Package ‘grf’

December 6, 2019

Title Generalized Random Forests
Version 1.0.1

BugReports https://github.com/grf-labs/grf/issues

Description A pluggable package for forest-based statistical estimation and inference. GRF currently provides methods for non-parametric least-squares regression, quantile regression, and treatment effect estimation (optionally using instrumental variables).

Depends R (>= 3.5.0)
License GPL-3

LinkingTo Rcpp, RcppEigen
Imports DiceKriging, lmtest, Matrix, methods, Rcpp (>= 0.12.15), sandwich (>= 2.4-0)

RoxygenNote 7.0.1
Suggests DiagrammeR, testthat

SystemRequirements GNU make

URL https://github.com/grf-labs/grf

NeedsCompilation yes

Author Julie Tibshirani [aut, cre],
 Susan Athey [aut],
 Rina Friedberg [ctb],
 Vitor Hadad [ctb],
 David Hirshberg [ctb],
 Luke Miner [ctb],
 Erik Sverdrup [ctb],
 Stefan Wager [aut],
 Marvin Wright [ctb]

Maintainer Julie Tibshirani <jtibs@cs.stanford.edu>

Repository CRAN

Date/Publication 2019-12-06 09:10:02 UTC
R topics documented:

average_late .. 3
average_partial_effect 4
average_treatment_effect 5
best_linear_projection 7
boosted_regression_forest 8
causal_forest .. 11
custom_forest .. 15
get_sample_weights 17
get_tree .. 18
grf .. 19
instrumental_forest 21
leaf_stats.causal_forest 24
leaf_stats.default 24
leaf_stats.instrumental_forest 25
leaf_stats.regression_forest 25
ll_regression_forest 26
merge_forests ... 28
plot.grf_tree ... 29
predict.boosted_regression_forest 30
predict.causal_forest 31
predict.custom_forest 33
predict.instrumental_forest 34
predict.ll_regression_forest 35
predict.quantile_forest 36
predict.regression_forest 37
print.boosted_regression_forest 39
print.grf .. 40
print.grf_tree .. 40
print.tuning_output 41
quantile_forest 41
regression_forest 44
split_frequencies 46
test_calibration 47
tune_causal_forest 48
tune_forest .. 51
tune_instrumental_forest 52
tune_ll_causal_forest 55
tune_ll_regression_forest 56
tune_regression_forest 57
variable_importance 60

Index 62
Estimate the average (conditional) local average treatment effect using a causal forest.

Description

Given an outcome Y, treatment W and instrument Z, the (conditional) local average treatment effect is $\tau(x) = \frac{\text{Cov}[Y, Z \mid X = x]}{\text{Cov}[W, Z \mid X = x]}$. This is the quantity that is estimated with an instrumental forest. It can be interpreted causally in various ways. Given a homogeneity assumption, $\tau(x)$ is simply the CATE at x. When W is binary and there are no "defiers", Imbens and Angrist (1994) show that $\tau(x)$ can be interpreted as an average treatment effect on compliers. This function is about estimating $\tau = \mathbb{E}[\tau(X)]$ which, extending standard nomenclature, should perhaps be called the Average (Conditional) Local Average Treatment Effect (ACLATE).

Usage

```r
average_late(forest, compliance.score = NULL, subset = NULL)
```

Arguments

- `forest` The trained forest.
- `compliance.score` An estimate of the causal effect of Z on W, i.e., $\Delta(X) = \mathbb{E}[W \mid X, Z = 1] - \mathbb{E}[W \mid X, Z = 0]$, for each sample $i = 1, ..., n$.
- `subset` Specifies subset of the training examples over which we estimate the ATE. WARNING: For valid statistical performance, the subset should be defined only using features X_i, not using the instrument Z_i, treatment W_i or outcome Y_i.

Details

We estimate the ACLATE using a doubly robust estimator. See Chernozhukov et al. (2016) for a discussion, and Section 5.2 of Athey and Wager (2017) for an example using forests.

If clusters are specified for the forest, then each cluster gets equal weight. For example, if there are 10 clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each and per-cluster ATE = 0, then the overall ATE is 0.5 (not 0.05).

Value

An estimate of the average (C)LATE, along with standard error.

References

average_partial_effect

Estimate average partial effects using a causal forest

Description

Gets estimates of the average partial effect, in particular the (conditional) average treatment effect (target.sample = all): \(\frac{1}{n} \sum_{i=1}^{n} \text{Cov}[W_i, Y_i | X = X_i] / \text{Var}[W_i | X = X_i] \). Note that for a binary unconfounded treatment, the average partial effect matches the average treatment effect.

Usage

```r
average_partial_effect(
  forest,
  calibrate.weights = TRUE,
  subset = NULL,
  num.trees.for.variance = 500
)
```

Arguments

- `forest` The trained forest.
- `calibrate.weights` Whether to force debiasing weights to match expected moments for 1, W, W.hat, and 1/Var[W|X].
- `subset` Specifies a subset of the training examples over which we estimate the ATE. WARNING: For valid statistical performance, the subset should be defined only using features Xi, not using the treatment Wi or the outcome Yi.
- `num.trees.for.variance` Number of trees used to estimate Var[Wi | Xi = x]. Default is 500.

Details

If clusters are specified, then each unit gets equal weight by default. For example, if there are 10 clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each and per-cluster ATE = 0, then the overall ATE is 0.05 (additional sample.weights allow for custom weighting). If equalize.cluster.weights = TRUE each cluster gets equal weight and the overall ATE is 0.5.

Value

An estimate of the average partial effect, along with standard error.
average_treatment_effect

Examples

```r
## Not run:
n <- 2000
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 1 / (1 + exp(-X[,2]))) + rnorm(n)
Y <- pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
tau.forest <- causal_forest(X, Y, W)
tau.hat <- predict(tau.forest)
average_partial_effect(tau.forest)
average_partial_effect(tau.forest, subset = X[,1] > 0)

## End(Not run)
```

average_treatment_effect

Estimate average treatment effects using a causal forest

Description

Gets estimates of one of the following.

- The (conditional) average treatment effect (target.sample = all): \(\frac{\sum_i (Y(1) - Y(0)) 1\{X = X_i\}}{n} \)
- The (conditional) average treatment effect on the treated (target.sample = treated): \(\frac{\sum_W (Y(1) - Y(0)) 1\{X = X_i\}}{|W = 1|} \)
- The (conditional) average treatment effect on the controls (target.sample = control): \(\frac{\sum_W (Y(1) - Y(0)) 1\{X = X_i\}}{|W = 0|} \)
- The overlap-weighted (conditional) average treatment effect \(\frac{\sum_i (1 - e(X_i))(e(X_i)) (1 - e(X_i)) E[Y(1) - Y(0) | X = X_i]}{\sum_i (1 - e(X_i))(1 - e(X_i))} \)

This last estimand is recommended by Li, Morgan, and Zaslavsky (JASA, 2017) in case of poor overlap (i.e., when the propensities \(e(x) \) may be very close to 0 or 1), as it doesn’t involve dividing by estimated propensities.

Usage

```r
average_treatment_effect(
  forest,
  target.sample = c("all", "treated", "control", "overlap"),
  method = c("AIPW", "TMLE"),
  subset = NULL
)
```
average_treatment_effect

Arguments

forest
The trained forest.
target.sample
Which sample to aggregate treatment effects over.
method
Method used for doubly robust inference. Can be either augmented inverse-propensity weighting (AIPW), or targeted maximum likelihood estimation (TMLE).
subset
Specifies subset of the training examples over which we estimate the ATE. WARNING: For valid statistical performance, the subset should be defined only using features X_i, not using the treatment W_i or the outcome Y_i.

