Package ‘groupedstats’

April 5, 2020

Type Package
Title Grouped Statistical Analyses in a Tidy Way
Version 0.2.2
Maintainer Indrajeet Patil <patilindrajeet.science@gmail.com>
Description Collection of functions to run statistical tests across all combinations of multiple grouping variables.
License GPL-3 | file LICENSE
URL https://indrajeetpatil.github.io/groupedstats/,
https://github.com/IndrajeetPatil/groupedstats/
BugReports https://github.com/IndrajeetPatil/groupedstats/issues/
Depends R (>= 3.5.0)
Imports broomExtra, dplyr, glue, haven, ipmisc, lme4, parameters, purrr, rlang, sjstats, skimr, stats, tibble, tidyr
Suggests ez, gapminder, ggplot2, knitr, rmarkdown, spelling, testthat
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.1.0.9000
NeedsCompilation no
Author Indrajeet Patil [aut, cre, cph]

Repository CRAN
Date/Publication 2020-04-05 09:00:02 UTC

R topics documented:
groupedstats-package ... 2
grouped_aov ... 2
grouped_glm ... 4
Description

Collection of functions to run statistical operations on multiple variables across multiple grouping variables in a dataframe. This package is retired.

Details

For more, see README on GitHub.

Usage

grouped_aov(
 data,
 grouping.vars,
 formula,
 effsize = "eta",
 output = "tidy",
 nboot = 1000,
 ...
)
Arguments

data A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way.

grouping.vars Grouping variables.

formula A formula specifying the model.

effsize Character describing the effect size to be displayed: "eta" (default) or "omega".

output A character describing what output is expected. Two possible options: "tidy" (default), which will return the results, or "tukey", which will return results from Tukey’s Honest Significant Differences method for post hoc comparisons. The "glance" method to get model summary is currently not supported for this function.

nboot Number of bootstrap samples for confidence intervals for partial eta-squared and omega-squared (Default: 500).

... Currently ignored.

Author(s)

Indrajeet Patil

Examples

uses dataset included in the 'groupedstats' package
set.seed(123)
library(groupedstats)

effect size
groupedstats::grouped_aov(
 formula = rating ~ belief * outcome * question,
 data = intent_morality,
 grouping.vars = item,
 effsize = "eta"
)

pairwise comparisons
groupedstats::grouped_aov(
 formula = rating ~ belief * outcome * question,
 data = intent_morality,
 grouping.vars = item,
 output = "tukey"
)
grouped_glm

Function to run generalized linear model (glm) across multiple grouping variables.

Description

Function to run generalized linear model (glm) across multiple grouping variables.

Usage

grouped_glm(
 data,
 grouping.vars,
 ...,
 output = "tidy",
 tidy.args = list(conf.int = TRUE, conf.level = 0.95),
 augment.args = list()
)

Arguments

data Dataframe (or tibble) from which variables are to be taken.
grouping.vars Grouping variables.
... Additional arguments to broom::tidy, broom::glance, or broom::augment S3 method.
output A character describing what output is expected. Two possible options: "tidy" (default), which will return the results, or "glance", which will return model summaries.
tidy.args A list of arguments to be used in the relevant S3 method.
augment.args A list of arguments to be used in the relevant S3 method.

Value

A tibble dataframe with tidy results from linear model.

Author(s)

Indrajeet Patil

See Also

grouped_lm, grouped_lmer, grouped_glmer
grouped_glmer

Examples

to get tidy output
groupedstats::grouped_glm(
data = groupedstats::Titanic_full,
formula = Survived ~ Sex,
grouping.vars = Class,
family = stats::binomial(link = "logit")
)

to get glance output
groupedstats::grouped_glm(
data = groupedstats::Titanic_full,
formula = Survived ~ Sex,
grouping.vars = Class,
family = stats::binomial(link = "logit"),
output = "glance"
)

Description

Function to run generalized linear mixed-effects model (glmer) across multiple grouping variables.

