R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>argfix</td>
<td>5</td>
</tr>
<tr>
<td>gsw</td>
<td>6</td>
</tr>
<tr>
<td>gsw_adiabatic_lapse_rate_from_CT</td>
<td>7</td>
</tr>
<tr>
<td>gsw_adiabatic_lapse_rate_ice</td>
<td>8</td>
</tr>
<tr>
<td>gsw_alpha</td>
<td>9</td>
</tr>
<tr>
<td>gsw_alpha_on_beta</td>
<td>10</td>
</tr>
<tr>
<td>gsw_alpha_wrt_t_exact</td>
<td>11</td>
</tr>
<tr>
<td>gsw_alpha_wrt_t_ice</td>
<td>12</td>
</tr>
<tr>
<td>gsw_beta</td>
<td>13</td>
</tr>
<tr>
<td>gsw_beta_const_t_exact</td>
<td>15</td>
</tr>
<tr>
<td>gsw_cabbeling</td>
<td>16</td>
</tr>
<tr>
<td>gsw_chem_potential_water_ice</td>
<td>17</td>
</tr>
<tr>
<td>gsw_chem_potential_water_t_exact</td>
<td>18</td>
</tr>
<tr>
<td>gsw_cp_ice</td>
<td>19</td>
</tr>
<tr>
<td>gsw_cp_t_exact</td>
<td>20</td>
</tr>
<tr>
<td>gsw_CT_first_derivatives</td>
<td>21</td>
</tr>
<tr>
<td>gsw_CT_first_derivatives_wrt_t_exact</td>
<td>22</td>
</tr>
<tr>
<td>gsw_CT_freezing</td>
<td>23</td>
</tr>
<tr>
<td>gsw_CT_freezing_first_derivatives</td>
<td>24</td>
</tr>
<tr>
<td>gsw_CT_freezing_first_derivatives_poly</td>
<td>25</td>
</tr>
<tr>
<td>gsw_CT_freezing_poly</td>
<td>27</td>
</tr>
<tr>
<td>gsw_CT_from_enthalpy</td>
<td>28</td>
</tr>
<tr>
<td>gsw_CT_from_entropy</td>
<td>29</td>
</tr>
<tr>
<td>gsw_CT_from_pt</td>
<td>30</td>
</tr>
<tr>
<td>gsw_CT_from_rho</td>
<td>31</td>
</tr>
<tr>
<td>gsw_CT_from_t</td>
<td>32</td>
</tr>
<tr>
<td>gsw_CT_maxdensity</td>
<td>33</td>
</tr>
<tr>
<td>gsw_CT_second_derivatives</td>
<td>34</td>
</tr>
<tr>
<td>gsw_C_from_SP</td>
<td>35</td>
</tr>
<tr>
<td>gsw_deltaSA_from_SP</td>
<td>36</td>
</tr>
<tr>
<td>gsw_dilution_coefficient_t_exact</td>
<td>38</td>
</tr>
<tr>
<td>gsw_dynamic_enthalpy</td>
<td>39</td>
</tr>
<tr>
<td>gsw_enthalpy</td>
<td>40</td>
</tr>
<tr>
<td>gsw_enthalpy_CT_exact</td>
<td>41</td>
</tr>
<tr>
<td>gsw_enthalpy_diff</td>
<td>42</td>
</tr>
<tr>
<td>gsw_enthalpy_first_derivatives</td>
<td>43</td>
</tr>
<tr>
<td>gsw_enthalpy_first_derivatives_CT_exact</td>
<td>45</td>
</tr>
<tr>
<td>gsw_enthalpy_ice</td>
<td>46</td>
</tr>
<tr>
<td>gsw_enthalpy_second_derivatives</td>
<td>47</td>
</tr>
<tr>
<td>gsw_enthalpy_second_derivatives_CT_exact</td>
<td>48</td>
</tr>
<tr>
<td>gsw_enthalpy_t_exact</td>
<td>50</td>
</tr>
<tr>
<td>gsw_entropy_first_derivatives</td>
<td>51</td>
</tr>
<tr>
<td>gsw_entropy_from_pt</td>
<td>52</td>
</tr>
<tr>
<td>gsw_entropy_from_t</td>
<td>53</td>
</tr>
<tr>
<td>gsw_entropy_ice</td>
<td>54</td>
</tr>
<tr>
<td>gsw_entropy_second_derivatives</td>
<td>55</td>
</tr>
</tbody>
</table>
topics documented:

- gsw_Fdelta ... 56
- gsw_frazil_properties 57
- gsw_frazil_properties_potential 58
- gsw_frazil_properties_potential_poly 60
- gsw_frazil_ratios_adiabatic 61
- gsw_frazil_ratios_adiabatic_poly 62
- gsw_geo_strf_dyn_height 63
- gsw_geo_strf_dyn_height_1 65
- gsw_geo_strf_dyn_height_pc 66
- gsw_gibbs .. 67
- gsw_gibbs_ice ... 69
- gsw_grav .. 70
- gsw_Helmholtz_energy_ice 71
- gsw_ice_fraction_to_freeze_seawater 72
- gsw_internal_energy 73
- gsw_internal_energy_ice 74
- gsw_IPV_vs_fNsquared_ratio 75
- gsw_kappa .. 76
- gsw_kappa_const_t_ice 77
- gsw_kappa_ice .. 78
- gsw_kappa_t_exact .. 79
- gsw_latentheat_evap_CT 80
- gsw_latentheat_evap_t 81
- gsw_latentheat_melting 82
- gsw_melting_ice_equilibrium_SA_CT_ratio 83
- gsw_melting_ice_equilibrium_SA_CT_ratio_poly 84
- gsw_melting_ice_into_seawater 85
- gsw_melting_ice_SA_CT_ratio 87
- gsw_melting_ice_SA_CT_ratio_poly 88
- gsw_melting_seaice_into_seawater 89
- gsw_Nsquared ... 90
- gsw_O2sol .. 91
- gsw_O2sol_SP_pt .. 93
- gsw_pot_enthalpy_from_pt_ice 94
- gsw_pot_enthalpy_from_pt_ice_poly 95
- gsw_pot_enthalpy_ice_freezing 96
- gsw_pot_enthalpy_ice_freezing_first_derivatives 98
- gsw_pot_enthalpy_ice_freezing_first_derivatives_poly 99
- gsw_pot_enthalpy_ice_freezing_poly 100
- gsw_pot_rho_t_exact 101
- gsw_pressure_coefficient_ice 102
- gsw_pressure_freezing_CT 103
- gsw_pt0_from_t ... 104
- gsw_pt0_from_t_ice 105
- gsw_pt_first_derivatives 106
- gsw_pt_from_CT .. 107
- gsw_pt_from_entropy 108
- gsw_pt_from_pot_enthalpy_ice 109
R topics documented:

- gsw_pt_from_pot_enthalpy_ice_poly
- gsw_pt_from_t
- gsw_pt_second_derivatives
- gsw_p_from_z
- gsw_rho
- gsw_rho_alpha_beta
- gsw_rho_first_derivatives
- gsw_rho_first_derivatives_wrt_enthalpy
- gsw_rho_ice
- gsw_rho_second_derivatives
- gsw_rho_second_derivatives_wrt_enthalpy
- gsw_rho_t_exact
- gsw_SAAR
- gsw_SA_freezing_from_CT
- gsw_SA_freezing_from_CT_poly
- gsw_SA_freezing_from_t
- gsw_SA_freezing_from_t_poly
- gsw_SA_from_rho
- gsw_SA_from_SP
- gsw_SA_from_SP_Baltic
- gsw_SA_from_Sstar
- gsw_seaice_fraction_to_freeze_seawater
- gsw_sigma0
- gsw_sigma1
- gsw_sigma2
- gsw_sigma3
- gsw_sigma4
- gsw_sound_speed
- gsw_sound_speed_ice
- gsw_sound_speed_t_exact
- gsw_specvol
- gsw_specvol_alpha_beta
- gsw_specvol_anom_standard
- gsw_specvol_first_derivatives
- gsw_specvol_first_derivatives_wrt_enthalpy
- gsw_specvol_ice
- gsw_specvol_second_derivatives
- gsw_specvol_second_derivatives_wrt_enthalpy
- gsw_specvol_t_exact
- gsw_spiciness0
- gsw_spiciness1
- gsw_spiciness2
- gsw_SP_from_C
- gsw_SP_from_SA
- gsw_SP_from_SK
- gsw_SP_from_SR
- gsw_SP_from_Sstar
Description

This is mainly used within gsw, to ensure that arguments sent to the C functions are of equal length. This is a convenience, for processing data that often have this condition. For example, a CTD profile is likely to have many values for SP, t, and p, but just a single value for each of longitude and latitude. It is important to call argfix() to handle such cases, because otherwise the underlying C code will be looking past the end of the vectors storing longitude and latitude, which can yield odd results or even segmentation faults.

Usage

argfix(list)

Arguments

list A list of elements, typically arguments that will be used in GSW functions.

Value

A list with all elements of same shape (length or dimension).
Description

Provides an R interface to the TEOS-10 / GSW (Gibbs Sea Water) library, partly for use by the oce package (see https://dankelley.github.io/oce/) and partly for general use. It is assumed that users are familiar with the science and methodology of GSW, and that the package vignette (obtained by typing vignette("gsw") in an R window) provides enough orientation to get users started with the gsw functions.

Details

gsw was developed using open-source methodologies, on the GitHub site (https://github.com/TEOS-10/GSW-R), which is part of a set of sites dedicated to GSW formulations in various languages.

The gsw system is to link R functions with the C version of the TEOS-10 library. The R function names are chosen to match those of the Matlab version of GSW, and the function arguments also match with one exception: in gsw, longitude and latitude are indicated with their full names, whereas in Matlab they are indicated with long and lat; since R permits abbreviated function arguments, the shortened names can be used in gsw as well.

The documentation for the gsw functions focuses mainly on the arguments and return values, relying on links to the TEOS-10 webpages for details.

Each function is tested during the building of the package, which means that results are guaranteed to match those of the equivalent Matlab functions to at least 8 digits.

A significant difference from the Matlab case is in the inspection of the dimensions of arguments. The Matlab library has rules for expanding some arguments to match others. For example, if Practical Salinity is a matrix and pressure is a single value, then that single pressure is used throughout a calculation of Absolute Salinity. This convenience is only partly mimicked in the present package. Since the underlying C code works on vectors, the R functions in gsw start by transforming the arguments accordingly. This involves using rep on each argument to get something with length matching the first argument, and, after the computation is complete, converting the return value into a matrix, if the first argument was a matrix. There are some exceptions to this, however. For example, gsw_SA_from_SP and similar functions can handle the case in which the SA argument is a matrix and longitude and latitude are vectors sized to match. This can be handy with gridded datasets. However, the careful analyst will probably prefer to avoid this and other conveniences, supplying properly-matched arguments from the outset.
gsw_adiabatic_lapse_rate_from_CT

Adiabatic Lapse Rate

Description

Note that the unit is K/Pa; multiply by 1e4 to get the more useful K/ubar.

Usage

gsw_adiabatic_lapse_rate_from_CT(SA, CT, p)

Arguments

<table>
<thead>
<tr>
<th>SA</th>
<th>Absolute Salinity [g/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>Conservative Temperature [degC]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [ubar], i.e. absolute pressure [ubar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

Value

adiabatic lapse rate (note unconventional unit) [K/Pa]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
lr <- gsw_adiabatic_lapse_rate_from_CT(SA, CT, p)
stopifnot(all.equal(lr*1e7, c(0.240199646230069, 0.238457486976761, 0.203635157319712, 0.119829566859790, 0.100052760967308, 0.08777307037283)))
```
Adiabatic Lapse Rate of Ice

Description

Note that the unit is K/Pa; multiply by 1e4 to get the more useful K/ubar.

Usage

gsw_adiabatic_lapse_rate_ice(t, p)

Arguments

- t: in-situ temperature (ITS-90) [degC]
- p: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

adiabatic lapse rate (note unconventional unit) [K/Pa]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
lr <- gsw_adiabatic_lapse_rate_ice(t, p)
stopifnot(all.equal(lr*1e7, c(0.218777853913651, 0.216559115188599, 0.2168659957613, 0.216988337914416, 0.217182707402780, 0.218100558740840)))
Description
Thermal expansion coefficient with respect to Conservative Temperature, using the 75-term equation for specific volume.

Usage
`gsw_alpha(SA, CT, p)`

Arguments
- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value
thermal expansion coefficient with respect to Conservative Temperature [1/K]

Implementation Note
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459’. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also
- `gsw_CT_from_rho()`, `gsw_CT_maxdensity()`, `gsw_SA_from_rho()`, `gsw_alpha_on_beta()`, `gsw_alpha_wrt_t_exact()`, `gsw_alpha_wrt_t_ice()`, `gsw_beta_const_t_exact()`, `gsw_beta()`, `gsw_pot_rho_t_exact()`, `gsw_rho_alpha_beta()`, `gsw_rho_first_derivatives_wrt_enthalpy()`, `gsw_rho_first_derivatives()`, `gsw_rho_ice()`, `gsw_rho_t_exact()`, `gsw_rho()`, `gsw_sigma0()`, `gsw_sigma1()`, `gsw_sigma2()`, `gsw_sigma3()`, `gsw_sigma4()`, `gsw_specvol_alpha_beta()`, `gsw_specvol_anom_standard()`, `gsw_specvol_ice()`, `gsw_specvol_t_exact()`, `gsw_specvol()`
Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
alpha <- gsw_alpha(SA, CT, p)
stopifnot(all.equal(alpha*1e3, c(0.324464211877393, 0.322610094680523, 0.281335030247435,
                                0.173529986885424, 0.146898108553385, 0.130265123640082)))
```

gsw_alpha_on_beta
Thermal expansion coefficient over haline contraction coefficient

Description

Thermal expansion coefficient over haline contraction coefficient, using the 75-term equation for specific volume.

