Package ‘grpsel’

October 13, 2022

Type Package

Title Group Subset Selection

Version 1.3.1

Description Provides tools for sparse regression modelling with grouped predictors using the group subset selection penalty. Uses coordinate descent and local search algorithms to rapidly deliver near optimal estimates. The group subset penalty can be combined with a group lasso or ridge penalty for added shrinkage. Linear and logistic regression are supported, as are overlapping groups.

URL https://github.com/ryan-thompson/grpsel

BugReports https://github.com/ryan-thompson/grpsel/issues

License GPL-3

Encoding UTF-8

Depends R (>= 4.1.0)

Imports ggplot2, parallel, Rcpp

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.1

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Ryan Thompson [aut, cre] (<https://orcid.org/0000-0002-9002-0448>)

Maintainer Ryan Thompson <ryan.thompson1@unsw.edu.au>

Repository CRAN

Date/Publication 2022-09-07 07:50:11 UTC
R topics documented:

- coef.cv.grpsel ... 2
- coef.grpsel ... 3
- cv.grpsel .. 3
- grpsel ... 5
- plot.cv.grpsel ... 9
- plot.grpsel ... 10
- predict.cv.grpsel 10
- predict.grpsel .. 11

Index 12

coef.cv.grpsel

Coefficient function for cv.grpsel object

Description

Extracts coefficients for specified values of the tuning parameters.

Usage

```r
## S3 method for class 'cv.grpsel'
coef(object, lambda = "lambda.min", gamma = "gamma.min", ...)
```

Arguments

- **object**
 - an object of class cv.grpsel
- **lambda**
 - the value of lambda indexing the desired fit
- **gamma**
 - the value of gamma indexing the desired fit
- **...**
 - any other arguments

Value

A matrix of coefficients.

Author(s)

Ryan Thompson <ryan.thompson@monash.edu>
coef.grpsel

Coefficient function for grpsel object

Description

Extracts coefficients for specified values of the tuning parameters.

Usage

```r
## S3 method for class 'grpsel'
coef(object, lambda = NULL, gamma = NULL, ...)
```

Arguments

- `object`: an object of class `grpsel`
- `lambda`: the value of `lambda` indexing the desired fit
- `gamma`: the value of `gamma` indexing the desired fit
- `...`: any other arguments

Value

A matrix of coefficients.

Author(s)

Ryan Thompson <ryan.thompson@monash.edu>

cv.grpsel

Cross-validated group subset selection

Description

Fits the regularisation surface for a regression model with a group subset selection penalty and then cross-validates this surface.

Usage

```r
cv.grpsel(
  x,
  y,
  group = seq_len(ncol(x)),
  penalty = c("grSubset", "grSubset+grLasso", "grSubset+Ridge"),
  loss = c("square", "logistic"),
  lambda = NULL,
  gamma = NULL,
)```

---
Arguments

- **x**: a predictor matrix
- **y**: a response vector
- **group**: a vector of length ncol(x) with the jth element identifying the group that the jth predictor belongs to; alternatively, a list of vectors with the kth vector identifying the predictors that belong to the kth group (useful for overlapping groups)
- **penalty**: the type of penalty to apply; one of 'grSubset', 'grSubset+grLasso', or 'grSubset+Ridge'
- **loss**: the type of loss function to use; 'square' for linear regression or 'logistic' for logistic regression
- **lambda**: an optional list of decreasing sequences of group subset selection parameters; the list should contain a vector for each value of gamma
- **gamma**: an optional decreasing sequence of group lasso or ridge parameters
- **nfold**: the number of cross-validation folds
- **folds**: an optional vector of length nrow(x) with the ith entry identifying the fold that the ith observation belongs to
- **cv.loss**: an optional cross-validation loss-function to use; should accept a vector of predicted values and a vector of actual values
- **cluster**: an optional cluster for running cross-validation in parallel; must be set up using parallel::makeCluster; each fold is evaluated on a different node of the cluster
- **interpolate**: a logical indicating whether to interpolate the lambda sequence for the cross-validation fits; see details below
- **...**: any other arguments for grpsel()

Details

When loss='logistic' stratified cross-validation is used to balance the folds. When fitting to the cross-validation folds, interpolate=TRUE cross-validates the midpoints between consecutive lambda values rather than the original lambda sequence. This new sequence retains the same set of solutions on the full data, but often leads to superior cross-validation performance.

Value

An object of class cv.grpsel; a list with the following components:
cv.mean

a list of vectors containing cross-validation means per value of \( \lambda \); an individual vector in the list for each value of \( \gamma \)

cd.sd

a list of vectors containing cross-validation standard errors per value of \( \lambda \); an individual vector in the list for each value of \( \gamma \)

lambda

a list of vectors containing the values of \( \lambda \) used in the fit; an individual vector in the list for each value of \( \gamma \)

gamma

a vector containing the values of \( \gamma \) used in the fit

lambda.min

the value of \( \lambda \) minimising \( \text{cv.mean} \)

gamma.min

the value of \( \gamma \) minimising \( \text{cv.mean} \)

fit

the fit from running \text{grpsel()}\ on the full data

**Author(s)**

Ryan Thompson <ryan.thompson@monash.edu>

**Examples**

