with confidence intervals; growing more trees is now recommended.
r.forest = regression_forest(X, Y, num.trees = 100)
r.pred = predict(r.forest, X.test, estimate.variance = TRUE)

## End(Not run)

print.grf

Print a GRF forest object.

Description

Print a GRF forest object.

Usage

## S3 method for class 'grf'
print(x, decay.exponent = 2, max.depth = 4, ...)

Arguments

x The tree to print.
decay.exponent A tuning parameter that controls the importance of split depth.
max.depth The maximum depth of splits to consider.
... Additional arguments (currently ignored).

print.grf_tree

Print a GRF tree object.

Description

Print a GRF tree object.

Usage

## S3 method for class 'grf_tree'
print(x, ...)

Arguments

x The tree to print.
... Additional arguments (currently ignored).
**quantile_forest**  
*Quantile forest*

**Description**

Trains a regression forest that can be used to estimate quantiles of the conditional distribution of Y given X = x.

**Usage**

```r
quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9),
regression.splittiong = FALSE, sample.fraction = 0.5, mtry = NULL,
num.trees = 2000, num.threads = NULL, min.node.size = NULL,
honesty = TRUE, honesty.fraction = NULL, alpha = 0.05,
imbalance.penalty = 0, seed = NULL, clusters = NULL,
samples.per.cluster = NULL)
```

**Arguments**

- **X**  
The covariates used in the quantile regression.

- **Y**  
The outcome.

- **quantiles**  
Vector of quantiles used to calibrate the forest.

- **regression.splitting**  
Whether to use regression splits when growing trees instead of specialized splits based on the quantiles (the default). Setting this flag to true corresponds to the approach to quantile forests from Meinshausen (2006).

- **sample.fraction**  
Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.

- **mtry**  
Number of variables tried for each split.

- **num.trees**  
Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.

- **num.threads**  
Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

- **min.node.size**  
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-forest package.

- **honesty**  
Whether to use honest splitting (i.e., sub-sample splitting).

- **honesty.fraction**  
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.

- **alpha**  
A tuning parameter that controls the maximum imbalance of a split.
imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.

seed

The seed for the C++ random number generator.

clusters

Vector of integers or factors specifying which cluster each observation corresponds to.

samples_per_cluster

If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples_per_cluster to the size of the smallest cluster. If some clusters are smaller than samples_per_cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples_per_cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples_per_cluster.

Value

A trained quantile forest object.

Examples

```r
Not run:
Generate data.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
Y = X[,1] * rnorm(n)

Train a quantile forest.
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

Make predictions.
q.hat = predict(q.forest, X.test)

Make predictions for different quantiles than those used in training.
q.hat = predict(q.forest, X.test, quantiles=c(0.1, 0.9))

Train a quantile forest using regression splitting instead of quantile-based splits, emulating the approach in Meinshausen (2006).
meins.forest = quantile_forest(X, Y, regression.splitting=TRUE)

Make predictions for the desired quantiles.
q.hat = predict(meins.forest, X.test, quantiles=c(0.1, 0.5, 0.9))

End(Not run)
```
regression_forest  Regression forest

Description

Trains a regression forest that can be used to estimate the conditional mean function \( \mu(x) = \mathbb{E}[Y | X = x] \)

Usage

```r
regression_forest(X, Y, sample.fraction = 0.5, mtry = NULL,
num.trees = 2000, num.threads = NULL, min.node.size = NULL,
honesty = TRUE, honesty.fraction = NULL, ci.group.size = 2,
alpha = NULL, imbalance.penalty = NULL,
compute.oob.predictions = TRUE, seed = NULL, clusters = NULL,
samples_per_cluster = NULL, tune.parameters = FALSE,
um.fit.trees = 10, num.fit.reps = 100, num.optimize.reps = 1000)
```