Usage

```r
gsw_alpha_on_beta(SA, CT, p)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [degC]</td>
</tr>
<tr>
<td>p</td>
<td>Sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

Value

Ratio of thermal expansion coefficient to haline contraction coefficient [(g/kg)/K]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit `98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459`. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

gsw_alpha_wrt_t_exact

See Also

Other things related to density: `gsw_CT_from_rho()`, `gsw_CT_maxdensity()`, `gsw_SA_from_rho()`, `gsw_alpha_wrt_t_exact()`, `gsw_alpha_wrt_t_ice()`, `gsw_alpha()`, `gsw_beta_const_t_exact()`, `gsw_beta()`, `gsw_pot_rho_t_exact()`, `gsw_rho_alpha_beta()`, `gsw_rho_first_derivatives_wrt_enthalpy()`, `gsw_rho_first_derivatives()`, `gsw_rho_maxdensity()`, `gsw_rho_t_exact()`, `gsw_rho()`, `gsw_sigma0()`, `gsw_sigma1()`, `gsw_sigma2()`, `gsw_sigma3()`, `gsw_sigma4()`, `gsw_specvol_alpha_beta()`, `gsw_specvol_anom_standard()`, `gsw_specvol_ice()`, `gsw_specvol_t_exact()`, `gsw_specvol()`

Examples

```r
gsw_alpha_wrt_t_exact(SA, t, p)
```

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c( 10,  50, 125, 250, 600, 1000)
alpha_on_beta <- gsw_alpha_wrt_t_exact(SA,CT,p)
stopifnot(all.equal(alpha_on_beta, c(0.452468543022009, 0.449601695030057, 0.387140203094424, 0.230778871228268, 0.193747796234162, 0.170946048860385)))
```

gsw_alpha_wrt_t_exact
Thermal expansion coefficient with respect to in-situ temperature

Description

Thermal expansion coefficient with respect to in-situ temperature.

Usage

```r
gsw_alpha_wrt_t_exact(SA, t, p)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **t**: in-situ temperature (ITS-90) [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Thermal expansion coefficient with respect to in-situ temperature [1/K]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip.
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_beta(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_rho(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
alpha_wrt_t_exact <- gsw_alpha_wrt_t_exact(SA, t, p)
stopifnot(all.equal(alpha_wrt_t_exact*1e3, c(0.325601747227247, 0.323448083851267, 0.281413883319329, 0.172825692975230, 0.145569941503599, 0.128362986933288)))

-->

gsw_alpha_wrt_t_ice

Ice Thermal Expansion Coefficient with Respect to in-situ Temperature

Description

Thermal expansion coefficient of ice, with respect to in-situ temperature.

Usage

```r
gsw_alpha_wrt_t_ice(t, p)
```

Arguments

- `t` in-situ temperature (ITS-90) [degC]
- `p` sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

thermal expansion coefficient with respect to in-situ temperature [1/K]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

 Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_beta(), gsw_pot_rho_t_exact(), gsw_rhobeta(), gsw_rhohalia(), gsw_rhohalia_beta(), gsw_rhohalia_alpha(), gsw_rhohalia_wrt_enthalpy(), gsw_rhohalia_wrt_t_exact(), gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_rho(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
alpha <- gsw_alpha_wrt_t_ice(t, p)
stopifnot(all.equal(alpha*1e3, c(0.15472408751279, 0.153041866100900, 0.15323698269327, 0.153297634665747, 0.153387461617896, 0.153938395452558)))

gsw_beta

| gsw_beta | Haline contraction coefficient at constant Conservative Temperature |

Description

Haline contraction coefficient with respect to Conservative Temperature, using the 75-term equation for specific volume.

Usage

gsw_beta(SA, CT, p)
Arguments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [degC]</td>
</tr>
<tr>
<td>p</td>
<td>Sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

Value

Haline contraction coefficient at constant Conservative Temperature [kg/g]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40d9ebeb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_rho(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c( 10, 50, 125, 250, 600, 1000)
beta <- gsw_beta(SA,CT,p)
stopifnot(all.equal(beta, 1e-3*c(0.717521909550091, 0.717657376442386, 0.726169734842386, 0.750420924314564, 0.754903052075032, 0.756841573481865)))
```
Description

Haline contraction coefficient at constant in-situ temperature.

Usage

```r
gsw_beta_const_t_exact(SA, t, p)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>t</td>
<td>in-situ temperature (ITS-90) [degC]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

Value

Haline contraction coefficient at constant in-situ temperature [kg/g]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40d9eb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to density: `gsw_CT_from_rho()`, `gsw_CT_maxdensity()`, `gsw_SA_from_rho()`, `gsw_alpha_on_beta()`, `gsw_alpha_wrt_t_exact()`, `gsw_alpha_wrt_t_ice()`, `gsw_alpha()`, `gsw_beta()`, `gsw_pot_rho_t_exact()`, `gsw_rho_alpha_beta()`, `gsw_rho_first_derivatives_wrt_enthalpy()`, `gsw_rho_first_derivatives()`, `gsw_rho_ice()`, `gsw_rho_t_exact()`, `gsw_rho()`, `gsw_sigma0()`, `gsw_sigma1()`, `gsw_sigma2()`, `gsw_sigma3()`, `gsw_sigma4()`, `gsw_specvol_alpha_beta()`, `gsw_specvol_anom_standard()`, `gsw_specvol_ice()`, `gsw_specvol_t_exact()`, `gsw_specvol()`
Examples

```r
gsw_cabbeling(SA, t, p)
```

Description

Cabbeling coefficient (75-term equation)

Usage

```r
gsw_cabbeling(SA, CT, p)
```

Arguments

- `SA`: Absolute Salinity [g/kg]
- `CT`: Conservative Temperature [degC]
- `p`: Sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Cabbeling coefficient with respect to Conservative Temperature [1/(K^2)]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
cabbeling <- gsw_cabbeling(SA, CT, p)
stopifnot(all.equal(cabbeling*1e4, c(0.086645721047423, 0.086837829466794, 0.092525582052438, 
0.108884336975401, 0.11297119722338, 0.115483896148927)))
```

Description

Chemical Potential of Ice

Usage

```r
gsw_chem_potential_water_ice(t, p)
```

Arguments

- `t` in-situ temperature (ITS-90) [degC]
- `p` sea pressure [bar], i.e. absolute pressure [bar] minus 10.1325 bar

Value

chemical potential [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ’98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to chemical potential: `gsw_chem_potential_water_t_exact()`

Examples

```r
t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
pot <- gsw_chem_potential_water_ice(t, p)
stopifnot(all.equal(pot/1e4, c(-1.340648365149857, -1.644921413491445, -1.480991678890353, -1.272436055728805, -0.711509477199393, 0.045575390357792)))
```

Description

Chemical Potential of Water in Seawater

Usage

```r
library(gsw)
gsw_chem_potential_water_t_exact(SA, t, p)
```

Arguments

- `SA`: Absolute Salinity [g/kg]
- `t`: in-situ temperature (ITS-90) [degC]
- `p`: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

chemical potential [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ce6b0ba82c9d70e935a7d0459’.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
gsw_cp_ice

References

See Also

Other things related to chemical potential: gsw_chem_potential_water_ice()

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
pot <- gsw_chem_potential_water_t_exact(SA, t, p)
stopifnot(all.equal(pot, c(-8.545561146284534, -8.008085548342105, -0.634067782745442, 3.335566803473286, 7.55543445971858)))
```

gsw_cp_ice

Specific heat to ice

Description

Specific heat of ice

Usage

```r
gsw_cp_ice(t, p)
```

Arguments

- `t` in-situ temperature (ITS-90) [degC]
- `p` sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

specific heat [J/(K*kg)]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
References

Examples

```r
t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
cp <- gsw_cp_ice(t, p)
stopifnot(all.equal(cp, c(2017.314262094657, 1997.830122682709, 2002.28131375396,
                        2006.127319545421, 2015.676303959609, 2033.308170371559)))
```

gsw_cp_t_exact

Isobaric heat capacity

Description

Isobaric heat capacity

Usage

```r
gsw_cp_t_exact(SA, t, p)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **t**: in-situ temperature (ITS-90) [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

heat capacity [J/(kg*K)]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
gsw_CT_first_derivatives

First Derivatives of Conservative Temperature

Description

First Derivatives of Conservative Temperature

Usage

gsw_CT_first_derivatives(SA, pt)

Arguments

SA
Absolute Salinity [g/kg]

pt
potential temperature (ITS-90) [degC]

Value

A list containing CT_SA [K/(g/kg)], the derivative of Conservative Temperature with respect to Absolute Salinity, and CT_pt [unitless], the derivative of Conservative Temperature with respect to potential temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ae750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
gsw_CT_first_derivatives_wrt_t_exact

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
pt <- c(28.7832, 28.4209, 22.7850, 10.2305, 6.8292, 4.3245)
r <- gsw_CT_first_derivatives(SA, pt)
stopifnot(all.equal(r$CT_SA,
 c(-0.041981092877806, -0.041558140199508, -0.034739209004865,
 -0.018711103772892, -0.014075941811725, -0.010571716552295)))
stopifnot(all.equal(r$CT_pt,
 c(1.002814937296636, 1.002554817053239, 1.001645140295163,
 1.000003771100520, 0.999716359504731, 0.999474326580093)))

gsw_CT_first_derivatives_wrt_t_exact

Derivatives of Conservative Temperature with Respect to or at Constant in-situ Temperature

Description

Derivatives of Conservative Temperature with Respect to or at Constant in-situ Temperature

Usage

gsw_CT_first_derivatives_wrt_t_exact(SA, t, p)

Arguments

SA Absolute Salinity [g/kg]
t in-situ temperature (ITS-90) [degC]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing CT_SA_wrt_t [K/(g/kg)], the derivative of Conservative Temperature with respect to Absolute Salinity at constant temperature and pressure, CT_t_wrt_t [unitless], the derivative of Conservative Temperature with respect to temperature at constant Absolute Salinity and pressure, and CT_p_wrt_t, the derivative of Conservative Temperature with respect to pressure at constant Absolute Salinity and temperature.
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_CT_first_derivatives_wrt_t_exact(SA, t, p)
stopifnot(all.equal(r$CT_SA_wrt_t,
c(-0.041988694538987, -0.041596549088952, -0.034853545749326,
 -0.019067140454607, -0.015016439826591, -0.012233725491373)))
stopifnot(all.equal(r$CT_t_wrt_t,
c(1.002752642867571, 1.002243118597902, 1.001835702767227,
 0.998194914545607, 0.995219303532390, 0.99178025491737)))
stopifnot(all.equal(r$CT_p_wrt_t/1e-7,
c(-0.241011869538987, -0.239031676279078, -0.203649928441505,
 -0.119370679226136, -0.086458168643579)))

Conservative Temperature of Freezing Seawater

Description

Conservative Temperature of Freezing Seawater

Usage

gsw_CT_freezing(SA, p, saturation_fraction = 1)

Arguments

SA Absolute Salinity [g/kg]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
saturation_fraction saturation fraction of dissolved air in seawater
Value

Conservative Temperature at freezing of seawater [degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(  10,   50, 125,  250,  600, 1000)
saturation_fraction <- 1
CT <- gsw_CT_freezing(SA, p, saturation_fraction)
stopifnot(all.equal(CT, c(-1.899683776424096, -1.940791867869104, -2.006240664432488, -2.092357761318778, -2.359300831770506, -2.677162675412748)))
```

gsw_CT_freezing_first_derivatives

First Derivatives of Conservative Temperature for Freezing Water

Description

First Derivatives of Conservative Temperature for Freezing Water

Usage

`gsw_CT_freezing_first_derivatives(SA, p, saturation_fraction = 1)`

Arguments

- **SA** Absolute Salinity [g/kg]
- **p** sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **saturation_fraction** fraction of air in water [unitless]
Value

A list containing CT_freezing_SA [K/(g/kg)], the derivative of Conservative Temperature with respect to Absolute Salinity at constant potential temperature, and CT_freezing_p [unitless], the derivative of Conservative Temperature with respect to pressure at constant Absolute Salinity.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9cebe0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
saturation_fraction <- c( 1, 0.8, 0.6, 0.5, 0.4, 0)
r <- gsw_CT_freezing_first_derivatives_poly(SA, p, saturation_fraction)
stopifnot(all.equal(r$CT_freezing_SA, 
 c(-0.058193253897272, -0.058265158334170, -0.058345661671901, 
 -0.058373842446463, -0.058534544740846, -0.058730846361252)))
stopifnot(all.equal(r$CT_freezing_p/1e-7, 
 c(-0.765308394326284, -0.766942996466848, -0.769892679988284, 
 -0.774561011527902, -0.787769143040504, -0.802771548245855)))
```

gsw_CT_freezing_first_derivatives_poly

First Derivatives of Conservative Temperature for Freezing Water
(Polynomial version)

Description

First Derivatives of Conservative Temperature for Freezing Water (Polynomial version)

Usage

gsw_CT_freezing_first_derivatives_poly(SA, p, saturation_fraction = 1)
Arguments

SA
Absolute Salinity [g/kg]

p
sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

saturation_fraction
fraction of air in water [unitless]

Value

A list containing CTfreezing_SA [K/(g/kg)], the derivative of Conservative Temperature with respect to Absolute Salinity at constant potential temperature, and CTfreezing_p [unitless], the derivative of Conservative Temperature with respect to pressure at constant Absolute Salinity.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(10, 50, 125, 250, 600, 1000)
saturation_fraction <- c(1, 0.8, 0.6, 0.5, 0.4, 0)
r <- gsw_CT_freezing_first_derivatives_poly(SA, p, saturation_fraction)
stopifnot(all.equal(r$CTfreezing_SA,
 c(-0.058191181082769, -0.058263310660779, -0.058343573188907,
 -0.058370514075271, -0.058528023214462, -0.058722959729433)))
stopifnot(all.equal(r$CTfreezing_p/1e-7,
 c(-0.765690732336706, -0.767310677213890, -0.770224214219328,
 -0.774843488962665, -0.787930403816584, -0.80282170463775))))
Description