```r
Grouped data
set.seed(123)
n <- 100
p <- 10
g <- 5
group <- rep(1:g, each = p / g)
beta <- numeric(p)
beta[which(group %in% 1:2)] <- 1
x <- matrix(rnorm(n * p), n, p)
y <- rnorm(n, x %*% beta)
newx <- matrix(rnorm(p), ncol = p)

Group subset selection
fit <- cv.grpsel(x, y, group)
plot(fit)
coef(fit)
predict(fit, newx)

Parallel cross-validation
cl <- parallel::makeCluster(2)
fit <- cv.grpsel(x, y, group, cluster = cl)
parallel::stopCluster(cl)
```

---

**Description**

Fits the regularisation surface for a regression model with a group subset selection penalty. The group subset penalty can be combined with either a group lasso or ridge penalty for shrinkage. The group subset parameter is \( \lambda \) and the group lasso/ridge parameter is \( \gamma \).
Usage

grpsel(
  x,
  y,
  group = seq_len(ncol(x)),
  penalty = c("grSubset", "grSubset+grLasso", "grSubset+Ridge"),
  loss = c("square", "logistic"),
  local.search = FALSE,
  orthogonalise = FALSE,
  nlambda = 100,
  lambda.step = 0.99,
  lambda = NULL,
  lambda.factor = NULL,
  ngamma = 10,
  gamma.max = 100,
  gamma.min = 1e-04,
  gamma = NULL,
  gamma.factor = NULL,
  pmax = ncol(x),
  gmax = length(unique(group)),
  eps = 1e-04,
  max.cd.iter = 10000,
  max.ls.iter = 100,
  active.set = TRUE,
  active.set.count = 3,
  sort = TRUE,
  screen = 500,
  warn = TRUE
)

Arguments

x a predictor matrix
y a response vector
group a vector of length ncol(x) with the jth element identifying the group that the jth predictor belongs to; alternatively, a list of vectors with the kth vector identifying the predictors that belong to the kth group (useful for overlapping groups)
penalty the type of penalty to apply; one of 'grSubset', 'grSubset+grLasso', or 'grSubset+Ridge'
loss the type of loss function to use; 'square' for linear regression or 'logistic' for logistic regression
local.search a logical indicating whether to perform local search after coordinate descent; typically leads to higher quality solutions
orthogonalise a logical indicating whether to orthogonalise within groups
nlambda the number of group subset selection parameters to evaluate when lambda is computed automatically; may evaluate fewer parameters if pmax or gmax is reached first
grpsel

lambda.step the step size taken when computing lambda from the data; should be a value strictly between 0 and 1; larger values typically lead to a finer grid of subset sizes

lambda an optional list of decreasing sequences of group subset selection parameters; the list should contain a vector for each value of gamma

lambda.factor a vector of penalty factors applied to the group subset selection penalty; equal to the group sizes by default

ngamma the number of group lasso or ridge parameters to evaluate when gamma is computed automatically

gamma.max the maximum value for gamma when penalty='grSubset+Ridge'; when penalty='grSubset+grLasso' gamma.max is computed automatically from the data

gamma.min the minimum value for gamma when penalty='grSubset+Ridge' and the minimum value for gamma as a fraction of gamma.max when penalty='grSubset+grLasso'

gamma an optional decreasing sequence of group lasso or ridge parameters

gamma.factor a vector of penalty factors applied to the shrinkage penalty; by default, equal to the square root of the group sizes when penalty='grSubset+grLasso' or a vector of ones when penalty='grSubset+Ridge'

pmax the maximum number of predictors ever allowed to be active; ignored if lambda is supplied

gmax the maximum number of groups ever allowed to be active; ignored if lambda is supplied

eps the convergence tolerance; convergence is declared when the relative maximum difference in consecutive coefficients is less than eps

max.cd.iter the maximum number of coordinate descent iterations allowed per value of lambda and gamma

max.ls.iter the maximum number of local search iterations allowed per value of lambda and gamma

active.set a logical indicating whether to use active set updates; typically lowers the run time

active.set.count the number of consecutive coordinate descent iterations in which a subset should appear before running active set updates

sort a logical indicating whether to sort the coordinates before running coordinate descent; required for gradient screening; typically leads to higher quality solutions

screen the number of groups to keep after gradient screening; smaller values typically lower the run time

warn a logical indicating whether to print a warning if the algorithms fail to converge

Details

For linear regression (loss='square') the response and predictors are centred about zero and scaled to unit l2-norm. For logistic regression (loss='logistic') only the predictors are centred and scaled and an intercept is fit during the course of the algorithm.
Value

An object of class `grpsel`; a list with the following components:

- **beta**: a list of matrices whose columns contain fitted coefficients for a given value of \( \lambda \); an individual matrix in the list for each value of \( \gamma \)
- **gamma**: a vector containing the values of \( \gamma \) used in the fit
- **lambda**: a list of vectors containing the values of \( \lambda \) used in the fit; an individual vector in the list for each value of \( \gamma \)
- **np**: a list of vectors containing the number of active predictors per value of \( \lambda \); an individual vector in the list for each value of \( \gamma \)
- **ng**: a list of vectors containing the number of active groups per value of \( \lambda \); an individual vector in the list for each value of \( \gamma \)
- **iter.cd**: a list of vectors containing the number of coordinate descent iterations per value of \( \lambda \); an individual vector in the list for each value of \( \gamma \)
- **iter.ls**: a list of vectors containing the number of local search iterations per value of \( \lambda \); an individual vector in the list for each value of \( \gamma \)
- **loss**: a list of vectors containing the evaluated loss function per value of \( \lambda \) evaluated; an individual vector in the list for each value of \( \gamma \)

Author(s)

Ryan Thompson <ryan.thompson@monash.edu>

References


Examples