Arguments

- **X**: The covariates used in the regression.
- **Y**: The outcome.
- **sample.fraction**: Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.
- **mtry**: Number of variables tried for each split.
- **num.trees**: Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions.
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **min.node.size**: A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.
- **honesty**: Whether to use honest splitting (i.e., sub-sample splitting).
- **honesty.fraction**: The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.
- **ci.group.size**: The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2.
- **alpha**: A tuning parameter that controls the maximum imbalance of a split.
- **imbalance.penalty**: A tuning parameter that controls how harshly imbalanced splits are penalized.
compute.oob.predictions  
Whether OOB predictions on training set should be precomputed.

seed  
The seed for the C++ random number generator.

clusters  
Vector of integers or factors specifying which cluster each observation corresponds to.

samples_per_cluster  
If sampling by cluster, the number of observations to be sampled from each cluster when training a tree. If NULL, we set samples_per_cluster to the size of the smallest cluster. If some clusters are smaller than samples_per_cluster, the whole cluster is used every time the cluster is drawn. Note that clusters with less than samples_per_cluster observations get relatively smaller weight than others in training the forest, i.e., the contribution of a given cluster to the final forest scales with the minimum of the number of observations in the cluster and samples_per_cluster.

tune.parameters  
If true, NULL parameters are tuned by cross-validation; if false NULL parameters are set to defaults.

num.fit.trees  
The number of trees in each 'mini forest' used to fit the tuning model.

num.fit.reps  
The number of forests used to fit the tuning model.

num.optimize.reps  
The number of random parameter values considered when using the model to select the optimal parameters.

Value

A trained regression forest object.

Examples

```r
Not run:
Train a standard regression forest.
set.seed(123)
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
rf = regression_forest(X, Y, samples_per_cluster = 1)

Predict using the forest.
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
ypred = predict(rf, X.test)

Predict on out-of-bag training samples.
ypred = predict(rf)

Predict with confidence intervals; growing more trees is now recommended.
rf = regression_forest(X, Y, num.trees = 100)
ypred = predict(rf, X.test, estimate.variance = TRUE)
```

## End(Not run)
split_frequencies  Calculate which features the forest split on at each depth.

Description

Calculate which features the forest split on at each depth.

Usage

split_frequencies(forest, max.depth = 4)

Arguments

forest  The trained forest.
max.depth  Maximum depth of splits to consider.

Value

A matrix of split depth by feature index, where each value is the number of times the feature was split on at that depth.

Examples

## Not run:
# Train a quantile forest.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

# Calculate the split frequencies for this forest.
split_frequencies(q.forest)

## End(Not run)

test_calibration  Omnibus evaluation of the quality of the random forest estimates via calibration.
tune_causal_forest

Description

Test calibration of the forest. Computes the best linear fit of the target estimand using the forest prediction (on held-out data) as well as the mean forest prediction as the sole two regressors. A coefficient of 1 for 'mean.forest.prediction' suggests that the mean forest prediction is correct, whereas a coefficient of 1 for 'differential.forest.prediction' additionally suggests that the forest has captured heterogeneity in the underlying signal. The p-value of the 'differential.forest.prediction' coefficient also acts as an omnibus test for the presence of heterogeneity: If the coefficient is significantly different from 0, then we can reject the null of no heterogeneity.

Usage

test_calibration(forest)

Arguments

forest The trained forest.

Value

A heteroskedasticity-consistent test of calibration.

References


Examples

```r
Not run:

n = 800; p = 5
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 0.25 + 0.5 * (X[,1] > 0))
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
forest = causal_forest(X, Y, W)
test_calibration(forest)

End(Not run)
```
Description

Finds the optimal parameters to be used in training a regression forest. This method currently tunes over min.node.size, mtry, sample.fraction, alpha, and imbalance.penalty. Please see the method 'causal_forest' for a description of the standard causal forest parameters. Note that if fixed values can be supplied for any of the parameters mentioned above, and in that case, that parameter will not be tuned. For example, if this method is called with min.node.size = 10 and alpha = 0.7, then those parameter values will be treated as fixed, and only sample.fraction and imbalance.penalty will be tuned.