Details

If clusters are specified, then each unit gets equal weight by default. For example, if there are 10 clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each and per-cluster ATE = 0, then the overall ATE is 0.05 (additional sample.weights allow for custom weighting). If equalize.cluster.weights = TRUE each cluster gets equal weight and the overall ATE is 0.5.

Value

An estimate of the average treatment effect, along with standard error.

Examples

```r
## Not run:
# Train a causal forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)
# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

# Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(c.forest, target.sample = "all")

# Estimate the conditional average treatment effect on the treated sample (CATT).
# We don't expect much difference between the CATE and the CATT in this example,
# since treatment assignment was randomized.
average_treatment_effect(c.forest, target.sample = "treated")

# Estimate the conditional average treatment effect on samples with positive X[,1].
average_treatment_effect(c.forest, target.sample = "all", X[, 1] > 0)
```

End(Not run)
Estimate the best linear projection of a conditional average treatment effect using a causal forest.

Description

Let $\tau(X_i) = E[Y(1) - Y(0) \mid X = X_i]$ be the CATE, and A_i be a vector of user-provided covariates. This function provides a (doubly robust) fit to the linear model

Usage

```r
best_linear_projection(forest, A = NULL, subset = NULL)
```

Arguments

- `forest`: The trained forest.
- `A`: The covariates we want to project the CATE onto.
- `subset`: Specifies subset of the training examples over which we estimate the ATE. WARNING: For valid statistical performance, the subset should be defined only using features X_i, not using the treatment W_i or the outcome Y_i.

Details

$\tau(X_i) \sim \beta_0 + A_i \times \beta$

Procedurally, we do so by regressing doubly robust scores derived from the causal forest against the A_i. Note the covariates A_i may consist of a subset of the X_i, or they may be distinct. The case of the null model $\tau(X_i) \sim \beta_0$ is equivalent to fitting an average treatment effect via AIPW.

Value

An estimate of the best linear projection, along with coefficient standard errors.

References

Examples

```r
## Not run:
n <- 800
p <- 5
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.25 + 0.5 * (X[, 1] > 0))
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
```
boosted_regression_forest

Boosted regression forest (experimental)

Description

Trains a boosted regression forest that can be used to estimate the conditional mean function \(\mu(x) = E[Y | X = x] \). Selects number of boosting iterations based on cross-validation. This functionality is experimental and will likely change in future releases.

Usage

```r
boosted_regression_forest(
  X,
  Y,
  num.trees = 2000,
  sample.weights = NULL,
  clusters = NULL,
  equalize.cluster.weights = FALSE,
  sample.fraction = 0.5,
  mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
  min.node.size = 5,
  honesty = TRUE,
  honesty.fraction = 0.5,
  honesty.prune.leaves = TRUE,
  alpha = 0.05,
  imbalance.penalty = 0,
  ci.group.size = 2,
  tune.parameters = "none",
  tune.num.trees = 10,
  tune.num.reps = 100,
  tune.num.draws = 1000,
  boost.steps = NULL,
  boost.error.reduction = 0.97,
  boost.max.steps = 5,
  boost.trees.tune = 10,
  num.threads = NULL,
  seed = runif(1, 0, .Machine$integer.max)
)
```

```r
forest <- causal_forest(X, Y, W)
best_linear_projection(forest, X[,1:2])
```

End(Not run)
Arguments

- **X**
 - The covariates used in the regression.

- **Y**
 - The outcome.

- **num.trees**
 - Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.

- **sample.weights**
 - Weights given to each observation in estimation. If NULL, each observation receives the same weight. Default is NULL.

- **clusters**
 - Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).

- **equalize.cluster.weights**
 - If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

- **sample.fraction**
 - Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

- **mtry**
 - Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.

- **min.node.size**
 - A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

- **honesty**
 - Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

- **honesty.fraction**
 - The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

- **honesty.prune.leaves**
 - If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

- **alpha**
 - A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.
imbalance.penalty
 A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

ci.group.size
 The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters
 If true, NULL parameters are tuned by cross-validation; if FALSE NULL parameters are set to defaults. Default is FALSE.

tune.num.trees
 The number of trees in each 'mini forest' used to fit the tuning model. Default is 10.

tune.num.reps
 The number of forests used to fit the tuning model. Default is 100.

tune.num.draws
 The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

boost.steps
 The number of boosting iterations. If NULL, selected by cross-validation. Default is NULL.

boost.error.reduction
 If boost.steps is NULL, the percentage of previous steps’ error that must be estimated by cross validation in order to take a new step, default 0.97.

boost.max.steps
 The maximum number of boosting iterations to try when boost.steps=NULL. Default is 5.

boost.trees.tune
 If boost.steps is NULL, the number of trees used to test a new boosting step when tuning boost.steps. Default is 10.

num.threads
 Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

seed
 The seed for the C++ random number generator.

Value
 A boosted regression forest object. $error contains the mean debiased error for each step, and $forests contains the trained regression forest for each step.

Examples
 ## Not run:
 # Train a boosted regression forest.
 n <- 50
 p <- 10
 X <- matrix(rnorm(n * p), n, p)
 Y <- X[, 1] * rnorm(n)
 boosted.forest <- boosted_regression_forest(X, Y)
 # Predict using the forest.
 X.test <- matrix(0, 101, p)
 X.test[, 1] <- seq(-2, 2, length.out = 101)
 boost.pred <- predict(boosted.forest, X.test)
Predict on out-of-bag training samples.
boost.pred <- predict(boosted.forest)

Check how many boosting iterations were used
print(length(boosted.forest$forests))

End(Not run)

causal_forest
Causal forest

Description

Trains a causal forest that can be used to estimate conditional average treatment effects $\tau(X)$. When the treatment assignment W is binary and unconfounded, we have $\tau(X) = E[Y(1) - Y(0) \mid X = x]$, where $Y(0)$ and $Y(1)$ are potential outcomes corresponding to the two possible treatment states. When W is continuous, we effectively estimate an average partial effect $\text{Cov}[Y, W \mid X = x] / \text{Var}[W \mid X = x]$, and interpret it as a treatment effect given unconfoundedness.