Usage

grouped_glmer(
data,
grouping.vars,
...,
output = "tidy",
tidy.args = list(conf.int = TRUE, conf.level = 0.95, effects = "fixed", conf.method = "Wald"),
augment.args = list()
)

Arguments

data Dataframe (or tibble) from which variables are to be taken.
grouping.vars Grouping variables.
... Arguments passed on to lme4::glmer

formula a two-sided linear formula object describing both the fixed-effects and random-effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right. Random-effects
terms are distinguished by vertical bars ("|") separating expressions for
design matrices from grouping factors.
family a GLM family, see \texttt{glm} and \texttt{family}.
control a list (of correct class, resulting from \texttt{lmerControl()} or \texttt{glmerControl()}
respectively) containing control parameters, including the nonlinear optimizer to be used and parameters to be passed through to the nonlinear optimizer, see the \texttt{?lmerControl} documentation for details.
start a named list of starting values for the parameters in the model, or a numeric vector. A numeric start argument will be used as the starting value of theta. If \texttt{start} is a list, the theta element (a numeric vector) is used as the starting value for the first optimization step (default=1 for diagonal elements and 0 for off-diagonal elements of the lower Cholesky factor); the fitted value of theta from the first step, plus \texttt{start["fixef"]}, are used as starting values for the second optimization step. If \texttt{start} has both fixef and theta elements, the first optimization step is skipped. For more details or finer control of optimization, see \texttt{modular}.
verbose integer scalar. If \texttt{> 0} verbose output is generated during the optimization of the parameter estimates. If \texttt{> 1} verbose output is generated during the individual penalized iteratively reweighted least squares (PIRLS) steps.
nAGQ integer scalar - the number of points per axis for evaluating the adaptive Gauss-Hermite approximation to the log-likelihood. Defaults to 1, corresponding to the Laplace approximation. Values greater than 1 produce greater accuracy in the evaluation of the log-likelihood at the expense of speed. A value of zero uses a faster but less exact form of parameter estimation for GLMMs by optimizing the random effects and the fixed-effects coefficients in the penalized iteratively reweighted least squares step. (See Details.)
subset an optional expression indicating the subset of the rows of data that should be used in the fit. This can be a logical vector, or a numeric vector indicating which observation numbers are to be included, or a character vector of the row names to be included. All observations are included by default.
weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be \texttt{NULL} or a numeric vector.
na.action a function that indicates what should happen when the data contain NAs. The default action (\texttt{na.omit}, inherited from the ‘factory fresh’ value of \texttt{getOption("na.action")}) strips any observations with any missing values in any variables.
offset this can be used to specify an \emph{a priori} known component to be included in the linear predictor during fitting. This should be \texttt{NULL} or a numeric vector of length equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See \texttt{model.offset}.
contrasts an optional list. See the \texttt{contrasts.arg} of \texttt{model.matrix.default}.
mustart optional starting values on the scale of the conditional mean, as in \texttt{glm}; see there for details.
etastart optional starting values on the scale of the unbounded predictor as in `glm`; see there for details.

developOnly logical - return only the deviance evaluation function. Note that because the deviance function operates on variables stored in its environment, it may not return exactly the same values on subsequent calls (but the results should always be within machine tolerance).

output A character describing what output is expected. Two possible options: "tidy" (default), which will return the results, or "glance", which will return model summaries.

tidy.args A list of arguments to be used in the relevant S3 method.
augment.args A list of arguments to be used in the relevant S3 method.

Value

A tibble dataframe with tidy results from linear model or model summaries.

Author(s)

Indrajeet Patil

See Also

grouped_lmer

Examples

```r
# for reproducibility
set.seed(123)

# categorical outcome; binomial family
groupedstats::grouped_glmer(
  formula = Survived ~ Age + (Age | Class),
  family = stats::binomial(link = "probit"),
  data = dplyr::sample_frac(groupedstats::Titanic_full, size = 0.3),
  grouping.vars = Sex,
  tidy.args = list(effects = "fixed", conf.int = TRUE, conf.level = 0.95)
)
```

grouped_lm Running linear model (lm) across multiple grouping variables.