Conservative Temperature Freezing Point (Polynomial version)

Usage

```r
gsw_CT_freezing_poly(SA, p, saturation_fraction = 1)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **saturation_fraction**: saturation fraction of dissolved air in seawater

Value

Conservative Temperature at freezing of seawater [degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
saturation_fraction <- 1
CT_freezing <- gsw_CT_freezing_poly(SA, p, saturation_fraction)
stopifnot(all.equal(CT_freezing, c(-1.899683776424096, -1.940791867869104, -2.006240664432488, -2.092357761318778, -2.359300831770506, -2.677162675412748)))
```
gsw_CT_from_enthalpy Conservative Temperature from Enthalpy

Description
Conservative Temperature from Enthalpy

Usage

gsw_CT_from_enthalpy(SA, h, p)

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>h</td>
<td>specific enthalpy [J/kg]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

Value
Conservative Temperature [degC]

Implementation Note
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459'.
The C function uses data from the library/gsw_data_v3.0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.
Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to enthalpy: gsw.dynamic_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_enthalpy(), gsw_frazil_properties_potential_poly(), gsw_frazil_properties_poly(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()
Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
h <- c(1.15103e5, 1.14014e5, 0.92180e5, 0.43255e5, 0.33087e5, 0.26970e5)
p <- c(10, 50, 125, 250, 600, 1000)
pt <- c(28.7832, 28.4209, 22.7850, 10.2305, 6.8292, 4.3245)
CT <- gsw_CT_from_enthalpy(SA, h, p)
stopifnot(all.equal(CT, c(28.809854569021972, 28.439026483379287, 22.786196534098817,
10.226106994920777, 6.827159682675204, 4.323428660306681)))
```

Description

Conservative Temperature from Entropy

Usage

```r
gsw_CT_from_entropy(SA, entropy)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **entropy**: Specific entropy [J/(degC*kg)]

Value

Conservative Temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit 98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to entropy: `gsw_entropy_first_derivatives()`, `gsw_entropy_from_pt()`, `gsw_entropy_from_t()`, `gsw_entropy_ice()`, `gsw_pt_from_entropy()`

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
entropy <- c(400.3892, 395.4378, 319.8668, 146.7910, 98.6471, 62.7919)
CT <- gsw_CT_from_entropy(SA, entropy)
stopifnot(all.equal(CT, c(28.809902787278070, 28.439199226786918, 22.786199266954270, 10.226197672488652, 6.827196739780282, 4.323602945446461)))
```

gsw_CT_from_pt

Conservative Temperature from Potential Temperature

Description

Conservative Temperature from Potential Temperature

Usage

```r
gsw_CT_from_pt(SA, pt)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **pt**: potential temperature (ITS-90) [degC]

Value

Conservative Temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d477ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
pt <- c(28.7832, 28.4209, 22.7850, 10.2305, 6.8292, 4.3245)
CT <- gsw_CT_from_pt(SA, pt)
stopifnot(all.equal(CT, c(28.809923015982083, 28.439144260767169, 22.786246608464264, 10.226165605435785, 6.827183417643142, 4.323565182322069)))

Description
Conservative Temperature from Density, Absolute Salinity and Pressure

Usage
gsw_CT_from_rho(rho, SA, p)

Arguments
rho seawater density [kg/m^3]
SA Absolute Salinity [g/kg]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value
A list containing two estimates of Conservative Temperature: CT and CT_multiple, each in [degC].

Implementation Note
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.
The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.
Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References
See Also

Other things related to density: `gsw_CT_maxdensity()`, `gsw_SA_from_rho()`, `gsw_alpha_on_beta()`, `gsw_alpha_wrt_t_exact()`, `gsw_alpha_wrt_t_ice()`, `gsw_alpha()`, `gsw_alpha_beta()`, `gsw_beta_const_t_exact()`, `gsw_beta()`, `gsw_pot_rho_t_exact()`, `gsw_rho_alpha_beta()`, `gsw_rho_first_derivatives_wrt_enthalpy()`, `gsw_rho_first_derivatives()`, `gsw_rho_ice()`, `gsw_rho_t_exact()`, `gsw_rh0()`, `gsw_sigma0()`, `gsw_sigma1()`, `gsw_sigma2()`, `gsw_sigma3()`, `gsw_sigma4()`, `gsw_specvol_alpha_beta()`, `gsw_specvol_anom_standard()`, `gsw_specvol_ice()`, `gsw_specvol_t_exact()`, `gsw_specvol()`

Examples

```r
c(1021.8484, 1022.2647, 1024.4207, 1027.7841, 1029.8287, 1031.9916)
c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
c(10, 50, 125, 250, 600, 1000)
```

```
r <- gsw_CT_from_rho(rho, SA, p)
stopifnot(all.equal(r$CT, c(28.784377302226968, 28.432402127485858, 22.808745445250068, 10.260169334807866, 6.887336649146716, 4.404594162282834)))
```

gsw_CT_from_t

Convert from temperature to conservative temperature

Description

Convert from temperature to conservative temperature.

Usage

```r
gsw_CT_from_t(SA, t, p)
```

Arguments

- `SA` Absolute Salinity [g/kg]
- `t` in-situ temperature (ITS-90) [degC]
- `p` sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Conservative Temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9cb9e5b0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip.
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_CT_from_t.html

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
CT <- gsw_CT_from_t(SA, t, p)
stopifnot(all.equal(CT, c(28.809919826700281, 28.439227816091140, 22.786176893078498, 10.226189266620782, 6.827213633479988, 4.323575748610455)))
```

gsw_CT_maxdensity

Conservative Temperature at Maximum Density

Description

Conservative Temperature at Maximum Density

Usage

```r
gsw_CT_maxdensity(SA, p)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Conservative Temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.
Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to density: `gsw_CT_from_rho()`, `gsw_SA_from_rho()`, `gsw_alpha_on_beta()`, `gsw_alpha_wrt_t_exact()`, `gsw_alpha_wrt_t_ice()`, `gsw_alpha()`, `gsw_beta()`, `gsw_alpha()`, `gsw_rho_alpha_beta()`, `gsw_rho_first_derivatives_wrt_enthalpy()`, `gsw_rho_first_derivatives()`, `gsw_rho_ice()`, `gsw_rho_t_exact()`, `gsw_rho()`, `gsw_sigma0()`, `gsw_sigma1()`, `gsw_sigma2()`, `gsw_sigma3()`, `gsw_sigma4()`, `gsw_specvol_alpha_beta()`, `gsw_specvol_anom_standard()`, `gsw_specvol_ice()`, `gsw_specvol_t_exact()`, `gsw_specvol()`

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
CT <- gsw_CT_maxdensity(SA, p)
stopifnot(all.equal(CT, c(-3.731407240089855, -3.861137427731664, -4.060390602245942, -4.306222571955388, -5.089240667106197, -6.028034316992341)))
```

gsw_CT_second_derivatives

Second Derivatives of Conservative Temperature

Description

Second Derivatives of Conservative Temperature

Usage

```r
gsw_CT_second_derivatives(SA, pt)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **pt**: potential temperature (ITS-90) [degC]

Value

A list containing `CT_SA_SA` [K/(g/kg)^2], the second derivative of Conservative Temperature with respect to Absolute Salinity at constant potential temperature, and `CT_SA_pt` [1/(g/kg)], the derivative of Conservative Temperature with respect to potential temperature and Absolute Salinity, and `CT_pt_pt` [1/degC], the second derivative of Conservative Temperature with respect to potential temperature.
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated
2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0db0a82e9d47ac750e935a7d0459’.
The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab
source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed
on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained,
a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software sys-
tems.

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
pt <- c(28.7832, 28.4209, 22.7850, 10.2305, 6.8292, 4.3245)
r <- gsw_CT_second_derivatives(SA, pt)
stopifnot(all.equal(r$CT_SA_SA/1e-3, c(-0.060718502077064, -0.062065324400873, -0.084017055354742,
-0.148436050120131, -0.171270386582646, -0.189920754900116))
stopifnot(all.equal(r$CT_SA_pt, c(-0.001197415000869, -0.001198309530139, -0.001226523296082,
-0.001335896286481, -0.001380492698572, -0.001417751669135))
stopifnot(all.equal(r$CT_pt_pt/1e-3, c(0.123012754427146, 0.124662008871271, 0.140646803448166,
0.140646803448166, 0.113684095615077, 0.082286843477998))

Description

Electrical conductivity (in mS/cm) from Practical Salinity. To convert the return value to conduc-
tivity ratio, divide by 42.9140 (the value of conductivity at S=35, T68=15, and p=0).

Usage

gsw_C_from_SP(SP, t, p)

Arguments

SP Practical Salinity (PSS-78) [unitless]
t in-situ temperature (ITS-90) [degC]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
Value

electrical conductivity [mS/cm]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9cebe0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to salinity: gsw_SA_from_SP_Baltic(), gsw_SA_from_SP(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()

Other things related to conductivity: gsw_SP_from_C()

Examples

```r
SP <- c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)
t <- c( 28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c( 10, 50, 125, 250, 600, 1000)
C <- gsw_C_from_SP(SP, t, p)
stopifnot(all.equal(C, c(56.412599581571186, 56.316185602699953, 56.316185602699953, 50.67036933973944, 38.134518936104350, 35.056577637635257, 32.986550607990118)))
```

```r

<table>
<thead>
<tr>
<th>gsw_deltaSA_from_SP</th>
<th>Absolute Salinity Anomaly from Practical Salinity</th>
</tr>
</thead>
</table>

Description

Absolute Salinity Anomaly from Practical Salinity

Usage

gsw_deltaSA_from_SP(SP, p, longitude, latitude)
Arguments

SP  Practical Salinity (PSS-78) [ unitless ]

p  sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

longitude  longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)

latitude  latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Value

deltaSA  Absolute Salinity Anomaly [ g/kg ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ce80ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_SP(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP()

Examples

```r
SP = c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p = c(10, 50, 125, 250, 600, 1000)
lat = c(4, 4, 4, 4, 4, 4)
long = c(188, 188, 188, 188, 188, 188)
deltaSA = gsw_deltaSA_from_SP(SP,p,long,lat)
stopifnot(all.equal(deltaSA, c(0.000167203365230, 0.000268836122231, 0.000665803155705, 0.002706154619403, 0.005652977406832, 0.009444734661606)))
```
**gsw_dilution_coefficient_t_exact**

_Dilution coefficient_

**Description**

Dilution coefficient

**Usage**

```r
gsw_dilution_coefficient_t_exact(SA, t, p)
```

**Arguments**

- **SA**: Absolute Salinity [ g/kg ]
- **t**: in-situ temperature (ITS-90) [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

**Value**

dilution coefficient [ (J/kg)(kg/g) ]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd4dd9eb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**References**


**Examples**

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
dc <- gsw_dilution_coefficient_t_exact(SA, t, p)
stopifnot(all.equal(dc, c(79.140034211532040, 79.104983526833820, 77.503312016847389,
 73.535062653715272, 72.483378545466564, 71.76667498673087)))
```
**gsw_dynamic_enthalpy**  Dynamic enthalpy of seawater (75-term equation)

### Description

Dynamic enthalpy of seawater (75-term equation)

### Usage

```r
 gsw_dynamic_enthalpy(SA, CT, p)
```

### Arguments

- **SA**  Absolute Salinity [g/kg]
- **CT**  Conservative Temperature [degC]
- **p**  sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

### Value

Dynamic enthalpy [J/kg]

### Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd4dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

### References


### See Also

Other things related to enthalpy: `gsw_CT_from_enthalpy()`, `gsw_enthalpy_CT_exact()`, `gsw_enthalpy_diff()`, `gsw_enthalpy_first_derivatives_CT_exact()`, `gsw_enthalpy_first_derivatives()`, `gsw_enthalpy_ice()`, `gsw_enthalpy_t_exact()`, `gsw_enthalpy()`, `gsw_frazil_properties_potential_poly()`, `gsw_frazil_properties()`,
`gsw_pot_enthalpy_from_pt_ice_poly()`, `gsw_pot_enthalpy_from_pt_ice()`, `gsw_pot_enthalpy_ice_freezing_poly()`,
`gsw_pot_enthalpy_ice_freezing()`, `gsw_pt_from_pot_enthalpy_ice_poly()`, `gsw_pt_from_pot_enthalpy_ice()`,
`gsw_specvol_first_derivatives_wrt_enthalpy()`, `gsw_specvol_first_derivatives()`
Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <-c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
de <- gsw_dynamic_enthalpy(SA, CT, p)
stopifnot(all.equal(de/1000, c(0.097864698087770, 0.489161476686235, 1.220512192086506,
2.433731199531144, 5.833880057399701, 9.711443860944032)))
```

---

## gsw_enthalpy

### Specific enthalpy of seawater (75-term equation)

**Description**

Specific enthalpy of seawater (75-term equation)

**Usage**

```r
gsw_enthalpy(SA, CT, p)
```

**Arguments**

- **SA**
  - Absolute Salinity [g/kg]
- **CT**
  - Conservative Temperature [degC]
- **p**
  - Sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

**Value**

Specific enthalpy [J/kg]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459'. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**References**

See Also

Other things related to enthalpy: `gsw_CT_from_enthalpy()`, `gsw_dynamic_enthalpy()`, `gsw_enthalpy_CT_exact()`, `gsw_enthalpy_diff()`, `gsw_enthalpy_first_derivatives_CT_exact()`, `gsw_enthalpy_first_derivatives()`, `gsw_enthalpy_ice()`, `gsw_enthalpy_t_exact()`, `gsw_frazil_properties_potential_poly()`, `gsw_frazil_properties_potential()`, `gsw_pot_enthalpy_from_pt_ice_poly()`, `gsw_pot_enthalpy_from_pt_ice()`, `gsw_pot_enthalpy_ice_freezing_poly()`, `gsw_pot_enthalpy_ice_freezing()`, `gsw_pt_from_pot_enthalpy_ice_poly()`, `gsw_pt_from_pot_enthalpy_ice()`, `gsw_specvol_first_derivatives_wrt_enthalpy()`, `gsw_specvol_first_derivatives()`.

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
e <- gsw_enthalpy(SA, CT, p)
stopifnot(all.equal(e/1e5, c(1.151031813559086, 1.140146926828028, 0.921800138366058, 0.432553713026279, 0.330871609742468, 0.269706841603465)))
```