Usage

```r
causal_forest(
  X,
  Y,
  W,
  Y.hat = NULL,
  W.hat = NULL,
  num.trees = 2000,
  sample.weights = NULL,
  clusters = NULL,
  equalize.cluster.weights = FALSE,
  sample.fraction = 0.5,
  mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
  min.node.size = 5,
  honesty = TRUE,
  honesty.fraction = 0.5,
  honesty.prune.leaves = TRUE,
  alpha = 0.05,
  imbalance.penalty = 0,
  stabilize.splits = TRUE,
  ci.group.size = 2,
  tune.parameters = "none",
  tune.num.trees = 200,
  tune.num.reps = 50,
  tune.num.draws = 1000,
  compute.oob.predictions = TRUE,
  orthog.boosting = FALSE,
)```
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X  The covariates used in the causal regression.
Y  The outcome (must be a numeric vector with no NAs).
W  The treatment assignment (must be a binary or real numeric vector with no NAs).
Y.hat  Estimates of the expected responses E[Y | Xi], marginalizing over treatment. If Y.hat = NULL, these are estimated using a separate regression forest. See section 6.1.1 of the GRF paper for further discussion of this quantity. Default is NULL.
W.hat  Estimates of the treatment propensities E[W | Xi]. If W.hat = NULL, these are estimated using a separate regression forest. Default is NULL.
num.trees  Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.
sample.weights  (experimental) Weights given to each sample in estimation. If NULL, each observation receives the same weight. Note: To avoid introducing confounding, weights should be independent of the potential outcomes given X. Default is NULL.
clusters  Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.cluster.weights  If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster. If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.
sample.fraction  Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.
mtry  Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.
min.node.size  A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.
honesty  Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.
honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set \( J_1 \) in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves
If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

stabilize.splits
Whether or not the treatment should be taken into account when determining the imbalance of a split. Default is TRUE.

ci.group.size
The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters
A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "none" (no parameters are tuned).

tune.num.trees
The number of trees in each ‘mini forest’ used to fit the tuning model. Default is 200.

tune.num.reps
The number of forests used to fit the tuning model. Default is 50.

tune.num.draws
The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

compute.oob.predictions
Whether OOB predictions on training set should be precomputed. Default is TRUE.

orthog.boosting
(experimental) If TRUE, then when Y.hat = NULL or W.hat is NULL, the missing quantities are estimated using boosted regression forests. The number of boosting steps is selected automatically. Default is FALSE.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed
The seed of the C++ random number generator.

Value
A trained causal forest object. If tune.parameters is enabled, then tuning information will be included through the "tuning.output" attribute.
Examples

## Not run:
# Train a causal forest.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

# Predict on out-of-bag training samples.
c.pred <- predict(c.forest)

# Predict with confidence intervals; growing more trees is now recommended.
c.forest <- causal_forest(X, Y, W, num.trees = 4000)
c.pred <- predict(c.forest, X.test, estimate.variance = TRUE)

# In some examples, pre-fitting models for Y and W separately may
# be helpful (e.g., if different models use different covariates).
# In some applications, one may even want to get Y.hat and W.hat
# using a completely different method (e.g., boosting).
n <- 2000
p <- 20
X <- matrix(rnorm(n * p), n, p)
TAU <- 1 / (1 + exp(-X[, 3]))
W <- rbinom(n, 1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y <- pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)

forest.W <- regression_forest(X, W, tune.parameters = "all")
W.hat <- predict(forest.W)$predictions

forest.Y <- regression_forest(X, Y, tune.parameters = "all")
Y.hat <- predict(forest.Y)$predictions

forest.Y.varimp <- variable_importance(forest.Y)

# Note: Forests may have a hard time when trained on very few variables
# (e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
# in selection.
selected.vars <- which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)

tau.forest <- causal_forest(X[, selected.vars], Y, W, W.hat = W.hat, Y.hat = Y.hat, tune.parameters = "all")
tau.hat <- predict(tau.forest)$predictions
custom_forest

## End(Not run)

---

custom_forest  Custom forest

Description

Trains a custom forest model.

Usage

custom_forest(
  X,
  Y,
  sample.fraction = 0.5,
  mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
  num.trees = 2000,
  min.node.size = 5,
  honesty = TRUE,
  honesty.fraction = 0.5,
  honesty.prune.leaves = TRUE,
  alpha = 0.05,
  imbalance.penalty = 0,
  clusters = NULL,
  equalize.cluster.weights = FALSE,
  compute.oob.predictions = TRUE,
  num.threads = NULL,
  seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X  

The covariates used in the regression.

Y  

The outcome.

sample.fraction  

Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry  

Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.

num.trees  

Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.

min.node.size  

A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.
honesty  Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction  The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves  If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha  A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty  A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

clusters  Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).

equalize.cluster.weights  If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same.

compute.oob.predictions  Whether OOB predictions on training set should be precomputed. Default is TRUE.

num.threads  Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency

seed  The seed of the C++ random number generator.

Value
A trained regression forest object.

Examples

## Not run:
# Train a custom forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
get_sample_weights

Y <- X[, 1] * rnorm(n)
c.forest <- custom_forest(X, Y)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

## End(Not run)

get_sample_weights  

Given a trained forest and test data, compute the training sample weights for each test point.

Description

During normal prediction, these weights are computed as an intermediate step towards producing estimates. This function allows for examining the weights directly, so they could be potentially be used as the input to a different analysis.

Usage

get_sample_weights(forest, newdata = NULL, num.threads = NULL)

Arguments

forest  
The trained forest.
newdata  
Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example).#’ @param max.depth Maximum depth of splits to consider.
num.threads  
Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

Value

A sparse matrix where each row represents a test sample, and each column is a sample in the training data. The value at (i, j) gives the weight of training sample j for test sample i.

Examples

## Not run:
p <- 10
n <- 100
X <- matrix(2 * runif(n * p) - 1, n, p)
Y <- (X[, 1] > 0) + 2 * rnorm(n)
rrf <- regression_forest(X, Y, mtry = p)
sample.weights.oob <- get_sample_weights(rrf)

n.test <- 15
X.test <- matrix(2 * runif(n.test * p) - 1, n.test, p)
sample.weights <- get_sample_weights(rrf, X.test)

## End(Not run)

---

get_tree

Retrieve a single tree from a trained forest object.

Description

Retrieve a single tree from a trained forest object.

Usage

get_tree(forest, index)

Arguments

- forest: The trained forest.
- index: The index of the tree to retrieve.

Value

A GRF tree object containing the below attributes: drawn_samples: a list of examples that were used in training the tree. This includes examples that were used in choosing splits, as well as the examples that populate the leaf nodes. Put another way, if honesty is enabled, this list includes both subsamples from the split (J1 and J2 in the notation of the paper). num_samples: the number of examples used in training the tree. nodes: a list of objects representing the nodes in the tree, starting with the root node. Each node will contain an 'is_leaf' attribute, which indicates whether it is an interior or leaf node. Interior nodes contain the attributes 'left_child' and 'right_child', which give the indices of their children in the list, as well as 'split_variable', and 'split_value', which describe the split that was chosen. Leaf nodes only have the attribute 'samples', which is a list of the training examples that the leaf contains. Note that if honesty is enabled, this list will only contain examples from the second subsample that was used to 'repopulate' the tree (J2 in the notation of the paper).

Examples

## Not run:
# Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))
# Examine a particular tree.
q.tree <- get_tree(q.forest, 3)
q.tree$nodes

## End(Not run)

---

**Description**

A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods for least-squares regression, quantile regression, and treatment effect estimation (optionally using instrumental variables).

In addition, GRF supports 'honest' estimation (where one subset of the data is used for choosing splits, and another for populating the leaves of the tree), and confidence intervals for least-squares regression and treatment effect estimation.

Some helpful links for getting started:

* The R package documentation contains usage examples and method reference ([https://grf-labs.github.io/grf](https://grf-labs.github.io/grf)).
* The GRF reference gives a detailed description of the GRF algorithm and includes troubleshooting suggestions ([https://grf-labs.github.io/grf/REFERENCE.html](https://grf-labs.github.io/grf/REFERENCE.html)).
* For community questions and answers around usage, see Github issues labelled 'question' ([https://github.com/grf-labs/grf/issues?q=label%3Aquestion](https://github.com/grf-labs/grf/issues?q=label%3Aquestion)).

**Examples**

```r
Not run:
library(grf)

The following script demonstrates how to use GRF for heterogeneous treatment
effect estimation. For examples of how to use other types of forest, as for
quantile regression and causal effect estimation using instrumental variables,
please consult the documentation on the relevant forest methods (quantile_forest,
instrumental_forest, etc.).

