Package ‘groupWQS’

October 13, 2022

Type Package
Title Grouped Weighted Quantile Sum Regression
Version 0.0.3
Author David Wheeler, Matthew Carli
Maintainer Matthew Carli <carlimm@mymail.vcu.edu>
Description Fits weighted quantile sum (WQS) regressions for one or more chemical groups with continuous or binary outcomes. Wheeler D, Czarnota J.(2016) <doi:10.1289/isee.2016.4698>.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Depends R (>= 3.2.1)
Imports Rsolnp, glm2, stats, graphics, MASS, rjags
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-27 18:10:02 UTC

R topics documented:

gwqs.fit ... 2
make.X ... 3
make.x.s ... 4
simdata ... 5
weight.plot ... 6
WQSdata ... 6

Index 8
Description

This function fits a grouped weighted quantile sum (GWQS) regression model.

Usage

```r
gwqs.fit(
  y,
  y.train = NULL,
  x,
  x.train = NULL,
  z = NULL,
  z.train = NULL,
  x.s,
  B = 100,
  n.quantiles = 4,
  pars = NULL,
  func,
  ineqLB = NULL,
  ineqUB = NULL,
  tol = 1e-06,
  delta = 1e-06
)
```

Arguments

- `y`: A vector containing outcomes for validation.
- `y.train`: A vector containing outcomes for training. If left as NULL the validation data will be used for training as well.
- `x`: A matrix of component data for validation.
- `x.train`: A matrix of component data for training. If left as NULL the validation data will be used for training as well.
- `z`: A vector or matrix of covariates for validation.
- `z.train`: A vector or matrix of covariates for training. If left as NULL the validation data will be used for training as well.
- `x.s`: A vector of the number of components in each index.
- `B`: The number of bootstrap samples, must be 1 or more.
- `n.quantiles`: The number of quantiles to apply to data.
- `pars`: A vector of initial values, listed in order: beta naught intercept and group index beta coefficients, individual chemical weight coefficients, and covariate coefficients.
The objective function to be used (must match outcome data type); currently only fun args "continuous" or "binary" are supported.

Vector of lower bounds for betas and weights, set to -2 by default.

Vector of upper bounds for betas and weights, set to 2 by default.

Tolerance level for bootstrap convergence.

Step size for bootstrap procedure.

A list of 3 containing the GWQS estimate based on calculated weights, the GWQS model fit to validation data, and weight estimates

```r
data("WQSdata")
group_list <- list(c("X1", "X2", "X3"), c("X4", "X7"), c("X5", "X6", "X9", "X8"))
x.s <- make.x.s(WQSdata, 3, group_list)
X <- make.X(WQSdata, 3, group_list)
Y <- WQSdata$y
results <- gwqs.fit(y = Y, x = X, x.s = x.s, B=1, func = "continuous")
```

Description

This function returns a matrix of component variables, X. The user can specify the desired chemicals and order by creating a list of string vectors, each vector containing the variable names of all desired elements of that group.

Usage

```r
make.X(df, num.groups, groups)
```

Arguments

- **df**
 A dataframe containing named component variables

- **num.groups**
 An integer representing the number of component groups desired

- **groups**
 A list, each item in the list being a string vector of variable names for one component group

Value

A matrix of component variables
Examples

data("WQSdata")
group_list <- list(c("X1", "X2", "X3"), c("X4", "X7"), c("X5", "X6", "X9", "X8"))
X <- make.X(WQSdata, 3, group_list)
X

make.x.s

Forms component group ID vector of X

Description

This function returns a vector which lets WQS.fit know the size and order of groups in X

Usage

make.x.s(df, num.groups, groups)

Arguments

df A dataframe containing named component variables
num.groups An integer representing the number of component groups desired

Value

A vector of integers, each integer relating how many columns are in each group

Examples

data("WQSdata")
group_list <- list(c("X1", "X2", "X3"), c("X4", "X7"), c("X5", "X6", "X9", "X8"))
x.s <- make.x.s(WQSdata, 3, group_list)
x.s
simdata

Simulated data of chemical concentrations and one binary outcome variable

Description

Data simulated to have .7 in-group correlation and .3 between-group correlation. There are three groups, the third being significantly correlated to the outcome variable.

Usage

`simdata`

Format

A data frame with 1000 rows and 15 variables:

- **pcb_118** a numeric vector; part of group 1
- **pcb_138** a numeric vector; part of group 1
- **pcb_153** a numeric vector; part of group 1
- **pcb_180** a numeric vector; part of group 1
- **pcb_192** a numeric vector; part of group 1
- **as** a numeric vector; part of group 2
- **cu** a numeric vector; part of group 2
- **pb** a numeric vector; part of group 2
- **sn** a numeric vector; part of group 2
- **carbaryl** a numeric vector; part of group 3
- **propoxur** a numeric vector; part of group 3
- **methoxychlor** a numeric vector; part of group 3
- **diazinon** a numeric vector; part of group 3
- **chlorpyrifos** a numeric vector; part of group 3
- **Y** a numeric vector; the outcome variable
weight.plot
Generates Plots of weights by group

Description
This function takes the object created by the wqs.fit function and a vector of group names and generates a random forest variable importance plot for each group. The weights in each group are listed in descending order.

Usage
weight.plot(fit.object, group.names)

Arguments

fit.object The object that is returned by the wqs.fit function

group.names A string vector containing the name of each group included in the GWQS regression. Will be used for plot titles.

Value
A plot for each group of the GWQS regression

Examples

data("WQSdata")
group_list <- list(c("X1", "X2", "X3"), c("X4", "X7"), c("X5", "X6", "X9", "X8"))
chem_groups <- c("PCBs", "Metals", "Insecticides")
x.s <- make.x.s(WQSdata, 3, group_list)
X <- make.X(WQSdata, 3, group_list)
Y <- WQSdata$y
results <- gwqs.fit(y = Y, x = X, x.s = x.s, B=1, func = "continuous")
weight.plot(results, chem_groups)

WQSdata
Simulated data of chemical concentrations and one continuous outcome variable

Description
Correlation and concentration patterns were loosely based on NHL data.

Usage
WQSdata
Format

A data frame with 1000 rows and 10 variables:

X1 a numeric vector
X2 a numeric vector
X3 a numeric vector
X4 a numeric vector
X5 a numeric vector
X6 a numeric vector
X7 a numeric vector
X8 a numeric vector
X9 a numeric vector
y a numeric vector; the outcome variable
Index

* datasets
 simdata, 5
 WQSdata, 6

gwqs.fit, 2
make.X, 3
make.x.s, 4
simdata, 5
weight.plot, 6
WQSdata, 6