Package ‘gsdensity’
March 16, 2023

Type Package
Title Density-Based Gene Set Specificity Evaluation
Version 0.1.2
Description Analysis frameworks for pathway heterogeneity and pathway activity evaluation in single-cell data, including scRNA-seq data and spatial genomics data.
License GPL-3
Encoding UTF-8
LazyData true
LazyDataCompression xz
RoxygenNote 7.2.1
Depends R (>= 4.0)
Imports Seurat, CellID, dnet, supraHex, Rgraphviz, infotheo, anticlust, multimode, philentropy, RANN, future.apply, MASS, reshape2, dplyr, igraph, Matrix, stats
NeedsCompilation no
Author Qingnan, Liang [aut, cre, cph], Ken Chen [aut, cph]
Maintainer `Qingnan, Liang" <qliang3@mdanderson.org>
Repository CRAN
Date/Publication 2023-03-16 11:10:02 UTC

R topics documented:

 ce ... 2
 compute.cell.label .. 3
 compute.cell.label.df 3
 compute.db ... 4
 compute.grid.coords .. 5
 compute.jsd ... 5
 compute.kld .. 6
 compute.mca ... 7
Description

Cell embeddings for pbmc3k data

Usage

```r
ce
```

Format

A `df`

Source

created with pbmc3k data

Examples

```r
data(ce)  # Lazy loading. Data becomes visible as soon as called
```
compute.cell.label 4.2. binarize the label propagation probability in the cell population; result in a binarized vector of cells with 'negative' and 'positive' labels; 'positive' means that the cells are relevant to the gene set

Description

4.2. binarize the label propagation probability in the cell population; result in a binarized vector of cells with 'negative' and 'positive' labels; 'positive' means that the cells are relevant to the gene set

Usage

```r
## S3 method for class 'cell.label'
compute(cell_vec)
```

Arguments

- `cell_vec`: output of 'run.rwr'

Value

cell label of 'negative' or 'positive' for a given pathway

Examples

```r
cells <- colnames(pbmc.mtx)
el <- gsdensity::compute.nn.edges(coembed = ce, nn.use = 300)
cv <- gsdensity::run.rwr(el = el, 
gene_set = gene.set.list[["GOBP_B_CELL_ACTIVATION"]], 
cells = cells)
cl <- compute.cell.label(cv)
```

compute.cell.label.df similar to compute.cell.label; used when working with multiple gene sets

Description

similar to compute.cell.label; used when working with multiple gene sets

Usage

```r
## S3 method for class 'cell.label.df'
compute(cell_df)
```
compute.db

Arguments

cell_df output of 'run.rwr.list'

Value

cell labels of 'negative' or 'positive' for given pathways

Examples

cells <- colnames(pbmc.mtx)
el <- gsdensity::compute.nn.edges(coembed = ce, nn.use = 300)
cv <- gsdensity::run.rwr.list(el = el, gene_set = gene.set.list[1:30], cells = cells)
cl <- compute.cell.label.df(cv)

compute.db this function is called by 'compute.kld' to aggregate the density contribution of each gene to each grid point, and then normalize the densities of grid points to 1.

Description

this function is called by 'compute.kld' to aggregate the density contribution of each gene to each grid point, and then normalize the densities of grid points to 1.

Usage

S3 method for class 'db'
compute(density.df)

Arguments

density.df an intermediate object in 'compute.kld'

Value

distribution
compute.grid.coords

2. compute density of gene sets of interest
 2.1 compute grid point coordinates

Description

2. compute density of gene sets of interest 2.1 compute grid point coordinates

Usage

S3 method for class 'grid.coords'
compute(coembed, genes.use, n.grids = 100)

Arguments

coembed the result from compute.mca
genes.use which genes to use; no default; can use genes based on the gene set selection or
 use rownames(object)
n.grids number of grid points used for gene set density estimation; larger number is
 more accurate and slower; default is 100 (recommended to test 100 first)

Value

grid coordinates

Examples

compute.grid.coords(coembed = ce, genes.use = intersect(rownames(ce), rownames(pbm.mtx)))

compute.jsd

5. compute the specificity of gene set when cell partition information is available; the information could be
 clustering, sample origins, or other conditions inspired by
 https://github.com/FloWuenne/scFunctions/blob/0d9ea609fa72210a151f7270e61bdee008e8fc88/R/calculate_rrs.R