Description

Running linear model (lm) across multiple grouping variables.
Usage

grouped_lm(
 data,
 grouping.vars,
 ...,
 output = "tidy",
 tidy.args = list(conf.int = TRUE, conf.level = 0.95),
 augment.args = list()
)

Arguments

data Dataframe (or tibble) from which variables are to be taken.
grouping.vars Grouping variables.
... Additional arguments to broom::tidy, broom::glance, or broom::augment S3 method.
output A character describing what output is expected. Two possible options: "tidy" (default), which will return the results, or "glance", which will return model summaries.
tidy.args A list of arguments to be used in the relevant S3 method.
augment.args A list of arguments to be used in the relevant S3 method.

Value

A tibble dataframe with tidy results from linear model.

Author(s)

Indrajeet Patil

See Also

grouped_slr, grouped_tidy

Examples

loading needed libraries
library(ggplot2)

getting tidy output of results
get_tidy_output(grouped_lm(
 data = mtcars,
 grouping.vars = cyl,
 formula = mpg ~ am * wt,
 output = "tidy"
))

getting model summaries
diamonds dataset from ggplot2

grouped_lm(
 data = diamonds,
 grouping.vars = c(cut, color),
 formula = price ~ carat * clarity,
 output = "glance"
)

grouped_lmer

Linear mixed-effects model (lmer) across multiple grouping variables.

Description

Linear mixed-effects model (lmer) across multiple grouping variables.

Usage

```r

grouped_lmer(
  data,
  grouping.vars,
  ..., 
  output = "tidy",
  tidy.args = list(conf.int = TRUE, conf.level = 0.95, effects = "fixed", conf.method = "Wald"),
  augment.args = list()
)
```

Arguments

- `data` Dataframe (or tibble) from which variables are to be taken.
- `grouping.vars` Grouping variables.
- `...` Arguments passed on to `lme4::lmer`
- `formula` A two-sided linear formula object describing both the fixed-effects and random-effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right. Random-effects terms are distinguished by vertical bars (|) separating expressions for design matrices from grouping factors. Two vertical bars (||) can be used to specify multiple uncorrelated random effects for the same grouping variable. (Because of the way it is implemented, the ||-syntax works only for design matrices containing numeric (continuous) predictors; to fit models with independent categorical effects, see dummy or the lmer_alt function from the afex package.)
- `REML` logical scalar - Should the estimates be chosen to optimize the REML criterion (as opposed to the log-likelihood)?
control a list (of correct class, resulting from `lmerControl()` or `glmerControl()` respectively) containing control parameters, including the nonlinear optimizer to be used and parameters to be passed through to the nonlinear optimizer, see the `lmerControl` documentation for details.

start a named list of starting values for the parameters in the model. For lmer this can be a numeric vector or a list with one component named "theta".

verbose integer scalar. If > 0 verbose output is generated during the optimization of the parameter estimates. If > 1 verbose output is generated during the individual penalized iteratively reweighted least squares (PIRLS) steps.

subset an optional expression indicating the subset of the rows of data that should be used in the fit. This can be a logical vector, or a numeric vector indicating which observation numbers are to be included, or a character vector of the row names to be included. All observations are included by default.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be NULL or a numeric vector. Prior weights are not normalized or standardized in any way. In particular, the diagonal of the residual covariance matrix is the squared residual standard deviation parameter sigma times the vector of inverse weights. Therefore, if the weights have relatively large magnitudes, then in order to compensate, the sigma parameter will also need to have a relatively large magnitude.

na.action a function that indicates what should happen when the data contain NAs. The default action (na.omit, inherited from the 'factory fresh' value of `getOption("na.action")`) strips any observations with any missing values in any variables.

offset this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See `model.offset`.

contrasts an optional list. See the `contrasts.arg` of `model.matrix.default`.

devFunOnly logical - return only the deviance evaluation function. Note that because the deviance function operates on variables stored in its environment, it may not return exactly the same values on subsequent calls (but the results should always be within machine tolerance).

output A character describing what output is expected. Two possible options: "tidy" (default), which will return the results, or "glance", which will return model summaries.

tidy.args A list of arguments to be used in the relevant S3 method.

augment.args A list of arguments to be used in the relevant S3 method.

