Package ‘gstsm’

October 19, 2022

Title Generalized Spatial-Time Sequence Miner

Version 1.0.0

Description Implementations of the algorithms present article

Generalized Spatial-Time Sequence Miner, original title

(Castro, Antonio; Borges, Heraldo; Pacitti, Esther; Porto, Fabio;
Coutinho, Rafaeli; Ogasawara, Eduardo. Generalização de Mineração de
Sequências Restritas no Espaço e no Tempo. In: XXXVI SBBD -

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.1

Imports digest

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Antonio Castro [aut, cre],
Cássio Souza [aut, ctb],
Jorge Rodrigues [aut, ctb],
Esther Pacitti [aut],
Fábio Porto [aut],
Florent Masseglia [aut],
Rafaeli Coutinho [aut, ths],
Eduardo Ogasawara [aut, ths] (<https://orcid.org/0000-0002-0466-0626>),
Federal Center for Technological Education of Rio de Janeiro [cph]

Maintainer Antonio Castro <gstsm@eic.cefet-rj.br>

Repository CRAN

Date/Publication 2022-10-19 20:05:12 UTC

R topics documented:

find ... 2
find.default .. 3
find.gstsm ... 3
find_kernel_ranged_group 4
generate_adjacency_matrix 4
generate_candidates 5
generate_candidates.default 5
generate_candidates.gstsm 6
gstsm ... 6
merge ... 7
merge.default .. 8
merge.gstsm ... 8
merge_kernel_ranged_groups 9
merge_open_kernel_ranged_groups 9
mine ... 10
mine.default ... 10
mine.gstsm ... 11
split_groups .. 11
validate_and_close 12
validate_kernel_ranged_groups 12

Index 14

find Find - definition

Description

S3 class definition for find method.

Usage

find(object, ck)

Arguments

object a GSTSM object
ck set of candidates

Value

Solid Ranged-Group(s) of all candidate sequences
find.default

Description

Usage
Default S3 method:
find(object, ck)

Arguments
- object: a GSTSM object
- ck: set of candidates

Value
Solid Ranged-Group(s) of all candidate sequences

find.gstsm

Description
GSTSM implementation for find method. Does nothing. The goal is to find the Ranged Groups information for a candidate c.

Usage
S3 method for class 'gstsm'
find(object, ck)

Arguments
- object: a GSTSM object
- ck: set of candidates

Value
Solid Ranged-Group(s) of all candidate sequences
generate_adjacency_matrix

find_kernel_ranged_group

Find Kernel Ranged Group

Description

The goal is to find the Kernel Ranged Group information for a candidate c.

Usage

```python
find_kernel_ranged_group(c, d, gamma, beta, adjacency_matrix)
```

Arguments

- `c` candidate
- `d` set of transactions
- `gamma` minimum temporal frequency
- `beta` minimum group size
- `adjacency_matrix` adjacency matrix

Value

Kernel Ranged-Group(s) of c updated

generate_adjacency_matrix

Generate Adjacency Matrix

Description

Helper function that generates an adjacency matrix.

Usage

```python
generate_adjacency_matrix(spatial_positions, sigma)
```

Arguments

- `spatial_positions` set of spatial positions
- `sigma` max distance between group points

Value

Adjacency Matrix
generate_candidates

Generate Candidates - definition

Description
S3 class definition for generate_candidates method.

Usage
generate_candidates(object, srg)

Arguments
- object: a GSTSM object
- srg: set of Solid Ranged Groups

Value
candidate sequences of size k + 1

generate_candidates.default

Generate Candidates - default

Description
Default method for generate_candidates. Does nothing.

Usage
Default S3 method:
generate_candidates(object, srg)

Arguments
- object: a GSTSM object
- srg: set of Solid Ranged Groups

Value
candidate sequences of size k + 1
generate_candidates.gstsm

Generate Candidates - GSTSM implementation

Description

The algorithm combines SRGs that have sequences of size k, received as input, to generate candidates with sequences of size k + 1. Let x and y be SRGs, the conditions for this to occur are: that we have an intersection of candidates over the time range, intersection over the set of spatial positions (x.g n y.g), and a common subsequence: <x.s2, . . . , x.sk>=<y.s1, . . . , y.sk-1>.

Usage

```r
## S3 method for class 'gstsm'
generate_candidates(object, srg)
```

Arguments

- **object**: a GSTSM object
- **srg**: set of Solid Ranged Groups

Value

candidate sequences of size k + 1

gstsm

GSTSM

Description

S3 class definition for GSTSM.

Usage

```r
gstsm(sts_dataset, spatial_positions, gamma, beta, sigma)
```

Arguments

- **sts_dataset**: STS dataset
- **spatial_positions**: set of spatial positions
- **gamma**: minimum temporal frequency
- **beta**: minimum group size
- **sigma**: maximum distance between group points
Details

This algorithm is designed to the identification of frequent sequences in STS datasets from the concept of Solid Ranged Groups (SRG). GSTSM is based on the candidate-generating principle. The goal is to start finding SRGs for sequences of size one. Then it explores the support and the number of occurrences of SRGs for larger sequences with a limited number of scans over the database.