Description

this function is called by compute.spec.single to calculate the similarity between two vectors

Usage

S3 method for class 'jsd'
compute(x, y)
Arguments

x
y

Value

returns jsd_distance

compute.kld 2.2 compute KL-divergence (some are adapted from https://github.com/alexisvdb/singleCellHaystack/)

Description

2.2 compute KL-divergence (some are adapted from https://github.com/alexisvdb/singleCellHaystack/)

Usage

```r
## S3 method for class 'kld'
compute(
  coembed,
  genes.use,
  n.grids = 100,
  gene.set.list,
  gene.set.cutoff = 3,
  n.times = 100
)
```

Arguments

coembed the result from compute.mca

genes.use which genes to use; no default; can use genes based on the gene set selection or use rownames(object)
n.grids number of grid points used for gene set density estimation; larger number is more accurate and slower; default is 100 (recommended to test 100 first) 'coembed', 'genes.use', 'n.grids' are passed to 'compute.grid.coords()'
gene.set.list a list of gene sets; e.g., gene.set.list <- list(gene.set.a = c("A", "B", "C"), gene.set.b = c("a", "b", "c"))
gene.set.cutoff gene sets with length less than this cutoff will not be used; the length is after the intersection of the gene set and genes.use

n.times to evaluate how likely the gene set density is not caused by randomness, size-matched gene sets will be used to compute the background density distribution; This simulation will be done n.times; default is 100
Value

kl-divergence between given gene set and random gene sets

Examples

```r
compute.kld(coembed = ce, 
    genes.use = intersect(rownames(ce), rownames(pbmc.mtx)),
    gene.set.list = gene.set.list[1:10])
```

compute.mca

1. compute MCA embeddings

Description

1. compute MCA embeddings

Usage

```r
## S3 method for class 'mca'
compute(object, dims.use = 1:10, genes.use = rownames(object))
```

Arguments

- `object`: a seurat object
- `dims.use`: which mca dimensions to use; default is the first 10 dimensions
- `genes.use`: which genes to use; default is all genes in the object

Value

returns a dataframe with cells as rows and mca coordinates as columns

Examples

```r
pbmc <- Seurat::CreateSeuratObject(pbmc.mtx, meta.data = pbmc.meta)
ce <- compute.mca(object = pbmc)
```
compute.nn.edges 3. compute nearest neighbor graph for genes and cells This graph will be used for fetching the most relevant cells of a gene set

Description

3. compute nearest neighbor graph for genes and cells. This graph will be used for fetching the most relevant cells of a gene set.

Usage

```r
## S3 method for class 'nn.edges'
compute(coembed, nn.use = 300)
```

Arguments

- `coembed`: the result from `compute.mca`
- `nn.use`: the number of nearest neighbors for building the graph; default 300

Value

nearest neighbor graph (edges)

Examples

```r
compute.nn.edges(coembed = ce)
```

compute.spatial.kld 6. find gene sets with spatial relevance

Description

6. find gene sets with spatial relevance

This function is to calculate how likely the cells relevant to a gene set is randomly distributed spatially.

Usage

```r
## S3 method for class 'spatial.kld'
compute(spatial.coords, weight_vec, n = 10, n.times = 20)
```
Arguments

spatial.coords a data frame with each row as a cell and each column as a spatial coordinate (usually 2: x and y)
weight_vec output of run.rwr
n split the spatial map for local density estimation; n is the number of split for each dimension; for n = 10, the spatial map is split to n * n = 100 grids for the density estimation
n.times the weight_vec is shuffled several times (n.times) to generate a background distribution (shuffled weights vs. equal weights) for statistical significance estimation (p.value); larger n.times will be more time-consuming and more accurate

Value

spatial kl-divergence

compute.spatial.kld.df

This function is to calculate how likely the cells relevant to multiple gene sets are randomly distributed spatially

Description

This function is to calculate how likely the cells relevant to multiple gene sets are randomly distributed spatially

Usage

S3 method for class 'spatial.kld.df'
compute(spatial.coords, weight_df, n = 10, n.times = 20)

Arguments

spatial.coords a data frame with each row as a cell and each column as a spatial coordinate (usually 2: x and y)
weight_df output of run.rwr.list
n split the spatial map for local density estimation; n is the number of split for each dimension; for n = 10, the spatial map is split to n * n = 100 grids for the density estimation
n.times the same as n.times in function 'compute.spatial.kld'

