Package ‘groupWQS’

June 27, 2020

Type Package
Title Grouped Weighted Quantile Sum Regression
Version 0.0.3
Author David Wheeler, Matthew Carli
Maintainer Matthew Carli <carlimm@mymail.vcu.edu>
Description Fits weighted quantile sum (WQS) regressions for one or more chemical groups with continuous or binary outcomes. Wheeler D, Czarnota J.(2016) <doi:10.1289/isee.2016.4698>.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Depends R (>= 3.2.1)
Imports Rsolnp, glm2, stats, graphics, MASS, rjags
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-27 18:10:02 UTC

R topics documented:

gwqs.fit ... 2
make.X ... 3
make.x.s .. 4
simdata ... 5
weight.plot ... 6
WQSdata ... 6

Index 8
Description

This function fits a grouped weighted quantile sum (GWQS) regression model.

Usage

gwqs.fit(
 y,
 y.train = NULL,
 x,
 x.train = NULL,
 z = NULL,
 z.train = NULL,
 x.s,
 B = 100,
 n.quantiles = 4,
 pars = NULL,
 func,
 ineqLB = NULL,
 ineqUB = NULL,
 tol = 1e-06,
 delta = 1e-06
)

Arguments

y
A vector containing outcomes for validation.
y.train
A vector containing outcomes for training. If left as NULL the validation data will be used for training as well.
x
A matrix of component data for validation.
x.train
A matrix of component data for training. If left as NULL the validation data will be used for training as well.
z
A vector or matrix of covariates for validation.
z.train
A vector or matrix of covariates for training. If left as NULL the validation data will be used for training as well.
x.s
A vector of the number of components in each index.
B
The number of bootstrap samples, must be 1 or more.
n.quantiles
The number of quantiles to apply to data.
pars
A vector of initial values, listed in order: beta naught intercept and group index beta coefficients, individual chemical weight coefficients, and covariate coefficients.
The objective function to be used (must match outcome data type); currently
only fun args "continuous" or "binary" are supported.
Vector of lower bounds for betas and weights, set to -2 by default.
Vector of upper bounds for betas and weights, set to 2 be default.
Tolerance level for bootstrap convergence.
Step size for bootstrap procedure.

Value
A list of 3 containing the GWQS estimate based on calculated weights, the GWQS model fit to
validation data, and weight estimates

Examples

data("WQSdata")
group_list <- list(c("X1", "X2", "X3"), c("X4", "X7"), c("X5", "X6", "X9", "X8"))
x.s <- make.x.s(WQSdata, 3, group_list)
X <- make.X(WQSdata, 3, group_list)
Y <- WQSdata$y
results <- gwqs.fit(y = Y, x = X, x.s = x.s, B=1, func = "continuous")

Description
This function returns a matrix of component variables, X. The user can specify the desired chemicals
and order by creating a list of string vectors, each vector containing the variable names of all desired
elements of that group.

Usage
make.X(df, num.groups, groups)

Arguments
df A dataframe containing named component variables
num.groups An integer representing the number of component groups desired
groups A list, each item in the list being a string vector of variable names for one com-
ponent group

Value
A matrix of component variables
Examples

data("WQSdata")
group_list <- list(c("X1", "X2", "X3"), c("X4", "X7"), c("X5", "X6", "X9", "X8"))
X <- make.X(WQSdata, 3, group_list)
X

make.x.s

Forms component group ID vector of X

Description

This function returns a vector which lets WQS.fit know the size and order of groups in X

Usage

```r
make.x.s(df, num.groups, groups)
```

Arguments

- `df`: A dataframe containing named component variables
- `num.groups`: An integer representing the number of component groups desired
- `groups`: A list, each item in the list being a string vector of variable names for one component group

Value

A vector of integers, each integer relating how many columns are in each group

Examples

data("WQSdata")
group_list <- list(c("X1", "X2", "X3"), c("X4", "X7"), c("X5", "X6", "X9", "X8"))
x.s <- make.x.s(WQSdata, 3, group_list)
x.s
simdata

Simulated data of chemical concentrations and one binary outcome variable

Description

Data simulated to have .7 in-group correlation and .3 between-group correlation. There are three groups, the third being significantly correlated to the outcome variable.

Usage

simdata

Format

A data frame with 1000 rows and 15 variables:

- **pcb_118**: a numeric vector; part of group 1
- **pcb_138**: a numeric vector; part of group 1
- **pcb_153**: a numeric vector; part of group 1
- **pcb_180**: a numeric vector; part of group 1
- **pcb_192**: a numeric vector; part of group 1
- **as**: a numeric vector; part of group 2
- **cu**: a numeric vector; part of group 2
- **pb**: a numeric vector; part of group 2
- **sn**: a numeric vector; part of group 2
- **carbaryl**: a numeric vector; part of group 3
- **propoxur**: a numeric vector; part of group 3
- **methoxychlor**: a numeric vector; part of group 3
- **diazinon**: a numeric vector; part of group 3
- **chlorpyrifos**: a numeric vector; part of group 3
- **Y**: a numeric vector; the outcome variable
weight.plot
Generates Plots of weights by group

Description

This function takes the object created by the `wqs.fit` function and a vector of group names and generates a random forest variable importance plot for each group. The weights in each group are listed in descending order.

Usage

```r
weight.plot(fit.object, group.names)
```

Arguments

- `fit.object`: The object that is returned by the `wqs.fit` function
- `group.names`: A string vector containing the name of each group included in the GWQS regression. Will be used for plot titles.

Value

A plot for each group of the GWQS regression

Examples

```r
data("WQSdata")
group_list <- list(c("X1", "X2", "X3"), c("X4", "X7"), c("X5", "X6", "X9", "X8"))
chem_groups <- c("PCBs", "Metals", "Insecticides")
x.s <- make.x.s(WQSdata, 3, group_list)
X <- make.X(WQSdata, 3, group_list)
Y <- WQSdata$y
results <- gwqs.fit(y = Y, x = X, x.s = x.s, B=1, func = "continuous")
weight.plot(results, chem_groups)
```

WQSdata
Simulated data of chemical concentrations and one continuous outcome variable

Description

Correlation and concentration patterns were loosely based on NHL data.

Usage

```r
WQSdata
```
WQSdata

Format

A data frame with 1000 rows and 10 variables:

- **X1** a numeric vector
- **X2** a numeric vector
- **X3** a numeric vector
- **X4** a numeric vector
- **X5** a numeric vector
- **X6** a numeric vector
- **X7** a numeric vector
- **X8** a numeric vector
- **X9** a numeric vector
- **y** a numeric vector; the outcome variable
Index

*Topic datasets
 simdata, 5
 WQSdata, 6

gwqs.fit, 2

make.X, 3
make.x.s, 4

simdata, 5

weight.plot, 6
WQSdata, 6