Package ‘grpsel’

July 13, 2021

Type Package

Title Group Subset Selection

Version 1.1.1

Description Provides tools for sparse regression modelling with grouped predictors using the group subset selection penalty. Uses coordinate descent and local search algorithms to rapidly deliver near optimal estimates. The group subset penalty can be combined with a group lasso or ridge penalty for added shrinkage. Linear and logistic regression are supported, as are overlapping groups.

URL https://github.com/ryan-thompson/grpsel

BugReports https://github.com/ryan-thompson/grpsel/issues

License GPL-3

Encoding UTF-8

Depends R (>= 4.1.0)

Imports ggplot2, parallel, Rcpp

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.1

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Ryan Thompson [aut, cre] (<https://orcid.org/0000-0002-9002-0448>)

Maintainer Ryan Thompson <ryan.thompson@monash.edu>

Repository CRAN

Date/Publication 2021-07-13 12:00:05 UTC
R topics documented:

- coef.cv.grpsel ... 2
- coef.grpsel ... 3
- cv.grpsel ... 3
- grpsel ... 6
- plot.cv.grpsel ... 9
- plot.grpsel ... 10
- predict.cv.grpsel 10
- predict.grpsel ... 11

Index 12

coef.cv.grpsel

Coefficient function for cv.grpsel object

Description

Extracts coefficients for specified values of the tuning parameters.

Usage

```r
## S3 method for class 'cv.grpsel'
coef(object, lambda = "lambda.min", gamma = "gamma.min", ...)
```

Arguments

- `object` an object of class `cv.grpsel`
- `lambda` the value of lambda indexing the desired fit
- `gamma` the value of gamma indexing the desired fit
- `...` any other arguments

Value

A matrix of coefficients.

Author(s)

Ryan Thompson <ryan.thompson@monash.edu>
coef.grpsel

Coefficient function for grpsel object

Description

Extracts coefficients for specified values of the tuning parameters.

Usage

```r
## S3 method for class 'grpsel'
coef(object, lambda = NULL, gamma = NULL, ...)
```

Arguments

- `object`: an object of class grpsel
- `lambda`: the value of lambda indexing the desired fit
- `gamma`: the value of gamma indexing the desired fit
- `...`: any other arguments

Value

A matrix of coefficients.

Author(s)

Ryan Thompson <ryan.thompson@monash.edu>

cv.grpsel

Cross-validated group subset selection

Description

Fits the regularisation surface for a regression model with a group subset selection penalty and then cross-validates this surface.

Usage

```r
cv.grpsel(
  x,
  y,
  group = seq_len(ncol(x)),
  penalty = c("grSubset", "grSubset+grLasso", "grSubset+Ridge"),
  loss = c("square", "logistic"),
  lambda = NULL,
  gamma = NULL,
```
Arguments

- **x**: a predictor matrix
- **y**: a response vector
- **group**: a vector of length \(\text{ncol}(x) \) with the jth element identifying the group that the jth predictor belongs to; alternatively, a list of vectors with the kth vector identifying the predictors that belong to the kth group (useful for overlapping groups)
- **penalty**: the type of penalty to apply; one of 'grSubset', 'grSubset+grLasso', or 'grSubset+Ridge'
- **loss**: the type of loss function to use; 'square' for linear regression or 'logistic' for logistic regression
- **lambda**: an optional list of decreasing sequences of group subset parameters; the list should contain a vector for each value of \(\gamma \)
- **gamma**: an optional decreasing sequence of group lasso or ridge parameters
- **nfold**: the number of cross-validation folds
- **folds**: an optional vector of length \(\text{nrow}(x) \) with the ith entry identifying the fold that the ith observation belongs to
- **interpolate**: a logical indicating whether to interpolate the \(\lambda \) sequence for the cross-validation fits; see details below
- **cv.loss**: an optional cross-validation loss-function to use; should accept a vector of predicted values and a vector of actual values
- **cluster**: an optional cluster for running cross-validation in parallel; must be set up using \texttt{parallel::makeCluster}; each fold is evaluated on a different node of the cluster
- **...**: any other arguments for \texttt{grpsel()}

Details

When \texttt{loss='logistic'} stratified cross-validation is used to balance the folds. When fitting to the cross-validation folds, \texttt{interpolate=TRUE} cross-validates the midpoints between consecutive \(\lambda \) values rather than the original \(\lambda \) sequence. This new sequence retains the same set of solutions on the full data, but often leads to superior cross-validation performance.

