Package ‘gridsampler’

October 13, 2022

License GPL-3

Title A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies

Type Package

LazyLoad yes

Description Simulation tool to facilitate determination of required sample size to achieve category saturation for studies using multiple repertory grids in conjunction with content analysis.

Version 0.6

Date 2016-11-23

Imports shiny, ggplot2, reshape2, pplyr, shinythemes, BiasedUrn, shinyBS

Suggests knitr, testthat, rmarkdown

Encoding UTF-8

URL https://github.com/markheckmann/gridsampler

BugReports https://github.com/markheckmann/gridsampler/issues

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation no

Author Mark Heckmann [aut, cre], Lukas Burk [aut]

Maintainer Mark Heckmann <heckmann.mark@gmail.com>

Repository CRAN

Date/Publication 2016-11-23 17:24:13
calc_probabilities

R topics documented:

- gridsampler-package 2
- calc_probabilities 2
- draw_multiple_n_persons_x_times 3
- draw_n_person_sample 4
- expected_frequencies 4
- gridsampler 5
- prob_categories 5
- sim_n_persons 6
- sim_n_persons_x_times 7
- sim_n_persons_x_times_many_n 7
- sim_one_person 8

Index

| gridsampler-package | gridsampler - A sample size simulation software for repertory grid studies |

Description

gridsampler - A sample size simulation software for repertory grid studies

References

calc_probabilities
Probability for certain degree of saturation

Description

Calculate probability for getting certain proportion of categories with at least m constructs

Usage

calc_probabilities(r, n, ms, min.props = c(0.9, 0.95, 0.99))

Arguments

- r
 A dataframe. The result returned from sim_n_persons_x_times_many_n.
- n
 Vector of n for which to calculate probabilities.
- ms
 minimal number of constructs in each category
- min.props
 Proportion of categories to contain at least m constructs.
See Also

Other Utilities: expected_frequencies, prob_categories

Examples

```r
prob <- dexp(1:30, .05)
n <- seq(10, 80, by = 20)
r <- sim_n_persons_x_times_many_n(prob, n, a = 7, times = 100)
head(dd)
```

```
draw_multiple_n_persons_x_times(d)
```

Description

Draw and redraw results of simulation

Usage

draw_multiple_n_persons_x_times(d)

Arguments

d A dataframe as returned by calc_probabilities.

See Also

Other Plotting: draw_n_person_sample

Examples

```r
## simulate
prob <- dexp(1:30, .05)       # probabilities for categories
N <- seq(10, 80, by = 10)     # sample sizes to simulate
r <- sim_n_persons_x_times_many_n(prob, n = N, a = 7, times = 100, progress = "none")

# calculate and draw
M <- 1:5                       # minimal number of categories to evaluate
p <- c(0.9, .95, 1)           # proportion of categories for which minimal m holds
d <- calc_probabilities(r, n = N, ms = M, min.props = p)
draw_multiple_n_persons_x_times(d)
```
draw_n_person_sample
Produce graphic for a single sample of n persons

Description

Produce graphic for a single sample of n persons

Usage

```r
draw_n_person_sample(prob, n, a = 10, ap = rep(1/length(a), length(a)))
```

Arguments

- `prob`: Probability to draw a construct from a certain category.
- `n`: Number of persons, i.e. grids to be sampled.
- `a`: Possible number of attributes sampled from.
- `ap`: Attribute probabilities, i.e. for each number of attributes given in `a`.

See Also

Other Plotting: `draw_multiple_n_persons_x_times`

Examples

```r
draw_n_person_sample(dexp(1:30, rate = .05), n = 100, a = 10)
draw_n_person_sample(dexp(1:30, rate = .05), n = 100, a = 1:5, ap = 5:1)
```

expected_frequencies
Produce ggplot of percentiles for simulated frequencies

Description

Produce ggplot of percentiles for simulated frequencies

Usage

```r
expected_frequencies(r)
```

Arguments

- `r`: A dataframe. The result returned from `sim_n_persons_x_times`.

Value

Draws a ggplot
gridsampler

See Also

Other Utilities: calc_probabilities, prob_categories

Examples

r <- sim_n_persons_x_times(dexp(1:30, rate = .05), n = 50, a = 5:7, ap = 1:3, 100)
eqxpected_frequencies(r)

gridsampler Run gridsampler app

Description

This function starts the gridsampler shiny app.

Usage

gridsampler(display.mode = "auto",
launch.browser = getOption("shiny.launch.browser", interactive())

Arguments

display.mode auto by default, can also be showcase. See runApp.
launch.browser Boolean, set TRUE to open the app in the browser. See runApp.