Usage

tune_causal_forest(X, Y, W, num.fit.trees = 200, num.fit.reps = 50, num.optimize.reps = 1000, min.node.size = NULL, sample.fraction = 0.5, mtry = NULL, alpha = NULL, imbalance.penalty = NULL, stabilize.splits = TRUE, num.threads = NULL, honesty = TRUE, honesty.fraction = NULL, seed = NULL, clusters = NULL, samples_per_cluster = NULL)

Arguments

X  The covariates used in the causal regression.
Y  The outcome.
W  The treatment assignment (may be binary or real).
num.fit.trees The number of trees in each 'mini forest' used to fit the tuning model.
num.fit.reps The number of forests used to fit the tuning model.
num.optimize.reps The number of random parameter values considered when using the model to select the optimal parameters.
min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-forest package.
sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.
mtry Number of variables tried for each split.
alpha A tuning parameter that controls the maximum imbalance of a split.
imbalance.penalty A tuning parameter that controls how harshly imbalanced splits are penalized.
stabilize.splits Whether or not the treatment should be taken into account when determining the imbalance of a split (experimental).
num.threads Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
honesty Whether to use honest splitting (i.e., sub-sample splitting).
honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. When using the defaults
(honesty = TRUE and honesty.fraction = NULL), half of the data will be used
for determining splits.

seed
The seed of the C++ random number generator.

clusters
Vector of integers or factors specifying which cluster each observation corre-
sponds to.

samples_per_cluster
If sampling by cluster, the number of observations to be sampled from each
cluster. Must be less than the size of the smallest cluster. If set to NULL software
will set this value to the size of the smallest cluster.

Value
A list consisting of the optimal parameter values (‘params’) along with their debiased error (‘error’).

Examples

```r
Not run:
Find the optimal tuning parameters.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
W = rbinom(n, 1, 0.5)
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
params = tune_causal_forest(X, Y, W)$params

Use these parameters to train a regression forest.
tuned_forest = causal_forest(X, Y, W, num.trees = 1000,
 min.node.size = as.numeric(params["min.node.size"]),
 sample.fraction = as.numeric(params["sample.fraction"]),
 mtry = as.numeric(params["mtry"]),
 alpha = as.numeric(params["alpha"]),
 imbalance.penalty = as.numeric(params["imbalance.penalty"])

End(Not run)
```

Description
Finds the optimal ridge penalty for local linear prediction.
Usage

tune_local_linear_forest(forest, linear.correction.variables = NULL, ll.weight.penalty = FALSE, num_threads = NULL, lambda_path = NULL)

Arguments

forest The forest used for prediction.
linear.correction.variables Variables to use for local linear prediction. If left null, all variables are used.
ll.weight.penalty Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.
num_threads Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
lambda_path Optional list of lambdas to use for cross-validation.

Value

A list of lambdas tried, corresponding errors, and optimal ridge penalty lambda.

Examples

## Not run:
# Find the optimal tuning parameters.
n = 500; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
forest = regression_forest(X,Y)
tuned.lambda = tune_local_linear_forest(forest)

# Use this parameter to predict from a local linear forest.
predictions = predict(forest, linear.correction.variables = 1:p, lambda = tuned.lambda)

## End(Not run)

---

tune_regression_forest

Regression forest tuning

Description

Finds the optimal parameters to be used in training a regression forest. This method currently tunes over min.node.size, mtry, sample.fraction, alpha, and imbalance.penalty. Please see the method 'regression_forest' for a description of the standard forest parameters. Note that if fixed values can be supplied for any of the parameters mentioned above, and in that case, that parameter will not be tuned. For example, if this method is called with min.node.size = 10 and alpha = 0.7, then those parameter values will be treated as fixed, and only sample.fraction and imbalance.penalty will be tuned.
**tune_regression_forest**