Description

Seawater Specific Enthalpy in terms of Conservative Temperature

Usage

```r
gsw_enthalpy_CT_exact(SA, CT, p)
```

Arguments

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

specific enthalpy [ J/kg ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at `https://github.com/TEOS-10/GSW-C` with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from `http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip`.
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_enthalpy(), gsw_frazil_properties_potential_poly(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_point_from_pot_enthalpy_ice(), gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c( 10, 50, 125, 250, 600, 1000)
e <- gsw_enthalpy_CT_exact(SA, CT, p)
stopifnot(all.equal(e/1e5, c(1.151031813321767, 1.140146925586514, 0.921800131787836, 0.432553712315790, 0.330871615358722, 0.269706848807403)))
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82ec9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file. Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pot_enthalpy_t_exact(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_frazil_properties_potential_poly(), gsw_frazil_properties_potential(), gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p_shallow <- c(10, 50, 125, 250, 600, 1000)
p_deep <- c(110, 150, 225, 350, 700, 1100)
ed <- gsw_enthalpy_diff(SA, CT, p_shallow, p_deep)
stopifnot(all.equal(ed/1e2, c(9.784180644568052, 9.780195056105020, 9.759587700515114, 9.727552719534447, 9.708223170174454, 9.687871289079633)))

Description

First Derivatives of Enthalpy

Usage

gsw_enthalpy_first_derivatives(SA, CT, p)
Arguments

SA  Absolute Salinity [ g/kg ]
CT  Conservative Temperature [ degC ]
p  sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

a list containing \( h_{SA} \) \( [ (J/kg)/(g/kg) ] \), the derivative of enthalpy wrt Absolute Salinity, and \( h_{CT} \) \( [ (J/kg)/degC ] \), the derivative of enthalpy wrt Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_enthalpy(), gsw_frazil_properties_potential_poly(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
d <- gsw_enthalpy_first_derivatives(SA, CT, p)
stopifnot(all.equal(d$h_SA, c(-0.070223912348929, -0.351159768365102, -0.887025065692568, -1.829602387915694, -4.423463748270238, -7.405100077558673)))
stopifnot(all.equal(d$h_CT/1e3, c(3.991899705530481, 3.992025640520101, 3.992210365030743, 3.992685389122658, 3.993014168534175)))
```
**gsw_enthalpy_first_derivatives_CT_exact**

First Derivatives of Enthalpy wrt CT

**Description**

First Derivatives of Enthalpy wrt CT

**Usage**

```r
gsw_enthalpy_first_derivatives_CT_exact(SA, CT, p)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [ g/kg ]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [ degC ]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

**Value**

a list containing \( h_{SA} \) [ (J/kg)/(g/kg) ], the derivative of enthalpy wrt Absolute Salinity, and \( h_{CT} \) [ (J/kg)/degC ], the derivative of enthalpy wrt Conservative Temperature.

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit ‘98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**Bugs**

The HTML documentation suggests that this function returns 3 values, but there are only 2 returned values in the C code used here (and the matlab code on which that is based). Also, the d/dSA check values given the HTML are not reproduced by the present function. This was reported on Mar 18, 2017 as [https://github.com/TEOS-10/GSW-Matlab/issues/7](https://github.com/TEOS-10/GSW-Matlab/issues/7). See [https://github.com/TEOS-10/GSW-R/issues/34](https://github.com/TEOS-10/GSW-R/issues/34)

**References**

See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(),
gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(),
gsw_enthalpy(), gsw_frazil_properties_potential_poly(), gsw_frazil_properties_potential(),
gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly(),
gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_pt_from_pot_enthalpy_ice(),
gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c( 10, 50, 125, 250, 600, 1000)
d <- gsw_enthalpy_first_derivatives_CT_exact(SA, CT, p)
stopifnot(all.equal(d$h_SA, c(-0.070224183838619, -0.351159869043798, -0.887036550157504,
-1.829626251448858, -4.423522691827955, -7.405211691293971)))
stopifnot(all.equal(d$h_CT/1e3, c(3.991899712269790, 3.992025674159605, 3.992210402650973,
3.992283991748418, 3.992685275917238, 3.993014370250710)))

---

gsw_enthalpy_ice  Ice Specific Enthalpy

Description

Specific enthalpy of ice [ J/kg ]. Note that this is a negative quantity.

Usage

gsw_enthalpy_ice(t, p)

Arguments

t  in-situ temperature (ITS-90) [ degC ]
p  sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

specific enthalpy [ J/kg ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(),
gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives(),
gsw_enthalpy_t_exact(), gsw_enthalpy(), gsw_frazil_properties_potential_poly(), gsw_frazil_properties_poly()
gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly()
gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_pt_from_pot_enthalpy_ice()
gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()

Examples

t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
se <- gsw_enthalpy_ice(t, p)
stopifnot(all.equal(se/1e5, c(-3.554414597446597, -3.603380857687490, -3.583089884253586,
-3.558998379233944, -3.494811024956881, -3.402784319238127)))

gsw_enthalpy_second_derivatives

Second Derivatives of Enthalpy

Description

Second Derivatives of Enthalpy

Usage

gsw_enthalpy_second_derivatives(SA, CT, p)

Arguments

SA            Absolute Salinity [ g/kg ]
CT            Conservative Temperature [ degC ]
p            sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
Value

A list containing $h_{SA-SA} \ [ (J/kg)/(g/kg)^2 ]$, the second derivative of enthalpy with respect to Absolute Salinity, $h_{SA-CT} \ [ (J/kg)/(K*g/kg) ]$, the derivative of enthalpy with respect to Absolute Salinity and Conservative Temperature, and $h_{CT-CT} \ [ (J/kg)/\text{degC}^2 ]$, the second derivative of enthalpy with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_enthalpy_second_derivatives(SA, CT, p)
stopifnot(all.equal(r$h_SA_SA, c(0.000080922482023, 0.000404963500641, 0.001059800046742,
 0.002431088963823, 0.006019611828423, 0.010225411250217)))
stopifnot(all.equal(r$h_SA_CT, c(0.000130004715129, 0.000653614489248, 0.001877220817849,
 0.005470392103793, 0.014314756132297, 0.025195603327700)))
stopifnot(all.equal(r$h_CT_CT, c(0.000714303909834, 0.003584401429266, 0.009718730753139,
 0.024064471995224, 0.061547884081343, 0.107493969308119)))
```

Description

Second Derivatives of Enthalpy (exact)

Usage

```r
gsw_enthalpy_second_derivatives_CT_exact(SA, CT, p)
```
Arguments

SA  Absolute Salinity [ g/kg ]
CT  Conservative Temperature [ degC ]
p   sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing $h_{SA\_SA}$ [(J/kg)/(g/kg)^2 ], the second derivative of enthalpy with respect to Absolute Salinity, $h_{SA\_CT}$ [(J/kg)/(K*g/kg) ], the derivative of enthalpy with respect to Absolute Salinity and Conservative Temperature, and $h_{CT\_CT}$ [(J/kg)/degC^2 ], the second derivative of enthalpy with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_enthalpy_second_derivatives_CT_exact(SA, CT, p)
stopifnot(all.equal(r$h_SA_SA, c(0.000082767011576, 0.000414469343141, 0.001089580017293, 0.002472193425998, 0.006103171596320, 0.010377465312463)))
stopifnot(all.equal(r$h_SA_CT, c(0.000130320164426, 0.000655016236924, 0.001879127443985, 0.005468695168037, 0.014315709000526, 0.025192691262061)))
stopifnot(all.equal(r$h_CT_CT, c(0.000714365642428, 0.003584965089168, 0.00973337653703, 0.024044402143825, 0.06144939073344, 0.10733638394904)))
```
Description

Seawater Specific Enthalpy in terms of in-situ Temperature

Usage

gsw_enthalpy_t_exact(SA, t, p)

Arguments

SA  Absolute Salinity [ g/kg ]
t  in-situ temperature (ITS-90) [ degC ]
p  sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

specific enthalpy [ J/kg ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy(), gsw_frazil_properties_potential_poly(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()
Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
e <- gsw_enthalpy_t_exact(SA, t, p)
stopifnot(all.equal(e/1e5, c(1.151032604783763, 1.140148036012021,
0.921799209310966, 0.432553283808897, 0.330872159700175, 0.269705880448018)))
```

Description

First Derivatives of Entropy

Usage

```r
gsw_entropy_first_derivatives(SA, CT)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]

Value

A list containing `eta_SA` [\((J/(kg*degC)) / (g/kg)\)], the derivative of entropy wrt Absolute Salinity, and `eta_CT` [\((J/(kg*degC^2))\)], the derivative of entropy wrt Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the file `library/gsw_data_v3_0.mat` provided in the GSW-Matlab code, version 3.06-11. Unfortunately, this version of the .mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

**gsw_entropy_from_pt**

**See Also**

Other things related to entropy: `gsw_CT_from_entropy()`, `gsw_entropy_from_pt()`, `gsw_entropy_from_t()`, `gsw_entropy_ice()`, `gsw_pt_from_entropy()`

**Examples**

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
d <- gsw_entropy_first_derivatives(SA, CT)
stopifnot(all.equal(d$eta_SA, c(-0.263286800711655, -0.263977276574528, -0.255367497912925,
 -0.238066586439561, -0.234438260606436, -0.232820684341694)))
stopifnot(all.equal(d$eta_CT, c(13.221031210083824, 13.236911191313675, 13.489004628681361,
 14.086599016583795, 14.257729576432877, 14.386429945649411)))
```

**Description**

Calculates specific entropy in terms of Absolute Salinity and Potential Temperature.

**Usage**

```r
gsw_entropy_from_pt(SA, pt)
```

**Arguments**

- **SA**: Absolute Salinity [ g/kg ]
- **pt**: potential temperature (ITS-90) [ degC ]

**Value**

specific entropy [ J/(kg*degC) ]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceeb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.
References


See Also

Other things related to entropy: `gsw_CT_from_entropy()`, `gsw_entropy_first_derivatives()`, `gsw_entropy_from_t()`, `gsw_entropy_ice()`, `gsw_pt_from_entropy()`

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
pt <- c(28.7832, 28.4210, 22.7850, 10.2305, 6.8292, 4.3245)
e <- gsw_entropy_from_t(SA, pt)
stopifnot(all.equal(e/1e2, c(4.003894674443156, 3.954383994925507, 3.198674385897981, 1.467905482842553, 0.986469100565646, 0.627913567234252)))
```

```
gsw_entropy_from_t Specific Entropy i.t.o. Absolute Salinity, Temperature, and Pressure

Description

Calculates specific entropy in terms of Absolute Salinity, in-situ temperature and pressure.

Usage

```r
gsw_entropy_from_t(SA, t, p)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **t**: in-situ temperature (ITS-90) [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

specific entropy [J/(kg*K)]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file. Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
References

See Also

Other things related to entropy: gsw_CT_from_entropy(), gsw_entropy_first_derivatives(), gsw_entropy_from_pt(), gsw_entropy_ice(), gsw_pt_from_entropy()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
e <- gsw_entropy_from_t(SA, t, p)
stopifnot(all.equal(e/1e2, c(4.003894252787245, 3.954381784340642, 3.198664981986740, 1.467908815899072, 0.986473408657975, 0.627915087346090)))

Description

Entropy of ice

Usage

gsw_entropy_ice(t, p)

Arguments

 t in-situ temperature (ITS-90) [degC]
 p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

 entropy [J/(kg*degC)]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
References

See Also

Other things related to entropy: gsw_CT_from_entropy(), gsw_entropy_first_derivatives(), gsw_entropy_from_pt(), gsw_entropy_from_t(), gsw_pt_from_entropy()

Examples

t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
e <- gsw_entropy_ice(t, p)
stopifnot(all.equal(e/1e3, c(-1.303663820598987, -1.324090218294577, -1.319426394193644, -1.315402956671801, -1.305426590579231, -1.287021035328113)))

gsw_entropy_second_derivatives

Second Derivatives of Entropy

Description

Second Derivatives of Entropy

Usage

gsw_entropy_second_derivatives(SA, CT)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [degC]</td>
</tr>
</tbody>
</table>

Value

A list containing eta_SA_SA [(J/(K*kg))/(g/kg)^2], the second derivative of entropy with respect to Absolute Salinity, eta_SA_CT [(J/(K*kg))/(K*g/kg)], the derivative of entropy with respect to Absolute Salinity and Conservative Temperature, and eta_CT_CT [(J/(K*kg))/K^2], the second derivative of entropy with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained,
A copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)

r <- gsw_entropy_second_derivatives(SA, CT)
stopifnot(all.equal(r$eta_SA_SA, c(-0.007627718929669, -0.007591969960708, -0.007528186784540,
                                      -0.007455177590576, -0.007441108287466, -0.007414368396280)))
stopifnot(all.equal(r$eta_SA_CT, c(-0.001833104216751, -0.001819473824306, -0.001580843823414,
                                     -0.00093011408561, -0.000717011215195, -0.000548410546830)))
stopifnot(all.equal(r$eta_CT_CT, c(-0.043665023731109, -0.043781336189326, -0.045506114440888,
                                     -0.049708939454018, -0.050938690879443, -0.051875017843472)))
```

Description

Ratio of Absolute to Preformed Salinity, minus 1

Usage

