Package ‘grpseq’

December 6, 2021

Type Package
Title Group Sequential Analysis of Clinical Trials
Version 1.0
Author Lu Mao
Maintainer Lu Mao <lmao@biostat.wisc.edu>
URL https://sites.google.com/view/lmaowisc/
Description Design of group sequential trials, including non-binding futility analysis
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.1.1
VignetteBuilder knitr
Depends R (>= 2.10)
Imports mvtnorm
Suggests knitr, rmarkdown
NeedsCompilation no
Repository CRAN
Date/Publication 2021-12-06 17:20:02 UTC

R topics documented:

fut ... 2
plot.fut ... 3
powerplot 5
print.fut ... 6
print.summary.fut 7
summary.fut 7

Index 9
Description

Design of non-binding futility looks at multiple information times based on conditional power (CP), predictive power (PP), or condition power under current estimate (CPd) (Gallo, Mao, and Shih, 2014).

Usage

```r
fut(
  alpha,
  beta,
  t,
  gamma,
  side = 2,
  increment = 1e-04,
  si = 0,
  scale = "CP",
  seed = 12345
)
```

Arguments

- `alpha`: Type I error.
- `beta`: Type II error (1 - power).
- `t`: A numeric vector of information times in (0, 1) for futility looks.
- `gamma`: A numeric vector of probabilities (whose meaning depends on `scale`) at information times t.
- `side`: 1- or 2-sided test.
- `increment`: Error for the numerical solution of the sample size inflation factor.
- `si`: 0: without sample size inflation; 1: with sample size inflation.
- `scale`: Character string specifying the scaled used: "CP", conditional power; "PP", predictive power; "CPd": condition power under current estimate.
- `seed`: Seed number for the randomized evaluation of multivariate normal distribution.

Value

An object of class `fut` with the following components. `gamma1`: conditional power at information times t converted from the supplied `gamma` and `scale`; `theta`: local alternative associated with the actual power when the futility rules of enforced; `IF`: sample size inflation factor if `si`=1; `loss`: power loss if `si`=0.
plot.fut

References

See Also
print.fut, summary.fut, plot.fut, powerplot

Examples
load the package
library(grpseq)
two-sided level 0.05 test with 80% power;
evenly spaced three futility looks with predictive power 20%;
inflate sample size to recoup power.
obj1 <- fut(alpha=0.05,beta=0.2,t=(1:3)/4,gamma=0.2*rep(1,3),side=2,scale="PP",si=1)
obj1
print the summary results
summary(obj1)

do the same thing without sample size inflation
obj2 <- fut(alpha=0.05,beta=0.2,t=(1:3)/4,gamma=0.2*rep(1,3),side=2,scale="PP",si=0)
obj2
print the summary results
summary(obj2)
oldpar <- par(mfrow = par("mfrow"))
par(mfrow=c(1,2))
plot the futility boundaries by z-value
plot(obj2, scale="z", lwd=2, main="")
plot the futility boundaries by B-value
plot(obj2, scale="b", lwd=2, main="")
par(oldpar)
plot the power curve as a function of the (local)
effect size in units of the hypothesized effect size
ref=TRUE requests the power curve for the original one-time analysis
powerplot(obj2, lwd=2, ref=TRUE)

plot.fut

Plot the planned futility boundaries

Description
Plot the planned futility boundaries in B- or z-values as a function of information time.

Usage
S3 method for class 'fut'
plot(
x,
scale = "z",
add = FALSE,
lty = 8,
xlab = "Info Time",
ylab = "z score",
type = "b",
pch = 1,
cex = 1,
main = "Futility Boundary for the Planned Test",
xlim = c(0, 1.1),
ylim = NULL,
...)

Arguments

x An object returned by fut.
scale "z": plot z-values; "b": plot B-values.
add If TRUE, the curve will be overlaid on an existing plot; otherwise, a separate
 plot will be constructed.
lty Line type for the segments connecting the z-/B-value points.
xlab A label for the x axis, defaults to a description of x.
ylab A label for the y axis, defaults to a description of y.
type Plot type. "l": only line segments; "p": only z-/B-value points; "b": both.
pch Point types for the z-/B-values.
cex Point size.
main A main title for the plot.
xlim The x limits of the plot.
ylim The y limits of the plot.
... Other arguments that can be passed to the underlying plot method.

Value

No return value, called for side effects.

See Also

fut, summary.fut, powerplot.

Examples

see example for fut
powerplot

Plot the power function of the planned analysis

Description

Plot the power curve of the planned futility analysis as a function of the effect size (in units of the hypothesized effect size).

Usage

```r
powerplot(
  x,
  ref = FALSE,
  add = FALSE,
  lty = 1,
  ref.lty = 2,
  lwd = 1,
  xlab = expression(delta),
  ylab = "Power",
  main = "Power curve of the planned futility analysis",
  xlim = c(0, 1.5),
  ylim = c(0, 1),
  ...
)
```

Arguments

- `x`: An object returned by `fut`.
- `ref`: If TRUE, power curve of the reference test (one that ignores the futility boundaries) will be overlaid.
- `add`: If TRUE, the curve will be overlaid on an existing plot; otherwise, a separate plot will be constructed.
- `lty`: Line type for the power curve of the futility analysis.
- `ref.lty`: Line type for the power curve of the reference if `ref=TRUE`.
- `lwd`: Line width.
- `xlab`: A label for the x axis, defaults to a description of x.
- `ylab`: A label for the y axis, defaults to a description of y.
- `main`: A main title for the plot.
- `xlim`: The x limits of the plot.
- `ylim`: The y limits of the plot.
- `...`: Other arguments that can be passed to the underlying `plot` method.

Value

No return value, called for side effects.
See Also

fut, summary.fut, plot.fut.

Examples

see example for fut

Description

Print the power loss or sample size inflation factor due to the planned futility analysis.

Usage

S3 method for class 'fut'
print(x, ...)

Arguments

x An object of class fut.

... Further arguments passed to or from other methods.

Value

Print the results of fut object.

See Also

fut, summary.fut

Examples

see example for fut
print.summary.fut

Print method for summary.fut objects

Description

Print the detailed summary of the futility design.

Usage

```r
## S3 method for class 'summary.fut'
print(x, ...)
```

Arguments

- `x` An object returned by `summary.fut`.
- `...` Further arguments passed to or from other methods

Value

No return value, called for side effects.

See Also

`fut`, `summary.fut`.

summary.fut

Detailed summary of the futility design

Description

Provide key information about the futility design, including B/z-values, beta (type II error) spent, and power loss at each futility look as well the the sample size distribution under the null hypothesis.

Usage

```r
## S3 method for class 'fut'
summary(object, ...)
```

Arguments

- `object` An object returned by `fut`.
- `...` further arguments passed to or from other methods.
Value

An object of class `summary.fut` with components:

- **t**: A K-dimensional vector of information times.
- **b**: A K-dimensional vector of B-values at t.
- **z**: A K-dimensional vector of z-values at t.
- **type2**: A K-dimensional vector of beta spent at t.
- **loss**: A K-dimensional vector of power loss at t.
- **ess**: Expected sample size at H_0.

See Also

`fut`, `print.fut`, `print.summary.fut`.

Examples

```r
# see example for fut
```
Index

* fut
 fut, 2
 plot.fut, 3
 powerplot, 5
 print.fut, 6
 summary.fut, 7

fut, 2, 4–8

plot.fut, 3, 3, 6
powerplot, 3, 4, 5
print.fut, 3, 6, 8
print.summary.fut, 7, 8

summary.fut, 3, 4, 6, 7, 7