Generate data.
n = 2000; p = 10
X = matrix(rnorm(n*p), n, p)
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)

Train a causal forest.
W = rbinom(n, 1, 0.4 + 0.2 * (X[,1] > 0))
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
```
tau.forest = causal_forest(X, Y, W)

# Estimate treatment effects for the training data using out-of-bag prediction.
tau.hat.oob = predict(tau.forest)
hist(tau.hat.oob$predictions)

# Estimate treatment effects for the test sample.
tau.hat = predict(tau.forest, X.test)
plot(X.test[,1], tau.hat$predictions, ylim = range(tau.hat$predictions, 0, 2),
     xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 2)

# Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(tau.forest, target.sample = "all")

# Estimate the conditional average treatment effect on the treated sample (CATT).
# Here, we don't expect much difference between the CATE and the CATT, since
# treatment assignment was randomized.
average_treatment_effect(tau.forest, target.sample = "treated")

# Add confidence intervals for heterogeneous treatment effects; growing more
# trees is now recommended.
tau.forest = causal_forest(X, Y, W, num.trees = 4000)
tau.hat = predict(tau.forest, X.test, estimate.variance = TRUE)
sigma.hat = sqrt(tau.hat$variance.estimates)

ylim = range(tau.hat$predictions + 1.96 * sigma.hat, tau.hat$predictions - 1.96 * sigma.hat, 0, 2),
plot(X.test[,1], tau.hat$predictions, ylim = ylim, xlab = "x", ylab = "tau", type = "l")
lines(X.test[,1], tau.hat$predictions + 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], tau.hat$predictions - 1.96 * sigma.hat, col = 1, lty = 2)
lines(X.test[,1], pmax(0, X.test[,1]), col = 2, lty = 1)

# In some examples, pre-fitting models for Y and W separately may
# be helpful (e.g., if different models use different covariates).
# In some applications, one may even want to get Y.hat and W.hat
# using a completely different method (e.g., boosting).

# Generate new data.
n = 4000; p = 20
X = matrix(rnorm(n * p), n, p)
TAU = 1 / (1 + exp(-X[, 3]))
W = rbinom(n ,1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y = pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)

forest.W = regression_forest(X, W, tune.parameters = "all")
W.hat = predict(forest.W)$predictions

forest.Y = regression_forest(X, Y, tune.parameters = "all")
Y.hat = predict(forest.Y)$predictions

forest.Y.varimp = variable_importance(forest.Y)

# Note: Forests may have a hard time when trained on very few variables
# (e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
# in selection.
selected.vars = which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)

tau.forest = causal_forest(X[, selected.vars], Y, W,
            W.hat = W.hat, Y.hat = Y.hat,
            tune.parameters = "all")

# Check whether causal forest predictions are well calibrated.
test_calibration(tau.forest)

## End(Not run)

---

### instrumental_forest

**Intrumental forest**

Trains an instrumental forest that can be used to estimate conditional local average treatment effects $\tau(X)$ identified using instruments. Formally, the forest estimates $\tau(X) = \frac{\text{Cov}[Y, Z | X = x]}{\text{Cov}[W, Z | X = x]}$. Note that when the instrument $Z$ and treatment assignment $W$ coincide, an instrumental forest is equivalent to a causal forest.

**Usage**

```
instrumental_forest(
 X,
 Y,
 W,
 Z,
 Y.hat = NULL,
 W.hat = NULL,
 Z.hat = NULL,
 num.trees = 2000,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
 min.node.size = 5,
 honesty = TRUE,
 honesty.fraction = 0.5,
 honesty.prune.leaves = TRUE,
 alpha = 0.05,
 imbalance.penalty = 0,
 stabilize.splits = TRUE,
 ci.group.size = 2,
 reduced.form.weight = 0,
)```

```r
tune.parameters = "none",
tune.num.trees = 200,
tune.num.reps = 50,
tune.num.draws = 1000,
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>The covariates used in the instrumental regression.</td>
</tr>
<tr>
<td>Y</td>
<td>The outcome.</td>
</tr>
<tr>
<td>W</td>
<td>The treatment assignment (may be binary or real).</td>
</tr>
<tr>
<td>Z</td>
<td>The instrument (may be binary or real).</td>
</tr>
<tr>
<td>Y.hat</td>
<td>Estimates of the expected responses $E[Y \mid X_i]$, marginalizing over treatment. If Y.hat = NULL, these are estimated using a separate regression forest. Default is NULL.</td>
</tr>
<tr>
<td>W.hat</td>
<td>Estimates of the treatment propensities $E[W \mid X_i]$. If W.hat = NULL, these are estimated using a separate regression forest. Default is NULL.</td>
</tr>
<tr>
<td>Z.hat</td>
<td>Estimates of the instrument propensities $E[Z \mid X_i]$. If Z.hat = NULL, these are estimated using a separate regression forest. Default is NULL.</td>
</tr>
<tr>
<td>num.trees</td>
<td>Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.</td>
</tr>
<tr>
<td>sample.weights</td>
<td>(experimental) Weights given to each observation in estimation. If NULL, each observation receives equal weight. Default is NULL.</td>
</tr>
<tr>
<td>clusters</td>
<td>Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).</td>
</tr>
<tr>
<td>equalize.cluster.weights</td>
<td>If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.</td>
</tr>
<tr>
<td>sample.fraction</td>
<td>Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.</td>
</tr>
<tr>
<td>mtry</td>
<td>Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.</td>
</tr>
</tbody>
</table>
min.node.size
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-forest package. Default is 5.

honesty
Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves
If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leaf is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

stabilize.splits
Whether or not the instrument should be taken into account when determining the imbalance of a split. Default is TRUE.

ci.group.size
The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

reduced.form.weight
Whether splits should be regularized towards a naive splitting criterion that ignores the instrument (and instead emulates a causal forest).

tune.parameters
(experimental) A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "none" (no parameters are tuned).

tune.num.trees
The number of trees in each 'mini forest' used to fit the tuning model. Default is 200.

tune.num.reps
The number of forests used to fit the tuning model. Default is 50.

tune.num.draws
The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

compute.oob.predictions
Whether OOB predictions on training set should be precomputed. Default is TRUE.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed
The seed of the C++ random number generator.
Value

A trained instrumental forest object.

leaf_stats.causal_forest

Calculate summary stats given a set of samples for causal forests.

Description

Calculate summary stats given a set of samples for causal forests.

Usage

```r
## S3 method for class 'causal_forest'
leaf_stats(forest, samples, ...)
```

Arguments

- **forest**: The GRF forest
- **samples**: The samples to include in the calculations.
- **...**: Additional arguments (currently ignored).

Value

A named vector containing summary stats

leaf_stats.default

A default leaf_stats for forests classes without a leaf_stats method that always returns NULL.

Description

A default leaf_stats for forests classes without a leaf_stats method that always returns NULL.

Usage

```r
## Default S3 method:
leaf_stats(forest, samples, ...)
```

Arguments

- **forest**: Any forest
- **samples**: The samples to include in the calculations.
- **...**: Additional arguments (currently ignored).
leaf_stats.instrumental_forest

Calculate summary stats given a set of samples for instrumental forests.

Description

Calculate summary stats given a set of samples for instrumental forests.

Usage

```r
## S3 method for class 'instrumental_forest'
leaf_stats(forest, samples, ...)
```

Arguments

- `forest`: The GRF forest
- `samples`: The samples to include in the calculations.
- `...`: Additional arguments (currently ignored).

Value

A named vector containing summary stats

leaf_stats.regression_forest

Calculate summary stats given a set of samples for regression forests.

Description

Calculate summary stats given a set of samples for regression forests.

Usage

```r
## S3 method for class 'regression_forest'
leaf_stats(forest, samples, ...)
```

Arguments

- `forest`: The GRF forest
- `samples`: The samples to include in the calculations.
- `...`: Additional arguments (currently ignored).

Value

A named vector containing summary stats
ll_regression_forest

Local Linear forest

Description

Trains a local linear forest that can be used to estimate the conditional mean function \(\mu(x) = E[Y | X = x] \)

Usage

```r
ll_regression_forest(
  X,
  Y,
  num.trees = 2000,
  clusters = NULL,
  equalize.cluster.weights = FALSE,
  sample.fraction = 0.5,
  mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
  min.node.size = 5,
  honesty = TRUE,
  honesty.fraction = 0.5,
  honesty.prune.leaves = TRUE,
  alpha = 0.05,
  imbalance.penalty = 0,
  ci.group.size = 1,
  tune.parameters = "none",
  tune.num.trees = 10,
  tune.num.reps = 100,
  tune.num.draws = 1000,
  num.threads = NULL,
  seed = runif(1, 0, .Machine$integer.max)
)
```

Arguments

- **X**: The covariates used in the regression.
- **Y**: The outcome.
- **num.trees**: Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.
- **clusters**: Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
- **equalize.cluster.weights**: If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

```r
sample.fraction
```
Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

```r
mtry
```
Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.