```r
gsw_Fdelta(p, longitude, latitude)
```

Arguments

- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **longitude**: longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
- **latitude**: latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Value

(S/Sstar)-1 [unitless]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
p <- c( 10, 50, 125, 250, 600, 1000)
latitude <- c( 4, 4, 4, 4, 4, 4)
longitude <- c(188, 188, 188, 188, 188, 188)
r <- gsw_Fdelta(p, longitude, latitude)
stopifnot(all.equal(r/1e-3, c(0.006472309923452, 0.010352848168433, 0.025541937543450, 0.104348729347986, 0.218678084205081, 0.365415366571266)))
```

gsw_frazil_properties Properties of Frazil ice

Description

Calculation of Absolute Salinity, Conservative Temperature, and ice mass fraction based on bulk Absolute Salinity, bulk enthalpy, and pressure

Usage

```r
gsw_frazil_properties(SA_bulk, h_bulk, p)
```

Arguments

- **SA_bulk**: Absolute Salinity of a combination of seawater and ice [g/kg]
- **h_bulk**: enthalpy of a mixture of seawater and ice [J/kg]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

a list containing SA_final, h_final and w_Ih_final.
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

SA_bulk <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
h_bulk <- c(-4.5544e4, -4.6033e4, -4.5830e4, -4.5589e4, -4.4948e4, -4.4027e4)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_frazil_properties(SA_bulk, h_bulk, p)
stopifnot(all.equal(r$SA_final, c(39.111030663000442, 39.407625769681573, 39.595789974885108, 39.481230045372889, 39.591177095552503, 39.826467709177123)))
stopifnot(all.equal(r$CT_final, c(-2.156311126114311, -2.204672298963783, -2.273689262333450, -2.363714136353600, -2.644541000680772, -2.977651291726651)))
stopifnot(all.equal(r$w_Ih_final, c(0.112480560814322, 0.114600300867556, 0.115421108602301, 0.11737290660305, 0.122617649983886, 0.127906590822347)))

Description

Calculation of Absolute Salinity, Conservative Temperature, and ice mass fraction based on bulk Absolute Salinity, bulk potential enthalpy, and pressure

Usage

gsw_frazil_properties_potential(SA_bulk, h_pot_bulk, p)

Arguments

SA_bulk Absolute Salinity of a combination of seawater and ice [g/kg]
h_pot_bulk potential enthalpy of a mixture of seawater and ice [J/kg]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
Value

a list containing SA_final, h_final and w_Ih_final.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_enthalpy(), gsw_frazil_properties_potential_poly(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_pt_from_pot_enthalpy_ice(), gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()

Examples

SA_bulk <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
h_pot_bulk <- c(-4.5544e4, -4.6033e4, -4.5830e4, -4.5589e4, -4.4948e4, -4.4027e4)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_frazil_properties_potential(SA_bulk, h_pot_bulk, p)
stopifnot(all.equal(r$SA_final, c(39.098258701462051, 39.343217598625756, 39.434254585716296, 39.159536295126657, 38.820511558004590, 38.542322667924459)))
stopifnot(all.equal(r$CT_final, c(-2.15555336670014, -2.20084482695826, -2.264077329325076, -2.344567015865174, -2.598559540430464, -2.900814843304696)))
stopifnot(all.equal(r$w_Ih_final, c(0.112190640891586, 0.113150826758543, 0.111797588975174, 0.110122251260246, 0.10519983799201, 0.098850365110330)))
Properties of Frazil ice i.t.o. potential enthalpy (polynomial version)

Description
Calculation of Absolute Salinity, Conservative Temperature, and ice mass fraction based on bulk Absolute Salinity, bulk potential enthalpy, and pressure

Usage

```r
gsw_frazil_properties_potential_poly(SA_bulk, h_pot_bulk, p)
```

Arguments

- `SA_bulk`: Absolute Salinity of a combination of seawater and ice [g/kg]
- `h_pot_bulk`: potential enthalpy of a mixture of seawater and ice [J/kg]
- `p`: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing `SA_final`, `h_final` and `w_Ih_final`.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file. Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to enthalpy: `gsw_CT_from_enthalpy()`, `gsw_dynamic_enthalpy()`, `gsw_enthalpy_CT_exact()`, `gsw_enthalpy_diff()`, `gsw_enthalpy_first_derivatives_CT_exact()`, `gsw_enthalpy_first_derivatives()`, `gsw_enthalpy_ice()`, `gsw_enthalpy_t_exact()`, `gsw_enthalpy()`, `gsw_frazil_properties_potential()`, `gsw_pot_enthalpy_from_pt_ice_poly()`, `gsw_pot_enthalpy_from_pt_ice()`, `gsw_pot_enthalpy_ice_freezing_poly()`, `gsw_pot_enthalpy_ice_freezing()`, `gsw_pt_from_pot_enthalpy_ice_poly()`, `gsw_pt_from_pot_enthalpy_ice()`, `gsw_specvol_first_derivatives_wrt_enthalpy()`, `gsw_specvol_first_derivatives()`
Examples

```r
SA_bulk <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
h_pot_bulk <- c(-4.5544e4, -4.6033e4, -4.5830e4, -4.5589e4, -4.4948e4, -4.4027e4)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_frazil_properties_potential_poly(SA_bulk, h_pot_bulk, p)
stopifnot(all.equal(r$SA_final, c(39.098264696022831, 39.343217436835218, 39.432442423568633, 39.159511498029801, 38.820458704205542, 38.542256756176229)))
stopifnot(all.equal(r$CT_final, c(-2.155537691991377, -2.200841508940901, -2.264094318382661, -2.344613208230164, -2.598663953454472, -2.900948531145453)))
stopifnot(all.equal(r$w_Ih_final, c(0.112190777010854, 0.113150823111566, 0.111797356032850, 0.110121687760246, 0.105198620534670, 0.098848824039493)))
```

Description

Ratios of SA, CT and p changes when Frazil Ice Forms

Usage

```r
gsw_frazil_ratios_adiaibatic(SA, p, w_Ih)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **w_Ih**: initial mass fraction (ice) / (water + ice)

Value

A list containing `dSA_dCT_frazil`, `dSA_dP_frazil` and `dCT_dP_frazil`.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd4dd9ceeb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
Ratios of SA, CT and p changes when Frazil Ice Forms (polynomial form)

Description

Ratios of changes in SA, CT and p that occur when frazil ice forms due to changes in pressure upon the mixture of seawater and ice.

Usage

gsw_frazil_ratios_adiabatic_poly(SA, p, w_Ih)

Arguments

SA
Absolute Salinity [g/kg]

p
sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

w_Ih
initial mass fraction (ice) / (water + ice)

Value

a list containing dSA_dCT_frazil, dSA_dP_frazil and dCT_dP_frazil.
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c( 34.7118,  34.8915,  35.0256,  34.8472,  34.7366,  34.7324)
p <- c( 10,       50,      125,      250,       600,      1000)
w_Ih <- c( 0.9, 0.84, 0.4, 0.25, 0.05, 0.01)
r <- gsw_frazil_ratios_adiabatic_poly(SA, p, w_Ih)
stopifnot(all.equal(r$dSA_dCT_frazil,
            c(3.035308957896530, 1.932631198810934, 0.613220785586734,
              0.516106221687200, 0.436657158542033, 0.425827675768018)))
stopifnot(all.equal(r$dSA_dP_frazil/1e-6,
            c(-0.197512213108610, -0.133280971893621, -0.045599951957139,
              -0.038820466574251, -0.033548047632788, -0.03352365425407)))
stopifnot(all.equal(r$dCT_dP_frazil/1e-7,
            c(-0.650715350062703, -0.689634794137768, -0.74361393207895,
              -0.752179782823459, -0.768292629045686, -0.783236208526200)))
```

Description

This calculates a geopotential anomaly, called either the dynamic height anomaly or the geostrophic streamfunction in the TEOS-10 document listed as [1] below; users should read that and the references therein for more details on the definition and its calculation here.

To get the column-integrated value in meters, take the first value of the returned vector and divide by $9.7963 m/s^2$. Note that this yields an integral with the top measured pressure (not zero) as an upper limit.

Usage

```r
gsw_geo_strf_dyn_height(SA, CT, p, p_ref = 0)
```
Arguments

SA Absolute Salinity [g/kg]
CT Conservative Temperature [degC]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
p_ref reference pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Details

Because of the scheme used in the underlying C code, the pressures must be in order, and must not have any repeats. Also, there must be at least 4 pressure values. Violating any of these three restrictions yields an error.

If p_ref exceeds the largest p value, a vector of zeros is returned, in accordance with the underlying C code.

Note the alteration of the test-value tolerance from a much smaller default. This is required because the test values derive from the GSW-Matlab code, which uses a different interpolation scheme than the GSW-C code, upon which GSW-R relies. See References 2 and 3 for more on this topic.

Value

A vector containing geopotential anomaly in \(m^2/s^2 \) for each level. For more on the units, see [2].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
p_ref <- 500
dh <- gsw_geo_strf_dyn_height(SA, CT, p, p_ref)
NOTE: see Details for the reason for the coarse tolerance.
stopifnot(all.equal(dh,
c(12.172172845782585, 9.79773952848624, 6.07940749148281,
 3.042891445395256, -1.07887239804912, -4.656953829254061),
tolerance=0.02))

gsw_geo_strf_dyn_height_1

Geostrophic Dynamic Height Anomaly (provisional version)

Description

This calculates a geopotential anomaly, called either the dynamic height anomaly or the geostrophic streamfunction in the TEOS-10 document listed as [1] below.

To get the column-integrated value in meters, take the first value of the returned vector and divide by $9.7963 \, m/s^2$. Note that this yields an integral with the top measured pressure (not zero) as an upper limit.

Usage

```r
gsw_geo_strf_dyn_height_1(SA, CT, p, p_ref = 0, max_dp = 1, interp_method = 2)
```

Arguments

- **SA** Absolute Salinity [g/kg]
- **CT** Conservative Temperature [degC]
- **p** sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **p_ref** reference pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **max_dp** numeric value indicating the maximum tolerated pressure separation between levels. If any pressure step exceeds max_dp, then a uniform grid is constructed with max_dp as the interval.
- **interp_method** integer specifying interpolation scheme (1 for linear, 2 for pchip)

Details

Because of the scheme used in the underlying C code, the pressures must be in order, and must not have any repeats. Also, there must be at least 4 pressure values. Violating any of these restrictions yields an error.

If p_ref exceeds the largest p value, a vector of zeros is returned, in accordance with the underlying C code.

Value

A vector containing geopotential anomaly in m^2/s^2 for each level. For more on the units, see [2].
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
p_ref <- 1000
dh <- gsw_geo_strf_dyn_height_1(SA, CT, p, p_ref, 1, 2)
```

FIXME: The following test values fail.
```r
all.equal(dh, c(17.039204557769487, 14.665853784722286, 10.912861136923812, 7.567928838774945, 3.393524055565328, 0))
```

gsw_geo_strf_dyn_height_pc

Geostrophic Dynamic Height Anomaly (Piecewise-Constant Profile)

Description

Geostrophic Dynamic Height Anomaly (Piecewise-Constant Profile)

Usage

```r
gsw_geo_strf_dyn_height_pc(SA, CT, delta_p)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [degC]</td>
</tr>
<tr>
<td>delta_p</td>
<td>difference in sea pressure between the deep and shallow limits of layers within which SA and CT are assumed to be constant. Note that delta_p must be positive.</td>
</tr>
</tbody>
</table>
Value

A list containing \(\text{dyn_height} \), the dynamic height anomaly \([\text{m}^2/\text{s}^2] \), and \(\text{p_mid} \) \([\text{dbar}] \), the pressures at the layer centres. Note that the dynamic height anomaly unit, also known as a "dynamic meter", corresponds to approximately 1.02 metres of sealevel height (see e.g. Talley et al., 2011. Descriptive Physical Oceanography, Edition 6. Elsevier).