Value

A tibble dataframe with tidy results from a linear mixed-effects model. Note that p-value is computed using `parameters::p_value`.
grouped_proptest

Author(s)
Indrajeet Patil

Examples

```r
# for reproducibility
set.seed(123)

# loading libraries containing data
library(ggplot2)
library(gapminder)

# getting tidy output of results
# let's use only subset of the data
groupedstats::grouped_lmer(
  data = gapminder,
  formula = scale(lifeExp) ~ scale(gdpPercap) + (gdpPercap | continent),
  grouping.vars = year,
  REML = FALSE,
  tidy.args = list(effects = "fixed", conf.int = TRUE, conf.level = 0.95),
  output = "tidy"
)
```

grouped_proptest
Function to run proportion test on grouped data.

Description

Function to run proportion test on grouped data.

Usage

```r
grouped_proptest(data, grouping.vars, measure, 
                  ...)```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Dataframe (or tibble) from which variables are to be taken.</td>
</tr>
<tr>
<td>grouping.vars</td>
<td>Grouping variables.</td>
</tr>
<tr>
<td>measure</td>
<td>A variable for which proportion test needs to be carried out for each combination of levels of factors entered in grouping.vars.</td>
</tr>
<tr>
<td>...</td>
<td>Currently ignored.</td>
</tr>
</tbody>
</table>

**Value**

Dataframe with percentages and statistical details from a proportion test.
Author(s)
Indrajeet Patil

Examples

# for reproducibility
set.seed(123)

groupedstats::grouped_proptest(  
data = mtcars,  
  grouping.vars = cyl,  
  measure = am
)

Description

Running simple linear regression (slr) on multiple variables across multiple grouping variables.

Usage

grouped_slr(data, dep.vars, indep.vars, grouping.vars)

Arguments

data     Dataframe from which variables are to be taken.
dep.vars  List criterion or dependent variables for simple linear model (y in y ~ x).
indep.vars List predictor or independent variables for simple linear model (x in y ~ x).
grouping.vars List of grouping variables.

Value

A tibble dataframe with tidy results from simple linear regression analyses. The estimates are standardized, i.e. the lm model used is scale(y) ~ scale(x), and not y ~ x.

Author(s)
Indrajeet Patil

See Also

grouped_lm, grouped_tidy
Examples

```r
for reproducibility
set.seed(123)

in case of just one grouping variable
groupedstats::grouped_slr(
 data = iris,
 dep.vars = c(Sepal.Length, Petal.Length),
 indep.vars = c(Sepal.Width, Petal.Width),
 grouping.vars = Species
)
```

### grouped_summary

**Descriptive statistics for multiple variables for all grouping variable levels**

**Description**

Descriptive statistics for multiple variables for all grouping variable levels

**Usage**

```r
grouped_summary(
 data,
 grouping.vars,
 measures = NULL,
 measures.type = "numeric",
 topcount.long = FALSE,
 k = 2L,
 ...
)
```

**Arguments**

- **data**
  - Dataframe from which variables need to be taken.

- **grouping.vars**
  - A list of grouping variables. Please use unquoted arguments (i.e., use `x` and not "x").

- **measures**
  - List variables for which summary needs to computed. If not specified, all variables of type specified in the argument `measures.type` will be used to calculate summaries. **Don’t** explicitly set `measures.type = NULL` in function call, which will produce an error because the function will try to find a column in a dataframe named "NULL".

- **measures.type**
  - A character indicating whether summary for numeric ("numeric") or factor/character ("factor") variables is expected (Default: `measures.type = "numeric"`). This function can’t be used for both numeric **and** variables simultaneously.

- **topcount.long**
  - If `measures.type = factor`, you can get the top counts in long format for plotting purposes. (Default: `topcount.long = FALSE`).
**k**

Number of digits after decimal point (should be an integer) (Default: k = 3).

... Currently ignored.

**Value**

Dataframe with descriptive statistics for numeric variables (n, mean, sd, median, min, max)

**Author(s)**

Indrajeet Patil

**Examples**