Value

a GSTSM object

Examples

library("gstsm")

ponto <- c("p1", "p2", "p3", "p4", "p5")
x <- c(1, 2, 3, 4, 5)
y <- c(0, 0, 0, 0, 0)
z <- y
P <- data.frame(ponto=ponto, x=x, y=y, z=z, stringsAsFactors = FALSE)

gamma <- 0.8
beta <- 2
sigma <- 1

gstsm_object <- gstsm(D, P, gamma, beta, sigma)

result <- mine(gstsm_object)
merge.gstsm

Arguments

object a GSTSM object
ck set of candidates

Value

Solid Ranged-Group(s) of all candidate sequences

merge.default Merge - default

Description

Usage

Default S3 method:
merge(object, ck)

Arguments

object a GSTSM object
ck set of candidates

Value

Solid Ranged-Group(s) of all candidate sequences

merge.gstsm Merge - GSTSM implementation

Description

Merge - GSTSM implementation

Usage

S3 method for class 'gstsm'
merge(object, ck)

Arguments

object a GSTSM object
ck set of candidates
merge_kernel_ranged_groups

Value

Solid Ranged-Group(s) of all candidate sequences

merge_kernel_ranged_groups

Merge Kernel Ranged Groups

Description

The goal is to merge KRGs. Let q and u be two different KRGs from the same candidate sequence. They can be merged into a group qu = q U u as long as they have an intersection and qu has a frequency greater than or equal to the minimum frequency defined by the user.

Usage

```
merge_kernel_ranged_groups(c, gamma)
```

Arguments

- `c`: candidate
- `gamma`: minimum temporal frequency

Value

KRG

merge_open_kernel_ranged_groups

Merge Kernel Ranged Groups

Description

The goal of is to stretch KRGs of the same candidate sequence. Its possible if two KRGs have intersection in space and the resulting KRG keeps its frequency equal to or greater than beta.

Usage

```
merge_open_kernel_ranged_groups(c, timestamp, gamma, beta, adjacency_matrix)
```

Arguments

- `c`: candidate.
- `timestamp`: current timestamp
- `gamma`: minimum temporal frequency
- `beta`: minimum group size
- `adjacency_matrix`: adjacency matrix
mine

Mine - definition

Description
S3 class definition for mine method.

Usage
mine(object)

Arguments
object a GSTSM object

Value
all Solid Ranged Group(s) found, of all sizes

mine.default

Mine - default

Description
Default method for mine. Does nothing.

Usage
Default S3 method:
mine(object)

Arguments
object a GSTSM object

Value
all Solid Ranged Group(s) found, of all sizes
mine.gstsm

Mine - GSTSM implementation

Description

Mine - GSTSM implementation

Usage

```r
## S3 method for class 'gstsm'
mine(object)
```

Arguments

- **object**
 - a GSTSM object

Value

all Solid Ranged Group(s) found, of all sizes

split_groups

Split Groups

Description

Helper function that splits groups.

Usage

```r
split_groups(pos, adjacency_matrix)
```

Arguments

- **pos**
 - sequence occurrence index
- **adjacency_matrix**
 - possible connection between positions

Value

new set based on candidate c found in d.
validate_and_close
Validate and Close

Description

The function receives as input the set of RGs (RG) from a candidate and the minimum size of a group (beta). It starts defining a set of elements that will be removed from the set of RGs, if it does not have the minimum group size.

Usage

validate_and_close(c, gamma, beta)

Arguments

candidate

minimum temporal frequency

minimum group size

Value

validated Greedy-Ranged-Groups.

validate_kernel_ranged_groups
Validate Kernel Ranged Groups

Description

Its objective is to verify that the user thresholds were observed in each RGs, checking if they can still be stretched by keeping the frequency greater than or equal to the minimum gamma and if the minimum group size beta occurs. It takes as input a set of RGs RG of a candidate sequence, the timestamp of the start of the current sliding window timestamp, the user-defined thresholds gamma and beta.

Usage

validate_kernel_ranged_groups(c, timestamp, gamma, beta)

Arguments

candidate

current timestamp

minimum temporal frequency

minimum group size
validate_kernel_ranged_groups

Value

Validated Kernel-Ranged-Groups.
Index

find, 2
find.default, 3
find.gstsm, 3
find_kernel_ranged_group, 4

generate_adjacency_matrix, 4
generate_candidates, 5
generate_candidates.default, 5
generate_candidates.gstsm, 6
gstsm, 6

merge, 7
merge.default, 8
merge.gstsm, 8
merge_kernel_ranged_groups, 9
merge_open_kernel_ranged_groups, 9
mine, 10
mine.default, 10
mine.gstsm, 11

split_groups, 11

validate_and_close, 12
validate_kernel_ranged_groups, 12