```r
min.node.size
```
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

```r
honesty
```
Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

```r
honesty.fraction
```
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

```r
honesty.prune.leaves
```
If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

```r
alpha
```
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

```r
imbalance.penalty
```
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

```r
ci.group.size
```
The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 1.

```r
tune.parameters
```
If true, NULL parameters are tuned by cross-validation; if FALSE NULL parameters are set to defaults. Default is FALSE.

```r
tune.num.trees
```
The number of trees in each 'mini forest' used to fit the tuning model. Default is 10.

```r
tune.num.reps
```
The number of forests used to fit the tuning model. Default is 100.

```r
tune.num.draws
```
The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

```r
num.threads
```
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

```r
seed
```
The seed of the C++ random number generator.
merge_forests

Merges a list of forests that were grown using the same data into one large forest.

Description

Merges a list of forests that were grown using the same data into one large forest.

Usage

merge_forests(forest_list, compute.oob.predictions = TRUE)

Arguments

forest_list A ‘list’ of forests to be concatenated. All forests must be of the same type, and the type must be a subclass of ‘grf’. In addition, all forests must have the same ‘ci.group.size’. Other tuning parameters (e.g. alpha, mtry, min.node.size, imbalance.penalty) are allowed to differ across forests.

compute.oob.predictions Whether OOB predictions on training set should be precomputed. Note that even if OOB predictions have already been precomputed for the forests in ‘forest_list’, those predictions are not used. Instead, a new set of oob predictions is computed anew using the larger forest. Default is TRUE.

Value

A single forest containing all the trees in each forest in the input list.
Examples

Not run:
Train standard regression forests
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest1 <- regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)
r.forest2 <- regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)

Join the forests together. The resulting forest will contain 200 trees.
big_rf <- merge_forests(list(r.forest1, r.forest2))

End(Not run)

plot.grf_tree

Plot a GRF tree object.

Description

Plot a GRF tree object.

Usage

S3 method for class 'grf_tree'
plot(x, ...)

Arguments

x
 The tree to plot
...
 Additional arguments (currently ignored).

Examples

Not run:
Save the plot of a tree in the causal forest.
install.packages("DiagrammeR")
install.packages("DiagrammeRsvg")
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)
#save the first tree in the forest as plot.svg
tree.plot = plot(get_tree(c.forest, 1))
cat(DiagrammeRsvg::export_svg(tree.plot), file='plot.svg')

End(Not run)
predict.boosted_regression_forest

Predict with a boosted regression forest.

Description

Gets estimates of \(\mathbb{E}[Y|X=x] \) using a trained regression forest.

Usage

```r
## S3 method for class 'boosted_regression_forest'
predict(
  object,
  newdata = NULL,
  boost.predict.steps = NULL,
  num.threads = NULL,
  ...
)
```

Arguments

- **object**
The trained forest.
- **newdata**
 Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at \(X_i \) using only trees that did not use the \(i \)-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- **boost.predict.steps**
 Number of boosting iterations to use for prediction. If blank, uses the full number of steps for the object given.
- **num.threads**
 the number of threads used in prediction
- **...**
 Additional arguments (currently ignored).

Value

A vector of predictions.

Examples

```r
## Not run:
# Train a boosted regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.boosted.forest <- boosted_regression_forest(X, Y)
```
predict.causal_forest

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.boosted.forest, X.test)

Predict on out-of-bag training samples.
r.pred <- predict(r.boosted.forest)

End(Not run)

predict.causal_forest Predict with a causal forest

Description

Gets estimates of tau(x) using a trained causal forest.

Usage

S3 method for class 'causal_forest'
predict(
 object,
 newdata = NULL,
 linear.correction.variables = NULL,
 ll.lambda = NULL,
 ll.weight.penalty = FALSE,
 num.threads = NULL,
 estimate.variance = FALSE,
 ...
)

Arguments

object The trained forest.
newdata Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
linear.correction.variables Optional subset of indexes for variables to be used in local linear prediction. If NULL, standard GRF prediction is used. Otherwise, we run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.
ll.lambda Ridge penalty for local linear predictions. Defaults to NULL and will be cross-validated.
predict.causal_forest

ll.weight.penalty
Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Penalizes equally by default.

num.threads Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

estimate.variance Whether variance estimates for hattau(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

Vector of predictions, along with estimates of the error and (optionally) its variance estimates. Column 'predictions' contains estimates of the conditional average treatent effect (CATE). The square-root of column 'variance.estimates' is the standard error of CATE. For out-of-bag estimates, we also output the following error measures. First, column 'debiased.error' contains estimates of the 'R-loss' criterion, (See Nie and Wager 2017 for a justification). Second, column 'excess.error' contains jackknife estimates of the Monte-carlo error (Wager, Hastie, Efron 2014), a measure of how unstable estimates are if we grow forests of the same size on the same data set. The sum of 'debiased.error' and 'excess.error' is the raw error attained by the current forest, and 'debiased.error' alone is an estimate of the error attained by a forest with an infinite number of trees. We recommend that users grow enough forests to make the 'excess.error' negligible.

Examples

```r
## Not run:
# Train a causal forest.
n <- 100
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

# Predict on out-of-bag training samples.
c.pred <- predict(c.forest)

# Predict with confidence intervals; growing more trees is now recommended.
c.forest <- causal_forest(X, Y, W, num.trees = 500)
c.pred <- predict(c.forest, X.test, estimate.variance = TRUE)

## End(Not run)
```
predict.custom_forest
Predict with a custom forest.

Description
Predict with a custom forest.

Usage
```r
## S3 method for class 'custom_forest'
predict(object, newdata = NULL, num.threads = NULL, ...)
```

Arguments
- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- **num.threads**: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- **...**: Additional arguments (currently ignored).

Value
Vector of predictions.

Examples
```r
## Not run:
# Train a custom forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
c.forest <- custom_forest(X, Y)
# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)
## End(Not run)
```
predict.instrumental_forest

Predict with an instrumental forest

Description

Gets estimates of tau(x) using a trained instrumental forest.

Usage

S3 method for class 'instrumental_forest'
predict(
 object,
 newdata = NULL,
 num.threads = NULL,
 estimate.variance = FALSE,
 ...
)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

estimate.variance Whether variance estimates for hattau(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

Vector of predictions, along with (optional) variance estimates.
predict.ll_regression_forest

Predict with a local linear forest

Description

Gets estimates of $E[Y|X=x]$ using a trained regression forest.

Usage