**Usage**

```r
tune_regression_forest(X, Y, num.fit.trees = 10, num.fit.reps = 100,
num.optimize.reps = 1000, min.node.size = NULL,
sample.fraction = 0.5, mtry = NULL, alpha = NULL,
imbalance.penalty = NULL, num.threads = NULL, honesty = TRUE,
honesty.fraction = NULL, seed = NULL, clusters = NULL,
samples_per_cluster = NULL)
```

**Arguments**

- **X**
  - The covariates used in the regression.

- **Y**
  - The outcome.

- **num.fit.trees**
  - The number of trees in each 'mini forest' used to fit the tuning model.

- **num.fit.reps**
  - The number of forests used to fit the tuning model.

- **num.optimize.reps**
  - The number of random parameter values considered when using the model to select the optimal parameters.

- **min.node.size**
  - A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package.

- **sample.fraction**
  - Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction.

- **mtry**
  - Number of variables tried for each split.

- **alpha**
  - A tuning parameter that controls the maximum imbalance of a split.

- **imbalance.penalty**
  - A tuning parameter that controls how harshly imbalanced splits are penalized.

- **num.threads**
  - Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

- **honesty**
  - Whether or not honest splitting (i.e., sub-sample splitting) should be used.

- **honesty.fraction**
  - The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. When using the defaults (honesty = TRUE and honesty.fraction = NULL), half of the data will be used for determining splits.

- **seed**
  - The seed for the C++ random number generator.

- **clusters**
  - Vector of integers or factors specifying which cluster each observation corresponds to.

- **samples_per_cluster**
  - If sampling by cluster, the number of observations to be sampled from each cluster. Must be less than the size of the smallest cluster. If set to NULL software will set this value to the size of the smallest cluster.
variable_importance

Value

A list consisting of the optimal parameter values (`params`) along with their debiased error (`error`).

Examples

```r
Not run:
Find the optimal tuning parameters.
n = 500; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
params = tune_regression_forest(X, Y)$params

Use these parameters to train a regression forest.
tuned_forest = regression_forest(X, Y, num.trees = 1000,
 min.node.size = as.numeric(params["min.node.size"]),
 sample.fraction = as.numeric(params["sample.fraction"]),
 mtry = as.numeric(params["mtry"]),
 alpha = as.numeric(params["alpha"]),
 imbalance.penalty = as.numeric(params["imbalance.penalty"]))

End(Not run)
```

variable_importance  Calculate a simple measure of 'importance' for each feature.

Description

Calculate a simple measure of 'importance' for each feature.

Usage

```r
variable_importance(forest, decay.exponent = 2, max.depth = 4)
```

Arguments

- `forest`: The trained forest.
- `decay.exponent`: A tuning parameter that controls the importance of split depth.
- `max.depth`: Maximum depth of splits to consider.

Value

A list specifying an 'importance value' for each feature.
Examples

## Not run:

# Train a quantile forest.

n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))

# Calculate the 'importance' of each feature.
variable_importance(q.forest)

## End(Not run)
Index

average_partial_effect, 2
average_treatment_effect, 3

causal_forest, 5
create_dot_body, 8
custom_forest, 8

export_graphviz, 10

get_sample_weights, 10
get_tree, 11
grf, 12

instrumental_forest, 14

local_linear_forest, 16

plot.grf_tree, 18
predict.causal_forest, 18
predict.custom_forest, 19
predict.instrumental_forest, 20
predict.local_linear_forest, 21
predict.quantile_forest, 22
predict.regression_forest, 23
print.grf, 25
print.grf_tree, 25

quantile_forest, 26

regression_forest, 28

split_frequencies, 30

test_calibration, 30
tune_causal_forest, 31
tune_local_linear_forest, 33
tune_regression_forest, 34

variable_importance, 36