```r
Grouped data
set.seed(123)
n <- 100
p <- 10
g <- 5
group <- rep(1:g, each = p / g)
beta <- numeric(p)
beta[which(group %in% 1:2)] <- 1
x <- matrix(rnorm(n * p), n, p)
y <- rnorm(n, x %*% beta)
newx <- matrix(rnorm(p), ncol = p)

Group subset selection
fit <- grpsel(x, y, group)
plot(fit)
coef(fit, lambda = 0.05)
predict(fit, newx, lambda = 0.05)
```
# Group subset selection with group lasso shrinkage
fit <- grpsel(x, y, group, penalty = 'grSubset+grLasso')
plot(fit, gamma = 0.05)
coef(fit, lambda = 0.05, gamma = 0.1)
predict(fit, newx, lambda = 0.05, gamma = 0.1)

# Group subset selection with ridge shrinkage
fit <- grpsel(x, y, group, penalty = 'grSubset+Ridge')
plot(fit, gamma = 0.05)
coef(fit, lambda = 0.05, gamma = 0.1)
predict(fit, newx, lambda = 0.05, gamma = 0.1)

---

**plot.cv.grpsel**  
*Plot function for cv.grpsel object*

**Description**

Plot the cross-validation results from group subset selection for a specified value of `gamma`.

**Usage**

```
S3 method for class 'cv.grpsel'
plot(x, gamma = "gamma.min", ...)
```

**Arguments**

- `x`  
an object of class `cv.grpsel`

- `gamma`  
the value of `gamma` indexing the desired fit

- `...`  
any other arguments

**Value**

A plot of the cross-validation results.

**Author(s)**

Ryan Thompson <ryan.thompson@monash.edu>
plot.grpsel  
*Plot function for grpsel object*

**Description**

Plot the coefficient profiles from group subset selection for a specified value of gamma.

**Usage**

```r
S3 method for class 'grpsel'
plot(x, gamma = 0, ...)
```

**Arguments**

- `x` 
an object of class `grpsel`
- `gamma` 
the value of gamma indexing the desired fit
- `...` 
any other arguments

**Value**

A plot of the coefficient profiles.

**Author(s)**

Ryan Thompson <ryan.thompson@monash.edu>

---

predict.cv.grpsel  
*Predict function for cv.grpsel object*

**Description**

Generate predictions for new data using specified values of the tuning parameters.

**Usage**

```r
S3 method for class 'cv.grpsel'
predict(object, x.new, lambda = "lambda.min", gamma = "gamma.min", ...)
```

**Arguments**

- `object` 
an object of class `cv.grpsel`
- `x.new` 
a matrix of new values for the predictors
- `lambda` 
the value of lambda indexing the desired fit
- `gamma` 
the value of gamma indexing the desired fit
- `...` 
any other arguments
**Value**

A matrix of predictions.

**Author(s)**

Ryan Thompson <ryan.thompson@monash.edu>

---

### predict.grpsel

**Predict function for grpsel object**

**Description**

Generate predictions for new data using specified values of the tuning parameters.

**Usage**

```r
S3 method for class 'grpsel'
predict(object, x.new, lambda = NULL, gamma = NULL, ...)
```

**Arguments**

- `object`: an object of class grpsel
- `x.new`: a matrix of new values for the predictors
- `lambda`: the value of lambda indexing the desired fit
- `gamma`: the value of gamma indexing the desired fit
- `...`: any other arguments

**Value**

A matrix of predictions.

**Author(s)**

Ryan Thompson <ryan.thompson@monash.edu>
Index

coef.cv.grpsel, 2
coef.grpsel, 3
cv.grpsel, 3

grpsel, 5

plot.cv.grpsel, 9
plot.grpsel, 10
predict.cv.grpsel, 10
predict.grpsel, 11