```r
for reproducibility
set.seed(123)

another possibility
groupedstats::grouped_summary(
 data = iris,
 grouping.vars = Species,
 measures = Sepal.Length:Petal.Width,
 measures.type = "numeric"
)

if no measures are chosen, all relevant columns will be summarized
groupedstats::grouped_summary(
 data = ggplot2::msleep,
 grouping.vars = vore,
 measures.type = "factor"
)

for factors, you can also convert the dataframe to a long format with counts
groupedstats::grouped_summary(
 data = ggplot2::msleep,
 grouping.vars = c(vore),
 measures = c(genus:order),
 measures.type = "factor",
 topcount.long = TRUE
)
```

---

**grouped_ttest** *Function to run t-test on multiple variables across multiple grouping variables.*

**Description**

Function to run t-test on multiple variables across multiple grouping variables.
grouped_ttest

Usage

grouped_ttest(
data,  
dep.vars,  
indep.vars,  
grouping.vars,  
paired = FALSE,  
var.equal = FALSE
)

Arguments

data | Dataframe from which variables are to be taken.
dep.vars | List dependent variables for a t-test (y in y ~ x).
indep.vars | List independent variables for a t-test (x in y ~ x).
grouping.vars | List of grouping variables.
paired | A logical indicating whether you want a paired t-test (Default: paired = FALSE; independent t-test, i.e.).
var.equal | A logical variable indicating whether to treat the two variances as being equal. If TRUE, then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used (Default: var.equal = FALSE; Welch’s t-test, i.e.).

Value

A tibble dataframe with tidy results from t-test analyses.

Author(s)

Indrajeet Patil

Examples

# for reproducibility
set.seed(123)

groupedstats::grouped_ttest(
data = dplyr::filter(.data = ggplot2::diamonds, color == "E" | color == "J"),  
dep.vars = c(carat, price, depth),  
indep.vars = color,  
grouping.vars = clarity,  
paired = FALSE,  
var.equal = FALSE
)
grouped_wilcox

Function to run two-sample Wilcoxon tests on multiple variables across multiple grouping variables.

Description

Function to run two-sample Wilcoxon tests on multiple variables across multiple grouping variables.

Running Wilcoxon test across multiple grouping variables.

Usage

grouped_wilcox(
  data,
  dep.vars,
  indep.vars,
  grouping.vars,
  paired = FALSE,
  correct = TRUE
)

Arguments

data          Dataframe from which variables are to be taken.
dep.vars      List dependent variables for a two-sample Wilcoxon tests (y in y ~ x).
indep.vars    List independent variables for a two-sample Wilcoxon tests (x in y ~ x).
grouping.vars List of grouping variables (if NULL, the entire dataframe will be used).
paired         A logical indicating whether you want a paired two-sample Wilcoxon tests (Default: paired = FALSE).
correct       A logical indicating whether to apply continuity correction in the normal approximation for the p-value (Default: correct = TRUE).

Value

A tibble dataframe with tidy results from two-sample Wilcoxon tests analyses.

Author(s)

Indrajeet Patil

See Also

grouped_tidy
Examples

```r
for reproducibility
set.seed(123)

only with one grouping variable
groupedstats::grouped_wilcox(
 data = dplyr::filter(.data = ggplot2::diamonds, color == "E" | color == "J"),
 dep.vars = depth:table,
 indep.vars = color,
 grouping.vars = clarity,
 paired = FALSE
)
```

### intent_morality

**Moral judgments about third-party moral behavior.**

### Description

Moral judgments about third-party moral behavior.

### Usage