```r
## S3 method for class 'll_regression_forest'
predict(
  object,
  newdata = NULL,
  linear.correction.variables = NULL,
  ll.lambda = NULL,
  ll.weight.penalty = FALSE,
  num.threads = NULL,
  estimate.variance = FALSE,
  ...
)
```

Arguments

- `object` The trained forest.
- `newdata` Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at X_i using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- `linear.correction.variables` Optional subset of indexes for variables to be used in local linear prediction. If left NULL, all variables are used. We run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to NULL.
- `ll.lambda` Ridge penalty for local linear predictions
- `ll.weight.penalty` Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.
- `num.threads` Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.
- `estimate.variance` Whether variance estimates for $\hat{\tau}(x)$ are desired (for confidence intervals).
- `...` Additional arguments (currently ignored).
predict.quantile_forest

Predict with a quantile forest

Description

Gets estimates of the conditional quantiles of Y given X using a trained forest.

Usage

S3 method for class 'quantile_forest'
predict(
 object,
 newdata = NULL,
 quantiles = c(0.1, 0.5, 0.9),
 num.threads = NULL,
 ...
)

Arguments

object The trained forest.
newdata Points at which predictions should be made. If NULL, makes out-of-bag predictions on the training set instead (i.e., provides predictions at Xi using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.

quantiles Vector of quantiles at which estimates are required.

num. threads Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

Value

Predictions at each test point for each desired quantile.

Examples

```r
## Not run:
# Train a quantile forest.
N <- 50
P <- 10
X <- matrix(rnorm(N * P), N, P)
Y <- X[, 1] * rnorm(N)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

# Predict on out-of-bag training samples.
q.pred <- predict(q.forest)

# Predict using the forest.
X.test <- matrix(0, 101, P)
X.test[, 1] <- seq(-2, 2, length.out = 101)
q.pred <- predict(q.forest, X.test)

## End(Not run)
```

Description

Gets estimates of E[Y|X=x] using a trained regression forest.
Usage

```r
## S3 method for class 'regression_forest'
predict(
  object,
  newdata = NULL,
  linear.correction.variables = NULL,
  ll.lambda = NULL,
  ll.weight.penalty = FALSE,
  num.threads = NULL,
  estimate.variance = FALSE,
  ...
)
```

Arguments

- **object**: The trained forest.
- **newdata**: Points at which predictions should be made. If `NULL`, makes out-of-bag predictions on the training set instead (i.e., provides predictions at X_i using only trees that did not use the i-th training example). Note that this matrix should have the number of columns as the training matrix, and that the columns must appear in the same order.
- **linear.correction.variables**: Optional subset of indexes for variables to be used in local linear prediction. If `NULL`, standard GRF prediction is used. Otherwise, we run a locally weighted linear regression on the included variables. Please note that this is a beta feature still in development, and may slow down prediction considerably. Defaults to `NULL`.
- **ll.lambda**: Ridge penalty for local linear predictions
- **ll.weight.penalty**: Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.
- **num.threads**: Number of threads used in training. If set to `NULL`, the software automatically selects an appropriate amount.
- **estimate.variance**: Whether variance estimates for hattau(x) are desired (for confidence intervals).
- **...**: Additional arguments (currently ignored).

Value

Vector of predictions, along with estimates of the error and (optionally) its variance estimates. Column 'predictions' contains estimates of $E[Y|X=x]$. The square-root of column 'variance.estimates' is the standard error the test mean-squared error. Column 'excess.error' contains jackknifed estimates of the Monte-carlo error. The sum of 'debiased.error' and 'excess.error' is the raw error attained by the current forest, and 'debiased.error' alone is an estimate of the error attained by a forest with an infinite number of trees. We recommend that users grow enough forests to make the 'excess.error' negligible.
print.boosted_regression_forest

Examples

```r
## Not run:
# Train a standard regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest <- regression_forest(X, Y)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.forest, X.test)

# Predict on out-of-bag training samples.
r.pred <- predict(r.forest)

# Predict with confidence intervals; growing more trees is now recommended.
r.forest <- regression_forest(X, Y, num.trees = 100)
r.pred <- predict(r.forest, X.test, estimate.variance = TRUE)
```

End(Not run)

print.boosted_regression_forest

Print a boosted regression forest

Description

Print a boosted regression forest

Usage

```
## S3 method for class 'boosted_regression_forest'
print(x, ...)
```

Arguments

- `x` The boosted forest to print.
- `...` Additional arguments (currently ignored).
print.grf

Print a GRF forest object.

Description

Print a GRF forest object.

Usage

S3 method for class 'grf'
print(x, decay.exponent = 2, max.depth = 4, ...)

Arguments

x
The tree to print.

decay.exponent
A tuning parameter that controls the importance of split depth.

max.depth
The maximum depth of splits to consider.

...
Additional arguments (currently ignored).

print.grf_tree

Print a GRF tree object.

Description

Print a GRF tree object.

Usage

S3 method for class 'grf_tree'
print(x, ...)

Arguments

x
The tree to print.

...
Additional arguments (currently ignored).
print.tuning_output Print tuning output. Displays average error for q-quantiles of tuned parameters.

Description
Print tuning output. Displays average error for q-quantiles of tuned parameters.

Usage
S3 method for class 'tuning_output'
print(x, tuning.quantiles = seq(0, 1, 0.2), ...)

Arguments
- x: The tuning output to print.
- tuning.quantiles: vector of quantiles to display average error over. Default: seq(0, 1, 0.2) (quantiles)
- ...: Additional arguments (currently ignored).

quantile_forest Quantile forest

Description
Trains a regression forest that can be used to estimate quantiles of the conditional distribution of Y given X = x.

Usage
quantile_forest(
 X,
 Y,
 num.trees = 2000,
 quantiles = c(0.1, 0.5, 0.9),
 regression.splitting = FALSE,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = \text{min}(\text{ceiling}(\text{sqrt}(\text{ncol}(X)) + 20), \text{ncol}(X)),
 min.node.size = 5,
 honesty = TRUE,
 honesty.fraction = 0.5,
 honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
um.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X The covariates used in the quantile regression.
Y The outcome.
num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.
quantiles Vector of quantiles used to calibrate the forest. Default is (0.1, 0.5, 0.9).
regression.splitting Whether to use regression splits when growing trees instead of specialized splits based on the quantiles (the default). Setting this flag to true corresponds to the approach to quantile forests from Meinshausen (2006). Default is FALSE.
clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.cluster.weights If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster. If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same.
sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.
mtry Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.
min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.
honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.
honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).
honesty.prune.leaves If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed
The seed of the C++ random number generator.

Value
A trained quantile forest object.

Examples

```r
## Not run:
# Generate data.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
Y <- X[, 1] * rnorm(n)

# Train a quantile forest.
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

# Make predictions.
q.hat <- predict(q.forest, X.test)

# Make predictions for different quantiles than those used in training.
q.hat <- predict(q.forest, X.test, quantiles = c(0.1, 0.9))

# Train a quantile forest using regression splitting instead of quantile-based splits, emulating the approach in Meinshausen (2006).
meins.forest <- quantile_forest(X, Y, regression.splitting = TRUE)

# Make predictions for the desired quantiles.
q.hat <- predict(meins.forest, X.test, quantiles = c(0.1, 0.5, 0.9))

## End(Not run)
```
Regression forest

Description

Trains a regression forest that can be used to estimate the conditional mean function $\mu(x) = \mathbb{E}[Y \mid X = x]$.

Usage