Value

spatial kl-divergence for multiple gene sets
Examples

compute.spatial.kld.df(spatial.coords = coords.df, weight_df = weight_df)

compute.spec

This is to calculate the similarity between: 1. the label propagation probability of cells for gene sets and 2. the identify of cells in partitions

Description

This is to calculate the similarity between: 1. the label propagation probability of cells for gene sets and 2. the identify of cells in partitions

Usage

S3 method for class 'spec'
compute(cell_df, metadata, cell_group)

Arguments

cell_df the output of run.rwr.list
metadata a data frame with cell information (each row is a cell; usually object@meta.data)
cell_group cell partition vector (usually a column name)

Value

specificity of a pathway activity and other levels of cell annotations (e.g., cell type) in object@meta.data

Examples

cells <- colnames(pbmc.mtx)
el <- gsdensity::compute.nn.edges(coembed = ce, nn.use = 300)
cv <- gsdensity::run.rwr.list(el = el, gene_set = gene.set.list[1:30], cells = cells)
jsd.df <- compute.spec(cell_df = cv, metadata = pbmc.meta, cell_group = "seurat_annotations")
compute.spec.single

This is to calculate the similarity between: 1. the label propagation probability of cells for gene sets and 2. the identity of cells in a certain partition. This is called by 'compute.spec'; can also run by itself.

Description

This is to calculate the similarity between: 1. the label propagation probability of cells for gene sets and 2. the identity of cells in a certain partition. This is called by 'compute.spec'; can also run by itself.

Usage

```r
## S3 method for class 'spec.single'
compute(vec, positive, cell_df)
```

Arguments

- `vec`: cell partition vector (usually a column name in object@meta.data).
- `positive`: the positive label, e.g. "disease" or "cluster_1".
- `cell_df`: the output of run.rwr.list.

Value

Specificity of a pathway activity and other levels of cell annotations (e.g., cell type).

coords.df

mouse brain coords

Description

Mouse brain coords.

Usage

```r
coords.df
```

Format

A df.

Source

Created with brain data.

Examples

```r
data(coords.df)  # Lazy loading. Data becomes visible as soon as called
```
el_nn_search

this function is called by 'compute.nn.edges' to convert nearest neighbor identity matrix to edge list

description

this function is called by 'compute.nn.edges' to convert nearest neighbor identity matrix to edge list

usage

el_nn_search(nn2_out)

arguments

nn2_out

value

returns edge list

gene.set.list

A gene set list containing multiple human GO gene sets

description

A gene set list containing multiple human GO gene sets

usage

gene.set.list

format

A list

source

created based on msigdb human C5 (biological process) gene sets

examples

data(gene.set.list) #Lazy loading. Data becomes visible as soon as called
kde2d.weighted

based on https://stat.ethz.ch/pipermail/r-help/2006-June/107405.html this is called by compute.spatial.kld to calculate the kernel density estimation in 2d space with each data point weighted.

Description

Based on https://stat.ethz.ch/pipermail/r-help/2006-June/107405.html this is called by compute.spatial.kld to calculate the kernel density estimation in 2d space with each data point weighted.

Usage

```r
kde2d.weighted(x, y, w, h, n, lims = c(range(x), range(y)))
```

Arguments

- **x**: x
- **y**: y
- **w**: w
- **h**: h
- **n**: n
- **lims**: lims

Value

Weighted kde2d estimation

pbmc.meta

pbmc3k meta

Description

pbmc3k meta

Usage

```r
pbmc.meta
```

Format

A df

Source

Created with pbmc3k data
Examples

data(pbmc.meta) #Lazy loading. Data becomes visible as soon as called

pbmc.mtx pbmc3k matrix

Description

pbmc3k matrix

Usage

pbmc.mtx

Format

A matrix

Source

created with pbmc3k data

Examples

data(pbmc.mtx) #Lazy loading. Data becomes visible as soon as called

run.rwr 4.1 To calculate the label propagation probability for a gene set among cells; result in a vector (length = number of cells) reflecting the probability each cell is labeled during the propagation (relevance to the gene set)

Description

4.1 To calculate the label propagation probability for a gene set among cells; result in a vector (length = number of cells) reflecting the probability each cell is labeled during the propagation (relevance to the gene set)

Usage

run.rwr(el, gene_set, cells, restart = 0.75)
run.rwr.list

Arguments

el edge list; output of `compute.nn.edges`
gene_set a vector of genes of interest
cells name of cells; usually the same as `colnames(object)`
restart the probability of the propagation to restart