```r
intent_morality
```

### Format

A data frame with 4016 rows and 8 variables

- id. Participant id.
- item. Which story/vignette participants read for a given condition.
- harm. What kind of harm was involved in the item.
- belief. What kind of belief the actor had (neutral or negative/harmful).
- outcome. What kind of outcome the actor caused (neutral or negative/harmful).
- condition. Type of harm, composed of belief and outcome.
- question. Type of moral judgment asked (wrongness or punishment).
- rating. Moral judgment rating on a scale of 1 to 7.

### Details

This dataset contains data from a recent study about how people judge behavior of others when they unintentionally or intentionally cause harm to others.

Participants responded to four different vignettes that contains four different types of conditions:

- accidental harm. neutral belief, harmful/negative outcome
• intentional harm. harmful/negative belief, harmful/negative outcome
• attempted harm. harmful/negative belief, neutral outcome
• neutral harm. neutral belief, neutral outcome

Additionally, participants saw one of the four variants for each of the four items. Each of the item had a different type of harm.

Source
https://www.nature.com/articles/s41598-017-05299-9

Examples

```r
dim(intent_morality)
head(intent_morality)
dplyr::glimpse(intent_morality)
```

---

**lm_effsize_ci**

Confidence intervals for (partial) eta-squared and omega-squared for linear models.

### Description

This function will convert a linear model object to a dataframe containing statistical details for all effects along with effect size measure and its confidence interval. For more details, see `parameters::eta_squared` and `parameters::omega_squared`.

### Usage