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```R
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
delta_p <- c(10, 40, 75, 125, 350, 400)
r <- gsw_geo_strf_dyn_height_pc(SA, CT, delta_p)
```

```
stopifnot(all.equal(r$dyn_height, c(-0.300346215853487, -1.755165998114308, -4.423531083131365,
                                 -6.816659136254657, -9.45317525781843, -12.721009624991439)))
stopifnot(all.equal(r$p_mid/1e2, c(0.050000000000000, 0.300000000000000, 0.875000000000000,
                           1.875000000000000, 4.250000000000000, 8.000000000000000)))
```
Arguments

<table>
<thead>
<tr>
<th>ns</th>
<th>An integer, the order of the SA derivative. Must be 0, 1, or 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nt</td>
<td>An integer, the order of the t derivative. Must be 0, 1, or 2.</td>
</tr>
<tr>
<td>np</td>
<td>An integer, the order of the p derivative. Must be 0, 1, or 2.</td>
</tr>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>t</td>
<td>in-situ temperature (ITS-90) [degC]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

Value

Gibbs energy [J/kg] if ns=nt=np=0. Derivative of energy with respect to SA [J/kg/(g/kg)^ns] if ns is nonzero and nt=np=0, etc. Note that derivatives with respect to pressure are in units with Pa, not dbar.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file. Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Caution

The TEOS-10 webpage for gsw_gibbs does not provide test values, so the present R version should be considered untested.

References

Examples

library(gsw)
p <- seq(0, 100, 1)
SA <- rep(35, length(p))
t <- rep(-5, length(p))
Check the derivative wrt pressure. Note the unit change
E <- gsw_gibbs(0, 0, 0, SA, t, p)
Estimate derivative from linear fit (try plotting: it is very linear)
m <- lm(E ~ p)
print(summary(m))
plot(p, E)
\texttt{abline(m)}
\texttt{dEdp1 <- coef(m)[2]}
\# Calculate derivative ... note we multiply by 1e4 to get from 1/Pa to 1/\text{bar}
\texttt{dEdp2 <- 1e4 * gsw
gibbs(0, 0, 1, SA[1], t[1], p[1])}
\texttt{## Ratio}
\texttt{dEdp1 / dEdp2}

gsw_gibbs_ice \hspace{1cm} \textit{Gibbs Energy of Ice, and its Derivatives}

\section*{Description}

Gibbs Energy of Ice, and its Derivatives

\section*{Usage}

\texttt{gsw_gibbs_ice(nt, np, t, p = 0)}

\section*{Arguments}

\begin{itemize}
 \item \texttt{nt} \hspace{1cm} An integer, the order of the \texttt{t} derivative. Must be 0, 1, or 2.
 \item \texttt{np} \hspace{1cm} An integer, the order of the \texttt{p} derivative. Must be 0, 1, or 2.
 \item \texttt{t} \hspace{1cm} in-situ temperature (ITS-90) [degC]
 \item \texttt{p} \hspace{1cm} sea pressure [\text{bar}], i.e. absolute pressure [\text{bar}] minus 10.1325 \text{bar}
\end{itemize}

\section*{Value}

Gibbs energy [J/kg] if \texttt{nt}=\texttt{np}=0. Derivative of energy with respect to \texttt{t} [J/kg/(degC)^{\texttt{nt}}] if \texttt{nt} is nonzero, etc. Note that derivatives with respect to pressure are in units with Pa, not \text{bar}.

\section*{Implementation Note}

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at \url{https://github.com/TEOS-10/GSW-C} with git commit \texttt{98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459}. The C function uses data from the \texttt{library/gsw_data_v3_0.mat} file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from \url{http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip} on 2022-05-25, the .mat file was stored in the developer/create_data directory of \url{https://github.com/TEOS-10/GSW-R}, and then the dataset used in GSW-R was created based on that .mat file.

Please consult \url{http://www.teos-10.org} to learn more about the various TEOS-10 software systems.

\section*{Caution}

The TEOS-10 webpage for \texttt{gsw_gibbs_ice} does not provide test values, so the present R version should be considered untested.
References

Examples

library(gsw)
p <- seq(0, 100, 1)
t <- rep(-5, length(p))
Check the derivative wrt pressure. Note the unit change
E <- gsw_gibbs_ice(0, 0, t, p)
Estimate derivative from linear fit (try plotting: it is very linear)
m <- lm(E ~ p)
print(summary(m))
plot(p, E)
abline(m)
dEdp1 <- coef(m)[2]
Calculate derivative ... note we multiply by 1e4 to get from 1/Pa to 1/ubar

dEdp2 <- 1e4 * gsw_gibbs_ice(0, 1, t[1], p[1])
Ratio
dEdp1 / dEdp2

gsw_grav

Gravitational Acceleration

Description

Gravitational Acceleration

Usage

gsw_grav(latitude, p = 0)

Arguments

latitude latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

gravitational acceleration [m/s^2]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ce80ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

 lat <- c(-90, -60, -30, 0)
 grav <- gsw_grav(lat)
 stopifnot(all.equal(grav, c(9.832186205884799, 9.819178859991149,
 9.793249257048750, 9.780327000000000)))

gsw_Helmholtz_energy_ice

Helmholtz Energy of Ice

Description

Helmholtz Energy of Ice

Usage

 gsw_Helmholtz_energy_ice(t, p)

Arguments

 t in-situ temperature (ITS-90) [degC]
 p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

 Helmholtz energy if ice [J/kg]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a70d459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
e <- gsw_Helmholtz_energy_ice(t, p)
stopifnot(all.equal(e/1e4, c(-1.362572315008330, -1.710375005915343, -1.628083272702224, -1.555573047498573, -1.375469831393882, -1.053585607014677)))

gsw_ice_fraction_to_freeze_seawater

Ice Fraction to Cool Seawater to Freezing

Description

Ice Fraction to Cool Seawater to Freezing

Usage

gsw_ice_fraction_to_freeze_seawater(SA, CT, p, t_Ih)

Arguments

SA	Absolute Salinity [g/kg]
CT	Conservative Temperature [degC]
p	sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
t_Ih	initial temperature of ice [degC]

Value

a list containing SA_freeze, CT_freeze and w_Ih.
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d750e7935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
t_Ih <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
r <- gsw_ice_fraction_to_freeze_seawater(SA, CT, p, t_Ih)
stopifnot(all.equal(r$SA_freeze, c(25.823952352620722, 26.120495895535438, 30.629978769577168, 31.45822232943784, 32.121170316796444)))
stopifnot(all.equal(r$CT_freeze, c(-1.389936216242376, -1.437013341342383, -1.569815847128818, -1.846419165567020, -2.166786673735941, -2.522730879078756)))
stopifnot(all.equal(r$w_Ih, c(0.256046867272203, 0.251379393389925, 0.12102375537284, 0.094378196687535, 0.075181377710828)))

Description

Specific Internal Energy of Seawater (75-term equation)

Usage

gsw_internal_energy(SA, CT, p)

Arguments

SA Absolute Salinity [g/kg]
CT Conservative Temperature [degC]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
Value

specific internal energy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)

e <- gsw_internal_energy_ice(SA, CT, p)
stopifnot(all.equal(e/1e5, c(1.148091576956162, 1.134013145527675, 0.909571141498779, 0.408593072177020, 0.273985276460357, 0.175019409258405)))
```

gsw_internal_energy_ice

Specific Internal Energy of Ice (75-term equation)

Description

Specific Internal Energy of Ice (75-term equation)

Usage

```r
gsw_internal_energy_ice(t, p)
```

Arguments

- t: in-situ temperature (ITS-90) [degC]
- p: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
Value

specific internal energy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb98249d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file. Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

t_Ih <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
e <- gsw_internal_energy_ice(t_Ih, p)
stopifnot(all.equal(e/1e5, c(-3.556606992432442, -3.609926216929878, -3.597799043634774, -3.587312078410920, -3.561207060376329, -3.512700418975375)))

gsw_IPV_vs_fNsquared_ratio

Ratio of vert. gradient of pot. density to vert grad of locally-referenced pot density

Description

Note that the C library had to be patched to get this working; a new version of the library will address the bug directly.

Usage

gsw_IPV_vs_fNsquared_ratio(SA, CT, p, p_ref = 0)

Arguments

SA Absolute Salinity [g/kg]
CT Conservative Temperature [degC]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
p_ref reference pressure [dbar]
gsw_kappa

Isentropic Compressibility of Seawater (75-term equation)

Description

Isentropic Compressibility of Seawater (75-term equation)

Usage

`gsw_kappa(SA, CT, p)`

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [degC]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>
Value

isentropic compressibility [1/Pa] (not 1/dbar)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to compressibility: gsw_kappa_const_t_ice(), gsw_kappa_ice(), gsw_kappa_t_exact()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
kappa <- gsw_kappa(SA, CT, p)
stopifnot(all.equal(kappa*1e9,c(0.411343648791300, 0.411105416128094, 0.435588650838751, 0.438782500588955, 0.439842289994702)))

gsw_kappa_const_t_ice Isothermal Compressibility of Ice

Description

Calculate isothermal compressibility of ice, in 1/Pa.

Usage

gsw_kappa_const_t_ice(t, p)

Arguments

t in-situ temperature (ITS-90) [degC]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
Value

isothermal compressibility of ice [1/Pa] (not 1/dbar)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to compressibility: gsw_kappa_ice(), gsw_kappa_t_exact(), gsw_kappa()

Examples

t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
kappa <- gsw_kappa_const_t_ice(t, p)
stopifnot(all.equal(kappa*1e9, c(0.115874753261484, 0.115384948953145, 0.115442212717850, 0.115452884634531, 0.115452884634531, 0.115452884634531)))

gsw_kappa_ice

Isentropic Compressibility of Ice

Description

Calculate isentropic compressibility of ice, in 1/Pa.

Usage

gsw_kappa_ice(t, p)

Arguments

t in-situ temperature (ITS-90) [degC]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
\textit{gsw_kappa_t_exact}

Value

Isentropic compressibility of ice [1/Pa] (not 1/\textbar{dbar})

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at \url{https://github.com/TEOS-10/GSW-C} with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the \texttt{library/gsw_data_v3_0.mat} file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from \url{http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip} on 2022-05-25, the .mat file was stored in the developer/create_data directory of \url{https://github.com/TEOS-10/GSW-R}, and then the dataset used in GSW-R was created based on that .mat file.

Please consult \url{http://www.teos-10.org} to learn more about the various TEOS-10 software systems.

References

\url{http://www.teos-10.org/pubs/gsw/html/gsw_kappa_ice.html}

See Also

Other things related to compressibility: \texttt{gsw_kappa_const_t_ice()}, \texttt{gsw_kappa_t_exact()}, \texttt{gsw_kappa()}

Examples

\begin{verbatim}
t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
kappa <- gsw_kappa_ice(t, p)
stopifnot(all.equal(kappa*1e9, c(0.112495239053936, 0.112070687842183, 0.112119091047584, 0.112126504739297, 0.11213513812840, 0.112262589530974))
\end{verbatim}

\begin{verbatim}
\textbf{gsw_kappa_t_exact} \hspace{1cm} \textit{Isentropic compressibility of seawater (exact)}
\end{verbatim}

Description

Isentropic compressibility of seawater (exact)

Usage

\texttt{gsw_kappa_t_exact(SA, t, p)}

Arguments

- \textbf{SA} \hspace{1cm} Absolute Salinity [g/kg]
- \textbf{t} \hspace{1cm} in-situ temperature (ITS-90) [degC]
- \textbf{p} \hspace{1cm} sea pressure [\textbar{dbar}], i.e. absolute pressure [\textbar{dbar}] minus 10.1325 \textbar{dbar}
Value

isentropic compressibility [1/Pa] (not 1/DBar)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ce8b0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to compressibility: gsw_kappa_const_t_ice(), gsw_kappa_ice(), gsw_kappa()

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
kappa <- gsw_kappa(SA, CT, p)
stopifnot(all.equal(kappa*1e9,
                     c(0.411343648791300, 0.411105416128094, 0.416566236026610,
                      0.435588650838751, 0.438782500588955, 0.439842289994702)))
```
Arguments

SA Absolute Salinity [g/kg]
CT Conservative Temperature [degC]

Value

latent heat of evaporation [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0baa82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to latent heat: gsw_latentheat_evap_t(), gsw_latentheat_melting()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
lh <- gsw_latentheat_evap_CT(SA, CT)
stopifnot(all.equal(lh/1e6, c(2.429947107462561, 2.430774073049213, 2.444220372158452, 2.474127109232524, 2.482151446193560, 2.488052297193594)))

gsw_latentheat_evap_t Latent heat of evaporation

Description

Latent heat of evaporation

Usage

gsw_latentheat_evap_t(SA, t)
Arguments

SA Absolute Salinity [g/kg]
t in-situ temperature (ITS-90) [degC]

Value

latent heat of evaporation [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file. Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to latent heat: gsw_latentheat_evap_CT(), gsw_latentheat_melting()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
lh = gsw_latentheat_evap_t(SA, t)
stopifnot(all.equal(lh/1e6, c(2.429882982734836, 2.430730236218543, 2.444217294049004, 2.474137411322517, 2.482156276375029, 2.488054617630297)))

gsw_latentheat_melting

Latent Heat of Melting

Description

Latent Heat of Melting

Usage

gsw_latentheat_melting(SA, p)
Arguments

SA Absolute Salinity [g/kg]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

latent heat of freezing [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to latent heat: gsw_latentheat_evap_CT(), gsw_latentheat_evap_t()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(10, 50, 125, 250, 600, 1000)
lh <- gsw_latentheat_melting(SA, p)
stopifnot(all.equal(lh/1e5, c(3.299496680271213, 3.298613352397986, 3.297125622834541, 3.294973895330757, 3.288480445559747, 3.280715862416388)))

gsw_melting_ice_equilibrium_SA_CT_ratio

Calculate d(SA)/d(CT) for Ice Melting in near-freezing Seawater

Description

Calculate d(SA)/d(CT) for Ice Melting in near-freezing Seawater

Usage

gsw_melting_ice_equilibrium_SA_CT_ratio(SA, p)
Arguments

SA Absolute Salinity [g/kg]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

ratio of change in SA to change in CT [g/kg/degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceeb0ba82e9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
r <- gsw_melting_ice_equilibrium_SA_CT_ratio_poly(SA, p)
stopifnot(all.equal(r, c(0.420209509196985, 0.422511693121631, 0.424345503216433, 0.422475836091426, 0.422023427778221, 0.423037622331042)))
```

gsw_melting_ice_equilibrium_SA_CT_ratio_poly

Calculate $d(SA)/d(CT)$ for Ice Melting in near-freezing Seawater (Polynomial version)

Description

Calculate $d(SA)/d(CT)$ for Ice Melting in near-freezing Seawater (Polynomial version)