```
regression_forest(
  X,  
  Y,  
  num.trees = 2000,  
  sample.weights = NULL,  
  clusters = NULL,  
  equalize.cluster.weights = FALSE,  
  sample.fraction = 0.5,  
  mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),  
  min.node.size = 5,  
  honesty = TRUE,  
  honesty.fraction = 0.5,  
  honesty.prune.leaves = TRUE,  
  alpha = 0.05,  
  imbalance.penalty = 0,  
  ci.group.size = 2,  
  tune.parameters = "none",  
  tune.num.trees = 50,  
  tune.num.reps = 100,  
  tune.num.draws = 1000,  
  compute.oob.predictions = TRUE,  
  num.threads = NULL,  
  seed = runif(1, 0, .Machine$integer.max)
)
```

Arguments

- **X**: The covariates used in the regression.
- **Y**: The outcome.
- **num.trees**: Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.
- **sample.weights**: (experimental) Weights given to an observation in estimation. If NULL, each observation is given the same weight. Default is NULL.
- **clusters**: Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.clusters.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster. If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the `sample.weights` argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry

Number of variables tried for each split. Default is \(\sqrt{p} + 20\) where \(p\) is the number of variables.

min.node.size

A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

honesty

Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set \(J_1\) in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha

A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

ci.group.size

The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters

A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "none" (no parameters are tuned).
split_frequencies

The number of trees in each 'mini forest' used to fit the tuning model. Default is 50.

The number of forests used to fit the tuning model. Default is 100.

The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

Whether OOB predictions on training set should be precomputed. Default is TRUE.

Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

The seed of the C++ random number generator.

A trained regression forest object. If tune.parameters is enabled, then tuning information will be included through the 'tuning.output' attribute.

Examples

```r
## Not run:
# Train a standard regression forest.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest <- regression_forest(X, Y)

# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.forest, X.test)

# Predict on out-of-bag training samples.
r.pred <- predict(r.forest)

# Predict with confidence intervals; growing more trees is now recommended.
r.forest <- regression_forest(X, Y, num.trees = 100)
r.pred <- predict(r.forest, X.test, estimate.variance = TRUE)
```

End(Not run)

split_frequencies

Calculate which features the forest split on at each depth.

Description

Calculate which features the forest split on at each depth.
Usage

split_frequencies(forest, max.depth = 4)

Arguments

forest The trained forest.
max.depth Maximum depth of splits to consider.

Value

A matrix of split depth by feature index, where each value is the number of times the feature was split on at that depth.

Examples

Not run:
Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Calculate the split frequencies for this forest.
split_frequencies(q.forest)

End(Not run)

test_calibration Omnibus evaluation of the quality of the random forest estimates via calibration.

Description

Test calibration of the forest. Computes the best linear fit of the target estimand using the forest prediction (on held-out data) as well as the mean forest prediction as the sole two regressors. A coefficient of 1 for 'mean.forest.prediction' suggests that the mean forest prediction is correct, whereas a coefficient of 1 for 'differential.forest.prediction' additionally suggests that the forest has captured heterogeneity in the underlying signal. The p-value of the 'differential.forest.prediction' coefficient also acts as an omnibus test for the presence of heterogeneity: If the coefficient is significantly greater than 0, then we can reject the null of no heterogeneity.

Usage

test_calibration(forest)
Arguments

forest The trained forest.

Value

A heteroskedasticity-consistent test of calibration.

References

Examples

Not run:

```r
n <- 800
p <- 5
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.25 + 0.5 * (X[, 1] > 0))
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
forest <- causal_forest(X, Y, W)
test_calibration(forest)
## End(Not run)
```

tune_causal_forest Causal forest tuning

Description

Causal forest tuning

Usage

tune_causal_forest(
 X,
 Y,
 W,
 Y.hat,
 W.hat,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
 min.node.size = 5,
)
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
stabilize.splits = TRUE,
ci.group.size = 2,
tune.parameters = "all",
tune.num.trees = 200,
tune.num.reps = 50,
tune.num.draws = 1000,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X The covariates used in the regression.
Y The outcome.
W The treatment assignment (may be binary or real).
Y.hat Estimates of the expected responses \(E[Y | X_i] \), marginalizing over treatment. See section 6.1.1 of the GRF paper for further discussion of this quantity.
W.hat Estimates of the treatment propensities \(E[W | X_i] \).
sample.weights (experimental) Weights given to an observation in estimation. If NULL, each observation is given the same weight. Default is NULL.
clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.cluster.weights If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has \(K \) units, then when we sample a cluster during training, we only give a random \(K \) elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight \(1/\text{cluster size} \), so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.
sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.
mtry Number of variables tried for each split. Default is \(\sqrt{p} + 20 \) where \(p \) is the number of variables.
min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.
honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

stabilize.splits Whether or not the treatment should be taken into account when determining the imbalance of a split. Default is TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "all".

tune.num.trees The number of trees in each 'mini forest' used to fit the tuning model. Default is 50.

tune.num.reps The number of forests used to fit the tuning model. Default is 100.

tune.num.draws The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

num.threads Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A list consisting of the optimal parameter values ('params') along with their debiased error ('error').

Examples

Not run:
Find the optimal tuning parameters.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
Y.hat <- predict(regression_forest(X, Y))$predictions
W.hat <- rep(0.5, n)
params <- tune_causal_forest(X, Y, W, Y.hat, W.hat)$params

Use these parameters to train a regression forest.
tuned.forest <- causal_forest(X, Y, W,
Y.hat = Y.hat, W.hat = W.hat, num.trees = 1000,
min.node.size = as.numeric(params["min.node.size"]),
sample.fraction = as.numeric(params["sample.fraction"]),
mtry = as.numeric(params["mtry"]),
alpha = as.numeric(params["alpha"]),
imbalance.penalty = as.numeric(params["imbalance.penalty"])
)

End(Not run)

tune_forest Tune a forests

Description

Finds the optimal parameters to be used in training a forest.

Usage

tune_forest(
data,
nrow.X,
ncol.X,
args,
tune.parameters,
tune.parameters.defaults,
um.fit.trees,
um.fit.reps,
um.optimize.reps,
train,
predict.oob,
predict.data.args
)
Arguments

data The data arguments (output from create_data_matrices) for the forest.
nrow.X The number of observations.
ncol.X The number of variables.
args The remaining call arguments for the forest.
tune.parameters The vector of parameter names to tune.
tune.parameters.defaults The grf default values for the vector of parameter names to tune.
num.fit.trees The number of trees in each 'mini forest' used to fit the tuning model.
num.fit.reps The number of forests used to fit the tuning model.
num.optimize.reps The number of random parameter values considered when using the model to select the optimal parameters.
train The grf forest training function.
predict_oob The grf forest oob prediction function.
predict.data.args The names of the arguments in data passed to predict_oob.

Value

tuning output

Description

Instrumental forest tuning

Usage

tune_instrumental_forest(
 X,
 Y,
 W,
 Z,
 Y.hat,
 W.hat,
 Z.hat,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
tune_instrumental_forest