```r
lm_effsize_ci(
 object,
 effsize = "eta",
 partial = TRUE,
 conf.level = 0.95,
 nboot = 500,
 method = c("dist", "quantile"),
 ...)
```

### Arguments

- **object**: The linear model object (can be of class `lm`, `aov`, `anova`, or `aovlist`).
- **effsize**: Character describing the effect size to be displayed: "eta" (default) or "omega".
- **partial**: Logical that decides if partial eta-squared or omega-squared are returned (Default: TRUE). If FALSE, eta-squared or omega-squared will be returned. Valid only for objects of class `lm`, `aov`, `anova`, or `aovlist`.
lm_effsize_standardizer

conf.level Numeric specifying Level of confidence for the confidence interval (Default: 0.95).
nboot Number of bootstrap samples for confidence intervals for partial eta-squared and omega-squared (Default: 500).
method Character vector, indicating if confidence intervals should be based on bootstrap standard error, multiplied by the value of the quantile function of the t-distribution (default), or on sample quantiles of the bootstrapped values. See 'Details' in boot_ci(). May be abbreviated.
... Currently ignored.

Value

A dataframe with results from stats::lm() with partial eta-squared, omega-squared, and bootstrapped confidence interval for the same.

Author(s)

Indrajeet Patil

Examples

# for reproducibility
set.seed(123)

# model
mod <-
  stats::aov(
    formula = mpg ~ wt + qsec + Error(disp / am),
    data = mtcars
  )

# dataframe with effect size and confidence intervals
groupedstats::lm_effsize_ci(mod)

lm_effsize_standardizer

Standardize a dataframe with effect sizes for aov, lm, aovlist, etc. objects.

Description

The difference between lm_effsize_ci and lm_effsize_standardizer is that the former has more opinionated column naming, while the latter doesn’t. The latter can thus be more helpful in writing a wrapper around this function.
movies_long

Usage

lm_effsize_standardizer(
  object,
  effsize = "eta",
  partial = TRUE,
  conf.level = 0.95,
  nboot = 500,
  method = c("dist", "quantile")
)

Arguments

object  The linear model object (can be of class lm, aov, anova, or aovlist).
effsize  Character describing the effect size to be displayed: "eta" (default) or "omega".
partial  Logical that decides if partial eta-squared or omega-squared are returned (Default: TRUE). If FALSE, eta-squared or omega-squared will be returned. Valid only for objects of class lm, aov, anova, or aovlist.
conf.level  Numeric specifying Level of confidence for the confidence interval (Default: 0.95).
nboot  Number of bootstrap samples for confidence intervals for partial eta-squared and omega-squared (Default: 500).
method  Character vector, indicating if confidence intervals should be based on bootstrap standard error, multiplied by the value of the quantile function of the t-distribution (default), or on sample quantiles of the bootstrapped values. See 'Details' in boot_ci(). May be abbreviated.

Examples

set.seed(123)
groupedstats::lm_effsize_standardizer(
  object = stats::lm(formula = brainwt ~ vore, data = ggplot2::msleep),
  effsize = "eta",
  partial = FALSE,
  conf.level = 0.99,
  nboot = 20
)

movies_long

Movie information and user ratings from IMDB.com (long format).

Description

Movie information and user ratings from IMDB.com (long format).

Usage

movies_long
movies_wide

Format
A data frame with 2433 rows and 8 variables

- title. Title of the movie.
- year. Year of release.
- budget. Total budget (if known) in US dollars
- length. Length in minutes.
- rating. Average IMDB user rating.
- votes. Number of IMDB users who rated this movie.
- mpaa. MPAA rating.
- genre. Different genres of movies (action, animation, comedy, drama, documentary, romance, short).

Details
Modified dataset from ggplot2movies package.

Movies were selected for inclusion if they had a known length and had been rated by at least one imdb user.

Source
https://CRAN.R-project.org/package=ggplot2movies

Examples

dim(movies_long)
head(movies_long)
dplyr::glimpse(movies_long)

movies_wide
Movie information and user ratings from IMDB.com (wide format).

Description
Movie information and user ratings from IMDB.com (wide format).

Usage
movies_wide
Format

A data frame with 1813 rows and 14 variables

- title. Title of the movie.
- year. Year of release.
- budget. Total budget (if known) in US dollars
- length. Length in minutes.
- rating. Average IMDB user rating.
- votes. Number of IMDB users who rated this movie.
- mpaa. MPAA rating.
- action, animation, comedy, drama, documentary, romance, short. Binary variables representing if movie was classified as belonging to that genre.

Details

Modified dataset from ggplot2movies package.


Movies were selected for inclusion if they had a known length and had been rated by at least one imdb user.

Source

https://CRAN.R-project.org/package=ggplot2movies

Examples

dim(movies_wide)
head(movies_wide)
dplyr::glimpse(movies_wide)
Format

A data frame with 2201 rows and 5 variables

- id. Dummy identity number for each person.
- Class. 1st, 2nd, 3rd, Crew.
- Sex. Male, Female.
- Age. Child, Adult.
- Survived. No, Yes.

Details

This data set provides information on the fate of passengers on the fatal maiden voyage of the ocean liner 'Titanic', summarized according to economic status (class), sex, age, and survival.

This is a modified dataset from datasets package.

Source


Examples

dim(Titanic_full)
head(Titanic_full)
dplyr::glimpse(Titanic_full)
Index

*Topic **datasets**
  intent_morality, 17
  movies_long, 20
  movies_wide, 21
  Titanic_full, 22

dummy, 9

family, 6

glm, 6, 7
glmerControl, 6, 10
grouped_aov, 2
grouped_glm, 4
grouped_glmer, 4, 5
grouped_lm, 4, 7, 12
grouped_lmer, 4, 9
grouped_proptest, 11
grouped_slr, 8, 12
grouped_summary, 13
grouped_tidy, 8, 12, 16
grouped_ttest, 14
grouped_wilcox, 16
groupedstats-package, 2

  intent_morality, 17

list, 10
lm_effsize_ci, 18
lm_effsize_standardizer, 19
lme4::glmer, 5
lme4::lmer, 9
lmerControl, 6, 10

  model.matrix.default, 6
  model.offset, 6, 10
modular, 6
movies_long, 20
movies_wide, 21

offset, 6, 10

sigma, 10

Titanic_full, 22