Usage

```r
gsw_melting_ice_equilibrium_SA_CT_ratio_poly(SA, p)
```
Arguments

SA Absolute Salinity [g/kg]

p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

ratio of change in SA to change in CT [g/kg/degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
r <- gsw_melting_ice_equilibrium_SA_CT_ratio_poly(SA, p)
stopifnot(all.equal(r, c(0.420209444587263, 0.422511664682796, 0.424345538275708, 0.422475965003649, 0.422023755182266, 0.423038080717229)))
```

`gsw_melting_ice_into_seawater`

Calculate properties related to ice melting in seawater

Description

Calculate properties related to ice melting in seawater

Usage

`gsw_melting_ice_into_seawater(SA, CT, p, w_Ih, t_Ih)`
Arguments

SA Absolute Salinity [g/kg]
CT Conservative Temperature [degC]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
w_Ih initial mass fraction (ice) / (water + ice)
t_Ih initial temperature of ice [degC]

Value

a list containing SA_final, CT_final and w_Ih_final.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c( 4.7856, 2.4329, 1.8103, 1.2600, 0.6886, 0.4403)
p <- c( 10, 50, 125, 250, 600, 1000)
w_Ih <- c( 0.0560, 0.02513, 0.02159, 0.01210, 0.00943, 0.00751)
t_Ih <- c(-4.7856, -4.4329, -3.8103, -4.2600, -3.8863, -3.4036)
r <- gsw_melting_ice_into_seawater(SA, CT, p, w_Ih, t_Ih)
stopifnot(all.equal(r$SA_final, c(32.767939199999994, 34.014676604999998, 34.269397295999994, 34.425548880000001, 34.409033862000001, 34.471559675999998)))
stopifnot(all.equal(r$CT_final, c(-0.298448911022612, 0.215263001418312, -0.074341719211557, 0.207796293045473, -0.123785388299875, -0.202531182809225)))
stopifnot(all.equal(r$w_Ih_final, rep(0, 6)))
```
Description

Calculate \(\frac{d(SA)}{d(CT)} \) for Ice Melting in Seawater

Usage

\[
gsw_melting_ice_SA_CT_ratio(SA, CT, p, t_{Ih})
\]

Arguments

- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **t_{Ih}**: initial temperature of ice [degC]

Value

ratio of change in SA to change in CT [g/kg/degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c( 3.7856, 3.4329, 2.8103, 1.2600, 0.6886, 0.4403)
p <- c( 10, 50, 125, 250, 600, 1000)
t_Ih <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
r <- gsw_melting_ice_SA_CT_ratio_poly(SA, CT, p, t_Ih)
stopifnot(all.equal(r, c(0.373840909022490, 0.371878514972099, 0.377104664622191,
                          0.382777696796156, 0.387133845152000, 0.393947316026914))
```

gsw_melting_ice_SA_CT_ratio_poly

Calculate $d(SA)/d(CT)$ for Ice Melting in Seawater (Polynomial version)

Description

Calculate $d(SA)/d(CT)$ for Ice Melting in Seawater (Polynomial version)

Usage

```r
gsw_melting_ice_SA_CT_ratio_poly(SA, CT, p, t_Ih)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **t_Ih**: initial temperature of ice [degC]

Value

ratio of change in SA to change in CT [g/kg/degC].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceba82e9d47ac750e935a7d0459’. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
gsw_melting_seaice_into_seawater

References

Examples

```r
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c( 3.7856,  3.4329,  2.8103,  1.2600,  0.6886,  0.4403)
p <- c( 10,   50,  125,  250,   600,  1000)
t_Ih <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
r <- gsw_melting_ice_SA_CT_ratio_poly(SA, CT, p, t_Ih)
stopifnot(all.equal(r, c(0.373840908629278, 0.371878512745054, 0.377104658031030,
                         0.382777681212224, 0.387133812279563, 0.393947267481204)))
```

gsw_melting_seaice_into_seawater

Calculate properties related to seaice melting in seawater

Description

Calculate properties related to seaice melting in seawater

Usage

```r
gsw_melting_seaice_into_seawater(SA, CT, p, w_seaice, SA_seaice, t_seaice)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [degC]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
<tr>
<td>w_seaice</td>
<td>mass fraction (seaice) / (water + seaice)</td>
</tr>
<tr>
<td>SA_seaice</td>
<td>Absolute Salinity of seaice</td>
</tr>
<tr>
<td>t_seaice</td>
<td>temperature of seaice</td>
</tr>
</tbody>
</table>

Value

A list containing `SA_final` and `CT_final`.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip.
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(4.7856, 2.4329, 1.8103, 1.2600, 0.6886, 0.4403)
p <- c(10, 50, 125, 250, 600, 1000)
w_seaice <- c(0.0560, 0.02513, 0.02159, 0.01210, 0.00943, 0.00751)
SA_seaice <- c(5, 4.8, 3.5, 2.5, 1, 0.4)
t_seaice <- c(-4.7856, -4.4329, -3.8103, -4.2600, -3.8863, -3.4036)
r <- gsw_melting_seaice_into_seawater(SA, CT, p, w_seaice, SA_seaice, t_seaice)
stopifnot(all.equal(r$SA_final, c(33.047939199999995, 34.135300604999998, 34.344962295999999, 34.455798880000003, 34.418463862000003, 34.474563675999995)))
stopifnot(all.equal(r$CT_final, c(-0.018822367305381, 0.345095540241769, 0.020418581143151, 0.242672380976922, -0.111078380121959, -0.197363471215418)))

gsw_Nsquared

Calculate Brunt Vaisala Frequency squared

Description

The result is computed based on first-differencing a computed density with respect pressure, and this can yield noisy results with CTD data that have not been smoothed and decimated. It also yields infinite values, for repeated adjacent pressure (e.g. this occurs twice with the ctd dataset provided in the oce package).

Usage

```r
  gsw_Nsquared(SA, CT, p, latitude = 0)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **latitude**: latitude in decimal degrees, positive to the north of the equator. (This is called `lat` in the TEOS-10 Matlab code.)

Value

list containing N2 [1/s^2] and mid-point pressure p_mid [dbar]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
latitude <- 4
r <- gsw_Nsquared(SA, CT, p, latitude=4)
stopifnot(all.equal(r$N2*1e3, c(0.060843209693499, 0.235723066151305, 0.216599928330380, 0.012941204313372, 0.008434782795209)))
stopifnot(all.equal(r$p_mid, c(30, 87.5, 187.5, 425, 800)))

gsw_O2sol

Oxygen Solubility in Seawater (GSW variables)

Description

Computes oxygen concentration for seawater that is equilibrium with vapour-saturated air at standard atmospheric pressure (101.325 kPa, i.e. for sea pressure of 0dbar). The formula, not created by the SCOR/IAPSO Working Group 127 nor approved by the IOC, is stated in the TEOS-10 documentation to be from Benson and Krause (1984), as fitted by Garcia and Gordon (1992, 1993). That formulation is framed in UNESCO-era water properties, so longitude and latitude are needed here, to convert to these quantities from Absolute Salinity and Conservative Temperature; see also gsw_O2sol_SP_pt, which is formulated in UNESCO terms.

Usage

 gsw_O2sol(SA, CT, p, longitude, latitude)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [degC]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
<tr>
<td>longitude</td>
<td>longitude in decimal degrees, positive to the east of Greenwich. (This is called <code>long</code> in the TEOS-10 Matlab code.)</td>
</tr>
<tr>
<td>latitude</td>
<td>latitude in decimal degrees, positive to the north of the equator. (This is called <code>lat</code> in the TEOS-10 Matlab code.)</td>
</tr>
</tbody>
</table>

Value

Oxygen solubility in micro-moles per kg.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ce80ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to oxygen: `gsw_O2sol_SP_pt()`

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)  
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)  
p <- c( 10,  50, 125, 250, 600, 1000)  
latitude <- c(4, 4, 4, 4, 4, 4)  
longitude <- c(188, 188, 188, 188, 188, 188)  
O2sol <- gsw_O2sol(SA,CT,p,longitude,latitude)  
stopifnot(all.equal(O2sol/100, c(1.949651126384804, 1.958728907684003, 2.148922307892045, 2.738656506758550, 2.955109771828408, 3.133584919106894)))
```
gsw_O2sol_SP_pt
Oxygen Solubility in Seawater (UNESCO variables)

Description
Computes oxygen concentration for seawater that is equilibrium with vapour-saturated air at standard atmospheric pressure (101.325 kPa, i.e. for sea pressure of 0dbar). The formula, not created by the SCOR/IAPSO Working Group 127 nor approved by the IOC, is stated in the TEOS-10 documentation to be from Benson and Krause (1984), as fitted by Garcia and Gordon (1992, 1993). That formulation is framed in UNESCO-era water properties; see gsw_02sol for the corresponding computation in GSW variables.

Usage
gsw_O2sol_SP_pt(SP, pt)

Arguments
- **SP**: Practical Salinity (PSS-78) [unitless]
- **pt**: potential temperature (ITS-90) [degC]

Value
Oxygen solubility in micro-moles per kg.

Implementation Note
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also
Other things related to oxygen: gsw_02sol()
Examples

```r
SP <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
pt <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
O2sol <- gsw_O2sol_SP_pt(SP, pt)
stopifnot(all.equal(O2sol/100, c(1.946825431692940, 1.956135062814438,
  2.146559360234014, 2.735652832698713, 2.951580761415903,
  3.129598716631408)))
```

gsw_pot_enthalpy_from_pt_ice

Potential Enthalpy of Ice

Description

Potential Enthalpy of Ice

Usage

```r
gsw_pot_enthalpy_from_pt_ice(pt0_ice)
```

Arguments

- `pt0_ice`: potential temperature of ice (ITS-90) [degC]

Value

- potential enthalpy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

gsw_pot_enthalpy_from_pt_ice_poly

See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact().
gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives().
gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_enthalpy_gsw_frazil_properties_potential_poly().
gsw_frazil_properties_potential().gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_ice_freezing().
gsw_pot_enthalpy_ice_freezing().gsw_pt_from_pot_enthalpy_ice_poly().gsw_pt_from_pot_enthalpy_ice().
gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives().

Examples

pt0_ice <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
e <- gsw_pot_enthalpy_from_pt_ice_poly(pt0_ice)
stopifnot(all.equal(e/1e5, c(-3.555459449611868, -3.608607069998877, -3.596153890859193,
 -3.585123178806596, -3.557490528226009, -3.507198313847837)))

gsw_pot_enthalpy_from_pt_ice_poly

Potential Enthalpy of Ice (Polynomial version)

Description

Potential Enthalpy of Ice (Polynomial version)

Usage

gsw_pot_enthalpy_from_pt_ice_poly(pt0_ice)

Arguments

pt0_ice potential temperature of ice (ITS-90) [degC]

Value

potential enthalpy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated
2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab
source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed
on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained,
a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software sys-
tems.
gsw_pot_enthalpy_ice_freezing

References

See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(),
gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives(),
gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_enthalpy(), gsw_frazil_properties_potential_poly(),
gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly(),
gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_icePoly(), gsw_pt_from_pot_enthalpy_ice(),
gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()

Examples

pt0_ice <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
e <- gsw_pot_enthalpy_from_pt_ice_poly(pt0_ice)
stopifnot(all.equal(e/1e5, c(-3.555459482216265, -3.608607100959428, -3.596153924697033,
 -3.585123214031169, -3.557490561327994, -3.507198320793373)))

gsw_pot_enthalpy_ice_freezing

Potential Enthalpy of Ice at Freezing Point

Description

Potential Enthalpy of Ice at Freezing Point

Usage

gsw_pot_enthalpy_ice_freezing(SA, p, saturation_fraction = 1)

Arguments

SA Absolute Salinity [g/kg]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
saturation_fraction fraction of air in water [unitless]

Value

potential enthalpy [J/kg]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Bugs

1. The C source underlying this function lacks an argument, `saturation_fraction`, which is present in the Matlab source, and so that argument is ignored here.

References

See Also

Other things related to enthalpy: `gsw_CT_from_enthalpy()`, `gsw_dynamic_enthalpy()`, `gsw_enthalpy_CT_exact()`, `gsw_enthalpy_diff()`, `gsw_enthalpy_first_derivatives_CT_exact()`, `gsw_enthalpy_first_derivatives()`, `gsw_enthalpy_ice()`, `gsw_enthalpy_t_exact()`, `gsw_enthalpy()`, `gsw_frazil_properties_potential_poly()`, `gsw_frazil_properties_potential()`, `gsw_pot_enthalpy_from_pt_ice_poly()`, `gsw_pot_enthalpy_from_pt_ice()`, `gsw_pot_enthalpy_ice_freezing_poly()`, `gsw_pt_from_pot_enthalpy_ice_poly()`, `gsw_pt_from_pot_enthalpy_ice()`, `gsw_specvol_first_derivatives_wrt_enthalpy()`, `gsw_specvol_first_derivatives()`

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
saturation_fraction = 1
e <- gsw_pot_enthalpy_ice_freezing(SA, p, saturation_fraction)
## Not run:
stopifnot(all.equal(e/1e5, c(-3.373409558967978, -3.374434164002012, -3.376117536928847, -3.378453698871986, -3.385497832886802, -3.393768587631489)))
## End(Not run)
```
Description

First Derivatives of Potential Enthalpy

Usage

```r
gsw_pot_enthalpy_ice_freezing_first_derivatives(SA, p)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing

- `pot_enthalpy_ice_freezing_SA` [(J/kg)/(g/kg)], the derivative of potential enthalpy with respect to Absolute Salinity,
- `pot_enthalpy_ice_freezing_p` [unitless], the derivative of Conservative Temperature with respect to potential temperature. (Note that the second quantity is denoted `pot_enthalpy_ice_freezing_P` in the documentation for the Matlab function.)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit `98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459`. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult `http://www.teos-10.org` to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_pot_enthalpy_ice_freezing_first_derivatives_poly(SA, p)
stopifnot(all.equal(r$pot_enthalpy_ice_freezing_SA/1e2,
                      c(-1.183484968590718, -1.18412526881200, -1.184619267864844,
                        -1.184026131143674, -1.18372770650925, -1.183814873741961)))
stopifnot(all.equal(r$pot_enthalpy_ice_freezing_p/1e-3,
                      c(-0.202880939983260, -0.203087335312542, -0.204112435106666,
                        -0.205889571619502, -0.207895691215823)))
```

Description

First Derivatives of Potential Enthalpy (Polynomial version)