```r
tune = 
  sample.fraction = 0.5,
  mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
  min.node.size = 5,
  honesty = TRUE,
  honesty.fraction = 0.5,
  honesty.prune.leaves = TRUE,
  alpha = 0.05,
  imbalance.penalty = 0,
  stabilize.splits = TRUE,
  ci.group.size = 2,
  reduced.form.weight = 0,
  tune.parameters = "all",
  tune.num.trees = 200,
  tune.num.reps = 50,
  tune.num.draws = 1000,
  num.threads = NULL,
  seed = runif(1, 0, .Machine$integer.max)
)
```

Arguments

- **X** The covariates used in the regression.
- **Y** The outcome.
- **W** The treatment assignment (may be binary or real).
- **Z** The instrument (may be binary or real).
- **Y.hat** Estimates of the expected responses $E[Y \mid X_i]$, marginalizing over treatment. See section 6.1.1 of the GRF paper for further discussion of this quantity.
- **W.hat** Estimates of the treatment propensities $E[W \mid X_i]$.
- **Z.hat** Estimates of the instrument propensities $E[Z \mid X_i]$.
- **sample.weights** (experimental) Weights given to an observation in estimation. If NULL, each observation is given the same weight. Default is NULL.
- **clusters** Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
- **equalize.cluster.weights** If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.
- **sample.fraction** Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.
mtry Number of variables tried for each split. Default is $\sqrt{p} + 20$ where p is the number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J_1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

stabilize.splits Whether or not the treatment should be taken into account when determining the imbalance of a split. Default is TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

reduced.form.weight Whether splits should be regularized towards a naive splitting criterion that ignores the instrument (and instead emulates a causal forest).

tune.parameters A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "all".

tune.num.trees The number of trees in each 'mini forest' used to fit the tuning model. Default is 50.

tune.num.reps The number of forests used to fit the tuning model. Default is 100.

tune.num.draws The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

num.threads Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed The seed of the C++ random number generator.
Value

A list consisting of the optimal parameter values ('params') along with their debiased error ('error').

Examples

```r
## Not run:
# Find the optimal tuning parameters.
n <- 3000; p <- 5
X <- matrix(rbinom(n*p, 1, 0.5), n, p)
Z <- rbinom(n, 1, 0.5)
Q <- rbinom(n, 1, 0.5)
T <- Q * Z
eps <- rnorm(n)
TAU <- X[,1] / 2
Y <- rowSums(X[,1:3]) + TAU * T + Q + eps
Y.hat <- predict(regression_forest(X, Y, num.trees = 500))$predictions
W.hat <- predict(regression_forest(X, T, num.trees = 500))$predictions
Z.hat <- predict(regression_forest(X, Z, num.trees = 500))$predictions
tuned.iv.forest <- instrumental_forest(X, Y, T, Z, Y.hat, W.hat, Z.hat, tune.parameters = "all")
## End(Not run)
```

tune_ll_causal_forest
Local linear forest tuning

Description

Finds the optimal ridge penalty for local linear causal prediction.

Usage

```r
tune_ll_causal_forest(
  forest,
  linear.correction.variables = NULL,
  ll.weight.penalty = FALSE,
  num.threads = NULL,
  lambda.path = NULL
)
```

Arguments

- **forest**
The forest used for prediction.
- **linear.correction.variables**
Variables to use for local linear prediction. If left null, all variables are used. Default is NULL.
- **ll.weight.penalty**
Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.
num. threads Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

lambda.path Optional list of lambdas to use for cross-validation.

Value

A list of lambdas tried, corresponding errors, and optimal ridge penalty lambda.

Examples

```r
## Not run:
# Find the optimal tuning parameters.
set.seed(1)
set.seed(1)
n <- 50
p <- 10
X <- matrix(rnorm(n*p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
forest <- causal_forest(X, Y, W)
tuned.lambda <- tune_ll_causal_forest(forest)

# Use this parameter to predict from a local linear causal forest.
predictions <- predict(forest, linear.correction.variables = 1:p, lambda = tuned.lambda)

## End(Not run)
```
Arguments

- **forest**
 The forest used for prediction.

- **linear.correction.variables**
 Variables to use for local linear prediction. If left null, all variables are used. Default is NULL.

- **ll.weight.penalty**
 Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.

- **num.threads**
 Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.

- **lambda.path**
 Optional list of lambdas to use for cross-validation.

Value

A list of lambdas tried, corresponding errors, and optimal ridge penalty lambda.

Examples

```r
## Not run:
# Find the optimal tuning parameters.
set.seed(1)
in <- 500
n <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
forest <- regression_forest(X, Y)
tuned.lambda <- tune_ll_regression_forest(forest)

# Use this parameter to predict from a local linear forest.
predictions <- predict(forest, linear.correction.variables = 1:p, lambda = tuned.lambda)

## End(Not run)
```

tune_regression_forest

Regression forest tuning

Description

Trains a regression forest that can be used to estimate the conditional mean function \(\mu(x) = \mathbb{E}[Y | X = x] \)
Usage

tune_regression_forest(
 X,
 Y,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
 min.node.size = 5,
 honesty = TRUE,
 honesty.fraction = 0.5,
 honesty.prune.leaves = TRUE,
 alpha = 0.05,
 imbalance.penalty = 0,
 ci.group.size = 2,
 tune.parameters = "all",
 tune.num.trees = 50,
 tune.num.reps = 100,
 tune.num.draws = 1000,
 num.threads = NULL,
 seed = runif(1, 0, .Machine$integer.max)
)

Arguments

X The covariates used in the regression.
Y The outcome.
sample.weights (experimental) Weights given to an observation in estimation. If NULL, each observation is given the same weight. Default is NULL.
clusters Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).
equalize.cluster.weights If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.
sample.fraction Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.
Tune Regression Forest

mtry
Number of variables tried for each split. Default is \(\sqrt{p} + 20 \) where \(p \) is the number of variables.

min.node.size
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-forest package. Default is 5.

honesty
Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set \(J_1 \) in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).

honesty.prune.leaves
If TRUE, prunes the estimation sample tree such that no leaves are empty. If FALSE, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to FALSE may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

ci.group.size
The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters
A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned. Default is "all".

tune.num.trees
The number of trees in each 'mini forest' used to fit the tuning model. Default is 50.

tune.num.reps
The number of forests used to fit the tuning model. Default is 100.

tune.num.draws
The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed
The seed of the C++ random number generator.

Value
A list consisting of the optimal parameter values ('params') along with their debiased error ('error').
variable_importance

Calculate a simple measure of 'importance' for each feature.

Description

A simple weighted sum of how many times feature i was split on at each depth in the forest.

Usage

variable_importance(forest, decay.exponent = 2, max.depth = 4)

Arguments

forest The trained forest.
decay.exponent A tuning parameter that controls the importance of split depth.
max.depth Maximum depth of splits to consider.

Value

A list specifying an 'importance value' for each feature.
variable_importance

Examples

```r
## Not run:
# Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

# Calculate the 'importance' of each feature.
variable_importance(q.forest)

## End(Not run)
```
Index

average_late, 3
average_partial_effect, 4
average_treatment_effect, 5
best_linear_projection, 7
boosted_regression_forest, 8
causal_forest, 11
custom_forest, 15
get_sample_weights, 17
get_tree, 18
grf, 19
instrumental_forest, 21
leaf_stats.causal_forest, 24
leaf_stats.default, 24
leaf_stats.instrumental_forest, 25
leaf_stats.regression_forest, 25
ll_regression_forest, 26
merge_forests, 28
plot.grf_tree, 29
predict.boosted_regression_forest, 30
predict.causal_forest, 31
predict.custom_forest, 33
predict.instrumental_forest, 34
predict.ll_regression_forest, 35
predict.quantile_forest, 36
predict.regression_forest, 37
print.boosted_regression_forest, 39
print.grf, 40
print.grf_tree, 40
print.tuning_output, 41
quantile_forest, 41
regression_forest, 44
split_frequencies, 46
test_calibration, 47
tune.causal_forest, 48
tune_forest, 51
tune.instrumental_forest, 52
tune.ll.causal_forest, 55
tune.ll.regression_forest, 56
tune_regression_forest, 57
variable_importance, 60