Value

An object of class \texttt{cv.grpsel}; a list with the following components:
cv.grpsel

- **cv.mean**: a list of vectors containing cross-validation means per value of lambda; an individual vector in the list for each value of gamma
- **cd.sd**: a list of vectors containing cross-validation standard errors per value of lambda; an individual vector in the list for each value of gamma
- **lambda**: a list of vectors containing the values of lambda used in the fit; an individual vector in the list for each value of gamma
- **gamma**: a vector containing the values of gamma used in the fit
- **lambda.min**: the value of lambda minimising cv.mean
- **gamma.min**: the value of gamma minimising cv.mean
- **fit**: the fit from running grpsel() on the full data

Author(s)
Ryan Thompson <ryan.thompson@monash.edu>

Examples

```r
# Grouped data
set.seed(123)
n <- 100
p <- 10
g <- 5
group <- rep(1:g, each = p / g)
beta <- numeric(p)
beta[which(group %in% 1:2)] <- 1
x <- matrix(rnorm(n * p), n, p)
y <- x %*% beta + rnorm(n)
newx <- matrix(rnorm(p), ncol = p)

# Group subset selection
fit <- cv.grpsel(x, y, group)
plot(fit)
coef(fit)
predict(fit, newx)

# Group subset selection with group lasso shrinkage
fit <- cv.grpsel(x, y, group, penalty = 'grSubset+grLasso')
plot(fit)
coef(fit)
predict(fit, newx)

# Group subset selection with ridge shrinkage
fit <- cv.grpsel(x, y, group, penalty = 'grSubset+Ridge')
plot(fit)
coef(fit)
predict(fit, newx)

# Parallel cross-validation
cl <- parallel::makeCluster(2)
fit <- cv.grpsel(x, y, group, cluster = cl)
parallel::stopCluster(cl)
```
grpsel

Group subset selection

Description

Fits the regularisation surface for a regression model with a group subset selection penalty. The group subset penalty can be combined with either a group lasso or ridge penalty for shrinkage. The group subset parameter is λ and the group lasso/ridge parameter is γ.

Usage

grpsel(
 x,
 y,
 group = seq_len(ncol(x)),
 penalty = c("grSubset", "grSubset+grLasso", "grSubset+Ridge"),
 loss = c("square", "logistic"),
 ls = FALSE,
 nlambda = 100,
 ngamma = 10,
 gamma.max = 100,
 gamma.min = 1e-04,
 lambda = NULL,
 gamma = NULL,
 pmax = ncol(x),
 gmax = length(unique(group)),
 subset.factor = NULL,
 lasso.factor = NULL,
 ridge.factor = NULL,
 alpha = 0.99,
 eps = 1e-04,
 max.cd.iter = 10000,
 max.ls.iter = 100,
 active.set = TRUE,
 active.set.count = 3,
 sort = TRUE,
 screen = 500,
 orthogonalise = TRUE,
 warn = TRUE
)

Arguments

x a predictor matrix
y a response vector
group a vector of length ncol(x) with the jth element identifying the group that the jth predictor belongs to; alternatively, a list of vectors with the kth vector identifying the predictors that belong to the kth group (useful for overlapping groups)

penalty the type of penalty to apply; one of 'grSubset', 'grSubset+grLasso', or 'grSubset+Ridge'

loss the type of loss function to use; 'square' for linear regression or 'logistic' for logistic regression

ls a logical indicating whether to perform local search after coordinate descent; typically leads to higher quality solutions

nlambda the number of group subset regularisation parameters to evaluate when lambda is computed automatically; may evaluate fewer parameters if pmax or gmax is reached first

ngamma the number of group lasso or ridge regularisation parameters to evaluate when gamma is computed automatically

gamma.max the maximum value for gamma when penalty='grSubset+Ridge'; when penalty='grSubset+grLasso' gamma.max is computed automatically from the data

gamma.min the minimum value for gamma when penalty='grSubset+Ridge' and the minimum value for gamma as a fraction of gamma.max when penalty='grSubset+grLasso'

lambda an optional list of decreasing sequences of group subset parameters; the list should contain a vector for each value of gamma

gamma an optional decreasing sequence of group lasso or ridge parameters

pmax the maximum number of predictors ever allowed to be active; ignored if lambda is supplied

gmax the maximum number of groups ever allowed to be active; ignored if lambda is supplied

subset.factor a vector of penalty factors applied to the group subset penalty; equal to the group sizes by default

lasso.factor a vector of penalty factors applied to the group lasso penalty; equal to the square root of the group sizes by default

ridge.factor a vector of penalty factors applied to the ridge penalty; equal to a vector of ones by default

alpha the step size taken when computing lambda from the data; should be a value strictly between 0 and 1; larger values typically lead to a finer grid of subset sizes

eps the convergence tolerance; convergence is declared when the relative maximum difference in consecutive coefficients is less than eps

max.cd.iter the maximum number of coordinate descent iterations allowed per value of lambda and gamma

max.ls.iter the maximum number of local search iterations allowed per value of lambda and gamma

active.set a logical indicating whether to use active set updates; typically lowers the run time
active.set.count
the number of consecutive coordinate descent iterations in which a subset should
appear before running active set updates

sort
a logical indicating whether to sort the coordinates before running coordinate
descent; required for gradient screening; typically leads to higher quality solutions

screen
the number of groups to keep after gradient screening; smaller values typically
lower the run time

orthogonalise
a logical indicating whether to orthogonalise within groups

warn
a logical indicating whether to print a warning if the algorithms fail to converge

Details
For linear regression (loss='square') the response and predictors are centred about zero and scaled
to unit l2-norm. For logistic regression (loss='logistic') only the predictors are centred and scaled
and an intercept is fit during the course of the algorithm.