Examples

Not run:
gridsampler()

End(Not run)

prob_categories Probability for certain degree of saturation

Description

Calculate probability for getting certain proportion of categories with at least m constructs

Usage

prob_categories(r, m, min.prop = 1)
Arguments

- **r**: A dataframe. The result returned from `sim_n_persons_x_times`.
- **m**: minimal number of constructs in each category
- **min.prop**: Proportion of categories to contain at least m constructs.

See Also

Other Utilities: `calc_probabilities`, `expected_frequencies`

Examples

```r
r <- sim_n_persons_x_times(dexp(1:30, rate = .05), n = 50, a = 5:7, times = 100, progress = "none")
prob_categories(r, 4, min.prop = .9)
```

sim_n_persons
Simulate n persons

Description

Function is a simple replicate wrapper around `sim_one_person`

Usage

```r
sim_n_persons(prob, n, a = 10, ap = rep(1/length(a), length(a)))
```

Arguments

- **prob**: Probability to draw a construct from a certain category.
- **n**: Number of persons, i.e. grids to be sampled.
- **a**: Possible number of attributes sampled from.
- **ap**: Attribute probabilities, i.e. for each number of attributes given in a.

See Also

Other Simulations: `sim_n_persons_x_times_many_n`, `sim_n_persons_x_times`, `sim_one_person`

Examples

```r
sim_n_persons(dexp(1:30, .05), n = 2, a = 10)
sim_n_persons(dexp(1:30, .05), n = 2, a = c(1, 30))
sim_n_persons(dexp(1:30, .05), n = 2, a = c(1, 30), ap = c(1,4))
sim_n_persons(dexp(1:30, .05), n = 2, a = 1:5, ap = c(1,1,2,2,3))
```
sim_n_persons_x_times

Complete simulation

Description

Complete simulation

Usage

```r
sim_n_persons_x_times(prob, n, a, ap = rep(1/length(a), length(a)),
                     times = 100, progress = "text")
```

Arguments

- `prob` Probability to draw a construct from a certain category. Length of vector determines number of categories.
- `n` Number of persons, i.e. grids to sample.
- `a` Number of constructs to be sampled.
- `ap` Probabilities for each number of attributes to be sampled.
- `times` Number of times to repeat each simulation.
- `progress` Type of progress bar shown during simulation.

See Also

Other Simulations: `sim_n_persons_x_times_many_n`, `sim_n_persons`, `sim_one_person`

Examples

```r
## Not run:
sim_n_persons_x_times(dexp(1:30, .05), n = 2, a = c(1,30), ap = 1:2, times = 100)
sim_n_persons_x_times(dexp(1:30, .05), n = 2, a = c(1,30), times = 200, progress = "tk")
## End(Not run)
```

sim_n_persons_x_times_many_n

Simulate for different n

Description

Simulate for different n. Runs `sim_n_persons_x_times` for different n.

Usage

```r
sim_n_persons_x_times_many_n(prob, n = seq(10, 80, by = 10), a = 7,
                              ap = rep(1/length(a), length(a)), times = 100, progress = "text")
```
Arguments

- prob: Probability to draw a construct from a certain category. Length of vector determines number of categories.
- n: Number of persons, i.e. grids to sample.
- a: Number of constructs to be sampled.
- ap: Probabilities for each number of attributes to be sampled.
- times: Number of times to repeat each simulation.
- progress: Type of progress bar shown during simulation.

Value

A result dataframe.

See Also

Other Simulations: `sim_n_persons_x_times`, `sim_n_persons`, `sim_one_person`

Examples

```r
## Not run:
r <- sim_n_persons_x_times_many_n(dexp(1:30, .05), a = 7, times = 100)
r <- sim_n_persons_x_times_many_n(dexp(1:30, .05), a = 5:7, ap = 1:3, times = 100)
## End(Not run)
```

sim_one_person

Simulate a single grid

Description

Simulate a single grid

Usage

```r
sim_one_person(prob, a = 10)
```

Arguments

- prob: Probability to draw a construct from a certain category.
- a: Number of constructs to be sampled.

See Also

Other Simulations: `sim_n_persons_x_times_many_n`, `sim_n_persons_x_times`, `sim_n_persons`
Examples

draw from exponential distribution
p <- dexp(1:20, rate = .1)
sim_one_person(p, a = 10)
Index

* package
 gridsampler-package, 2
* repgrid
 gridsampler-package, 2

calc_probabilities, 2, 3, 5, 6
draw_multiple_n_persons_x_times, 3, 4
draw_n_person_sample, 3, 4
expected_frequencies, 3, 4, 6
gridsampler, 5
gridsampler-package, 2
prob_categories, 3, 5, 5
runApp, 5
sim_n_persons, 6, 7, 8
sim_n_persons_x_times, 4, 6, 7, 7, 8
sim_n_persons_x_times_many_n, 2, 6, 7, 7, 8
sim_one_person, 6–8, 8