Value
cell vector (representing gene set activity)

Examples

cells <- colnames(pbmc.mtx)
el <- gsdensity::compute.nn.edges(coembed = ce, nn.use = 300)
cv <- run.rwr(el = el, gene_set = gene.set.list[1], cells = cells)

Description
result in a matrix (number of rows = number of cells; number of columns = number of gene sets) reflecting the probability each cell is labeled during the propagation (relevance to the gene set); same idea as run.rwr but with multiple gene sets

Usage

run.rwr.list(el, gene_set_list, cells, restart = 0.75)

Arguments

el edge list; output of `compute.nn.edges`
gene_set_list a list of gene sets
cells name of cells; usually the same as `colnames(object)`
restart the probability of the propagation to restart

Value
activity of pathways in cells
Examples

cells <- colnames(pbmc.mtx)
el <- gsdensity::compute.nn.edges(coembed = ce, nn.use = 300)
cv <- run.rwr.list(el = el, gene_set = gene.set.list[1:3], cells = cells)

sample.kld # this function is called by 'compute.kld' to calculate the kl-divergence between sampled (background) gene set and the ref (all) gene set

Description
this function is called by 'compute.kld' to calculate the kl-divergence between sampled (background) gene set and the ref (all) gene set

Usage
sample.kld(density.df, ref, len.gene.set)

Arguments

density.df # density.df
ref # ref
len.gene.set # len.gene.set

Value
returns random klds

sample.spatial.kld # this function is called by 'compute.spatial.kld' to calculate the kl-divergence between cell-weighted with shuffled weight vector and the ref (all cells, unweighted)

Description
this function is called by 'compute.spatial.kld' to calculate the kl-divergence between cell-weighted with shuffled weight vector and the ref (all cells, unweighted)

Usage
sample.spatial.kld(weight_vec, spatial.coords, n, ref)
seed.mat

Arguments

weight_vec weight_vec
spatial.coords spatial.coords
n n
ref ref

Value

returns randomly sampled spatial klds for gene sets

Description

4. compute label propagation from gene set to cells this function is to form a 'seed matrix' used by the dRWR function (dnet R package); the seed matrix is specifying which nodes are the sources for label propagation

Usage

seed.mat(gene_set, graph.use)

Arguments

gene_set gene_set
graph.use graph.use

Value

returns seed matrix
seed.mat.list
this function is used when more than one 'seed sets' will be used (when there are multiple gene sets of interest)

Description
this function is used when more than one 'seed sets' will be used (when there are multiple gene sets of interest)

Usage
seed.mat.list(gene_set_list, graph.use)

Arguments

gene_set_list gene_set_list
graph.use graph.use

Value
returns seed matrix

vectorized_pdist from an excellent post: https://www.r-bloggers.com/2013/05/pairwise-distances-in-r/ enhanced the speed this function is called by 'compute.kld' to quickly compute the distance between genes to grid points

Description
from an excellent post: https://www.r-bloggers.com/2013/05/pairwise-distances-in-r/ enhanced the speed this function is called by 'compute.kld' to quickly compute the distance between genes to grid points

Usage
vectorized_pdist(A, B)

Arguments
A matrix
B matrix

Value
returns pairwise-distances
weight_df

weight_df mouse brain gene set activities

Description

mouse brain gene set activities

Usage

weight_df

Format

A df

Source

created with brain data

Examples

data(weight_df) #Lazy loading. Data becomes visible as soon as called
Index

* datasets
 ce, 2
 coords.df, 11
 gene.set.list, 12
 pbmc.meta, 13
 pbmc.mtx, 14
 weight_df, 19

ce, 2
compute.cell.label, 3
compute.cell.label.df, 3
compute.db, 4
compute.grid.coords, 5
compute.jsd, 5
compute.kld, 6
compute.mca, 7
compute.nn.edges, 8
compute.spatial.kld, 8
compute.spatial.kld.df, 9
compute.spec, 10
compute.spec.single, 11
coords.df, 11

el_nn_search, 12
gene.set.list, 12
kde2d.weighted, 13
pbmc.meta, 13
pbmc.mtx, 14
run.rwr, 14
run.rwr.list, 15
sample.kld, 16
sample.spatial.kld, 16
seed.mat, 17
seed.mat.list, 18
vectorized_pdist, 18
weight_df, 19