Value
An object of class grpsel; a list with the following components:

beta
a list of matrices whose columns contain fitted coefficients for a given value of
lambda; an individual matrix in the list for each value of gamma

gamma
a vector containing the values of gamma used in the fit

lambda
a list of vectors containing the values of lambda used in the fit; an individual
vector in the list for each value of gamma

np
a list of vectors containing the number of active predictors per value of lambda;
an individual vector in the list for each value of gamma

ng
a list of vectors containing the the number of active groups per value of lambda;
an individual vector in the list for each value of gamma

iter.cd
a list of vectors containing the number of coordinate descent iterations per value
of lambda; an individual vector in the list for each value of gamma

iter.ls
a list of vectors containing the number of local search iterations per value of
lambda; an individual vector in the list for each value of gamma

loss
a list of vectors containing the evaluated loss function per value of lambda evaluated;
an individual vector in the list for each value of gamma

Author(s)
Ryan Thompson <ryan.thompson@monash.edu>

References
Examples

```r
# Grouped data
set.seed(123)
n <- 100
p <- 10
g <- 5
group <- rep(1:g, each = p / g)
beta <- numeric(p)
beta[which(group %in% 1:2)] <- 1
x <- matrix(rnorm(n * p), n, p)
y <- x %*% beta + rnorm(n)
newx <- matrix(rnorm(p), ncol = p)

# Group subset selection
fit <- grpsel(x, y, group)
plot(fit)
coef(fit, lambda = 0.05)
predict(fit, newx, lambda = 0.05)

# Group subset selection with group lasso shrinkage
fit <- grpsel(x, y, group, penalty = "grSubset+grLasso")
plot(fit, gamma = 0.05)
coef(fit, lambda = 0.05, gamma = 0.1)
predict(fit, newx, lambda = 0.05, gamma = 0.1)

# Group subset selection with ridge shrinkage
fit <- grpsel(x, y, group, penalty = "grSubset+Ridge")
plot(fit, gamma = 0.05)
coef(fit, lambda = 0.05, gamma = 0.1)
predict(fit, newx, lambda = 0.05, gamma = 0.1)
```

Description

Plot the cross-validation results from group subset selection for a specified value of gamma.

Usage

```r
## S3 method for class 'cv.grpsel'
plot(x, gamma = "gamma.min", ...)
```

Arguments

- `x`: an object of class `cv.grpsel`
- `gamma`: the value of gamma indexing the desired fit
- `...`: any other arguments
predict.cv.grpsel

Value

A plot of the cross-validation results.

Author(s)

Ryan Thompson <ryan.thompson@monash.edu>

plot.grpsel

Plot function for grpsel object

Description

Plot the coefficient profiles from group subset selection for a specified value of gamma.

Usage

```r
## S3 method for class 'grpsel'
plot(x, gamma = 0, ...)
```

Arguments

- `x`: an object of class `grpsel`
- `gamma`: the value of gamma indexing the desired fit
- `...`: any other arguments

Value

A plot of the coefficient profiles.

Author(s)

Ryan Thompson <ryan.thompson@monash.edu>

predict.cv.grpsel

Predict function for cv.grpsel object

Description

Generate predictions for new data using specified values of the tuning parameters.

Usage

```r
## S3 method for class 'cv.grpsel'
predict(object, x.new, lambda = "lambda.min", gamma = "gamma.min", ...)
```
predict.grpsel

Arguments

object an object of class cv.grpsel
x.new a matrix of new values for the predictors
lambda the value of lambda indexing the desired fit
gamma the value of gamma indexing the desired fit
... any other arguments

Value

A matrix of predictions.

Author(s)

Ryan Thompson <ryan.thompson@monash.edu>

predict.grpsel Predict function for grpsel object

Description

Generate predictions for new data using specified values of the tuning parameters.

Usage

S3 method for class 'grpsel'
predict(object, x.new, lambda = NULL, gamma = NULL, ...)

Arguments

object an object of class grpsel
x.new a matrix of new values for the predictors
lambda the value of lambda indexing the desired fit
gamma the value of gamma indexing the desired fit
... any other arguments

Value

A matrix of predictions.

Author(s)

Ryan Thompson <ryan.thompson@monash.edu>
Index

coef.cv.grpsel, 2
coef.grpsel, 3
cv.grpsel, 3

grpsel, 6

plot.cv.grpsel, 9
plot.grpsel, 10
predict.cv.grpsel, 10
predict.grpsel, 11