Usage

```r
gsw_pot_enthalpy_ice_freezing_first_derivatives_poly(SA, p)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing `pot_enthalpy_ice_freezing_SA` [(J/kg)/(g/kg)], the derivative of potential enthalpy with respect to Absolute Salinity, and `pot_enthalpy_ice_freezing_p` [unitless], the derivative of Conservative Temperature with respect to potential temperature. (Note that the second quantity is denoted `pot_enthalpy_ice_freezing_P` in the documentation for the Matlab function.)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C with git commit `98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459`]. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_pot_enthalpy_ice_freezing_first_derivatives_poly(SA, p)
stopifnot(all.equal(r$pot_enthalpy_ice_freezing_SA/1e2,
                   c(-1.183498006918154, -1.184135169530602, -1.184626138334419,
                    -1.184032656542549, -1.183727371435808, -1.183805326863513)))
stopifnot(all.equal(r$pot_enthalpy_ice_freezing_p/1e-3,
                   c(-0.202934280214689, -0.203136950111241, -0.203515960539503,
                    -0.204145112153220, -0.205898365024174, -0.207885289186464)))
```

gsw_pot_enthalpy_ice_freezing_poly

Potential Enthalpy of Ice at Freezing Point (Polynomial version)

Description

Potential Enthalpy of Ice at Freezing Point (Polynomial version)

Usage

```r
gsw_pot_enthalpy_ice_freezing_poly(SA, p, saturation_fraction = 1)
```

Arguments

- **SA**
 Absolute Salinity [g/kg]
- **p**
 sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **saturation_fraction**
 fraction of air in water [unitless]

Value

potential enthalpy [J/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0f4dd9ceeb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file. Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(),
gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(),
gsw_enthalpy_first_derivatives(),
gsw_enthalpy_ice(), gsw_enthalpy_t_exact(),
gsw_enthalpy(),
gsw_frazil_properties_potential_poly(),
gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice_poly(),
gsw_pot_enthalpy_from_pt_ice(),
gsw_pot_enthalpy_ice_freezing(),
gsw_pt_from_pot_enthalpy_ice_poly(),
gsw_pt_from_pot_enthalpy_ice(),
gsw_specvol_first_derivatives_wrt_enthalpy(),
gsw_specvol_first_derivatives()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(10, 50, 125, 250, 600, 1000)
saturation_fraction = 1
e <- gsw_pot_enthalpy_ice_freezing_poly(SA, p, saturation_fraction)
stopifnot(all.equal(e/1e5, c(-3.373370858777002, -3.374395733068549, -3.378416106344322, -3.385460970578123, -3.393731732645173)))

gsw_pot_rho_t_exact Potential density

Description

Potential density

Usage

gsw_pot_rho_t_exact(SA, t, p, p_ref)

Arguments

SA Absolute Salinity [g/kg]
t in-situ temperature (ITS-90) [degC]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
p_ref reference pressure [dbar]

Value

potential density [kg/m^3]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_beta(), gsw_rhoe_alpha_beta(), gsw_rhoe_first_derivatives_wrt_enthalpy(), gsw_rhoe_first_derivatives_wrt_pressure(), gsw_rhoe_ice(), gsw_rhoe_t_exact(), gsw_rhoe(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c( 28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c( 10, 50, 125, 250, 600, 1000)
p_ref <- 0
prho <- gsw_pot_rho_t_exact(SA,t,p,p_ref)
stopifnot(all.equal(prho/1e3, c(1.021798145811089, 1.022052484416980, 1.023893583651958, 1.026667621124443, 1.027107230868492, 1.027409631264134)))
```

```r
gsw_pressure_coefficient_ice

Pressure Coefficient for Ice

Description

Pressure Coefficient for Ice

Usage

gsw_pressure_coefficient_ice(t, p)
```
Arguments

- \(t \)
 in-situ temperature (ITS-90) [\(^\circ\)C]
- \(p \)
 sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

specific internal energy [Pa/\(^\circ\)C]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82e9d47ae750e935a7d0459’.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
  t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
  p <- c(  10,    50,   125,   250,    600,    1000)
  pc <- gsw_pressure_coefficient_ice(t, p)
  stopifnot(all.equal(pc/1e6, c(1.333098059787838, 1.326359005133730, 1.327354133828322, 1.32779388831923, 1.328549609231685, 1.331416733490227)))
```

gsw_pressure_freezing_CT

Pressure at which Seawater Freezes

Description

Pressure at which Seawater Freezes

Usage

gsw_pressure_freezing_CT(SA, CT, saturation_fraction = 1)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [degC]</td>
</tr>
<tr>
<td>saturation_fraction</td>
<td>fraction of air in water [unitless]</td>
</tr>
</tbody>
</table>

Value

pressure at which freezing will occur [dbar]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c( -1.8996, -1.9407, -2.0062, -2.0923, -2.3593, -2.6771)
saturation_fraction <- c( 1, 0.8, 0.6, 0.5, 0.4, 0)
p <- gsw_pressure_freezing_CT(SA, CT, saturation_fraction)
stopifnot(all.equal(p/1e3, c(0.009890530270710, 0.050376026585933, 0.125933117050624, 0.251150973076077, 0.601441775836021, 1.002273338145043)))
```

Description

Potential temperature referenced to the surface

Usage

```r
gsw_pt0_from_t(SA, t, p)
```
gsw_pt0_from_t_ice

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [g/kg]</td>
</tr>
<tr>
<td>t</td>
<td>in-situ temperature (ITS-90) [degC]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

Value

potential temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd4dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```R
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c( 28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c( 10, 50, 125, 250, 600, 1000)
pt0 <- gsw_pt0_from_t(SA, t, p)
stopifnot(all.equal(pt0, c(28.783196819670632, 28.420983342398962, 22.784930399117108, 10.230523661095731, 6.82923022409661, 4.324510571845719)))
```

gsw_pt0_from_t_ice
Potential Temperature of Ice Referenced to the Surface

Description

Potential Temperature of Ice Referenced to the Surface

Usage

```R
gsw_pt0_from_t_ice(t, p)
```
gsw_pt_first_derivatives

Arguments

- **t**: in-situ temperature (ITS-90) [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

potential temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
    t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
    p <- c( 10, 50, 125, 250, 600, 1000)
    pt0 <- gsw_pt0_from_t_ice(t, p)
    stopifnot(all.equal(pt0, c(-10.787787898205298, -13.443730926050607, -12.837427056999708, -12.314321615760905, -11.017040858094250, -8.622907355083088)))
```

gsw_pt_first_derivatives

First Derivatives of Potential Temperature

Description

First Derivatives of Potential Temperature

Usage

`gsw_pt_first_derivatives(SA, CT)`
Arguments

SA Absolute Salinity [g/kg]
CT Conservative Temperature [degC]

Value

A list containing pt_SA [K/(g/kg)], the derivative of potential temperature with respect to Absolute
Salinity, and pt_CT [unitless], the derivative of potential temperature with respect to Conservative
Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated
2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.
The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab
source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed
on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained,
a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.
com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.
Please consult http://www.teos-10.org to learn more about the various TEOS-10 software sys-
tems.

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
r <- gsw_pt_first_derivatives(SA, CT)
stopifnot(all.equal(r$pt_SA, c(0.041863223165431, 0.041452303483011, 0.034682095247246,
0.018711079068408, 0.014079958329844, 0.010577326129948)))
stopifnot(all.equal(r$pt_CT, c(0.997192967140242, 0.997451686508335, 0.998357568277750,
0.999996224076267, 1.000283719083268, 1.000525947028218)))

gsw_pt_from_CT

Potential temperature from Conservative Temperature

Description

Potential temperature from Conservative Temperature

Usage

gsw_pt_from_CT(SA, CT)
Arguments

SA Absolute Salinity [g/kg]
CT Conservative Temperature [degC]

Value

potential temperature [degC]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82e9d47ac750ef35a7d0459'.
The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.
Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
pt <- gsw_pt_from_CT(SA, CT)
stopifnot(all.equal(pt, c(28.783177048624573, 28.420955597191984, 22.784953468087107, 10.23053439443429, 6.829216587061605, 4.324534835990236)))
```

```r
# Potential Temperature from Entropy

gsw_pt_from_entropy  Potential Temperature from Entropy

Description

Potential Temperature from Entropy

Usage

gsw_pt_from_entropy(SA, entropy)

Arguments

SA Absolute Salinity [ g/kg ]
entropy specific entropy [ J/(degC*kg) ]
Value

potential temperature \[ \text{degC} \]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to entropy: gsw_CT_from_entropy(), gsw_entropy_first_derivatives(), gsw_entropy_from_pt(), gsw_entropy_from_t(), gsw_entropy_ice()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
entropy <- c(400.3892, 395.4378, 319.8668, 146.7910, 98.6471, 62.7919)
pt <- gsw_pt_from_entropy(SA, entropy)
stopifnot(all.equal(pt, c(28.783179828078666, 28.420954825949291, 22.784952736245351, 10.230532066931868, 6.829213325916900, 4.324537782985845)))

gsw_pt_from_pot_enthalpy_ice

Potential Temperature from Potential Enthalpy of Ice

Description

Potential Temperature from Potential Enthalpy of Ice

Usage

gsw_pt_from_pot_enthalpy_ice(pot_enthalpy_ice)
Arguments

pot_enthalpy_ice
potential enthalpy of ice [ J/kg ]

Value

potential temperature [ degC ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_enthalpy(), gsw_frazil_properties_potential_poly(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice_poly(), gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()

Examples

```r
pot_enthalpy_ice <- c(-3.5544e5, -3.6033e5, -3.5830e5, -3.5589e5, -3.4948e5, -3.4027e5)
pot <- gsw_pt_from_pot_enthalpy_ice(pot_enthalpy_ice)
stophifnot(all.equal(pt, c(-10.733087588125384, -13.167397822300588, -12.154202704066083, -10.956202704066083, -7.794963180206421, -3.314905214262531)))
```
gsw_pt_from_pot_enthalpy_ice_poly

Potential Temperature from Potential Enthalpy of Ice (Polynomial version)

Description

Potential Temperature from Potential Enthalpy of Ice (Polynomial version)

Usage

\[ gsw_pt_from_pot_enthalpy_ice_poly(pot_enthalpy_ice) \]

Arguments

pot_enthalpy_ice

potential enthalpy of ice [ J/kg ]

Value

potential temperature [ degC ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to enthalpy: gsw_CT_from_enthalpy(), gsw_dynamic_enthalpy(), gsw_enthalpy_CT_exact(), gsw_enthalpy_diff(), gsw_enthalpy_first_derivatives_CT_exact(), gsw_enthalpy_first_derivatives(), gsw_enthalpy_ice(), gsw_enthalpy_t_exact(), gsw_enthalpy(), gsw_frazil_properties_potential_poly(), gsw_frazil_properties_potential(), gsw_pot_enthalpy_from_pt_ice_poly(), gsw_pot_enthalpy_from_pt_ice(), gsw_pot_enthalpy_ice_freezing_poly(), gsw_pot_enthalpy_ice_freezing(), gsw_pt_from_pot_enthalpy_ice(), gsw_specvol_first_derivatives_wrt_enthalpy(), gsw_specvol_first_derivatives()
Examples

```r
pot_enthalpy_ice <- c(-3.5544e5, -3.6033e5, -3.5830e5, -3.5589e5, -3.4948e5, -3.4027e5)
pt <- gsw_pt_from_pot_enthalpy_ice_poly(pot_enthalpy_ice)
stopifnot(all.equal(pt, c(-10.733085986035007, -13.167396204945987, -12.154204137867396,
 -10.956201046447006, -7.794963341294590, -3.314907552013722)))
```

Description

Potential Temperature from in-situ Temperature

Usage

```r
gsw_pt_from_t(SA, t, p, p_ref = 0)
```

Arguments

- **SA**: Absolute Salinity [ g/kg ]
- **t**: in-situ temperature (ITS-90) [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **p_ref**: reference pressure [ dbar ]

Value

potential temperature [ degC ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40ddc9eb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

References

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
p_ref <- 0
pt <- gsw_pt_from_t_ice(SA, t, p, p_ref)
stopifnot(all.equal(pt, c(28.783196819670632, 28.420983342398962, 22.784930399117108, 10.230523661095731, 6.829230224409661, 4.324510571845719)))
```

Description

Potential Temperature of Ice from in-situ Temperature

Usage

```r
gsw_pt_from_t_ice(t, p, p_ref = 0)
```

Arguments

- `t`: in-situ temperature (ITS-90) [ degC ]
- `p`: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- `p_ref`: reference pressure [ dbar ]

Value

potential temperature [ degC ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples

t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
p_ref <- 0 # not actually needed, since 0 is the default
pt <- gsw_pt_from_t_ice(t, p, p_ref)
stopifnot(all.equal(pt, c(-10.787787898205272, -13.443730926050661, -12.837427056999676, -12.314321615760921, -11.017040858094234, -8.622907355083147)))

---

**gsw_pt_second_derivatives**

*Second Derivatives of Potential Temperature*

**Description**

Second Derivatives of Potential Temperature

**Usage**

gsw_pt_second_derivatives(SA, CT)

**Arguments**

SA
 Absolute Salinity [ g/kg ]

CT
 Conservative Temperature [ degC ]

**Value**

A list containing pt_SA_SA [ K/(g/kg)^2 ], the second derivative of potential temperature with respect to Absolute Salinity at constant potential temperature, and pt_SA_pt [ 1/(g/kg) ], the derivative of potential temperature with respect to Conservative Temperature and Absolute Salinity, and pt_pt_pt [ 1/degC ], the second derivative of potential temperature with respect to Conservative Temperature.

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
**gsw_p_from_z**

**Pressure from height (75-term equation)**

**Description**

Pressure from height (75-term equation)

**Usage**

`gsw_p_from_z(z, latitude, geo_strf_dyn_height, sea_surface_geopotential)`

**Arguments**

- **z**  
  height, zero at surface (but note last 2 args) and positive upwards [ m ]

- **latitude**  
  latitude in decimal degrees, positive to the north of the equator. (This is called `lat` in the TEOS-10 Matlab code.)

- **geo_strf_dyn_height**  
  vector of same length as `z` and `latitude`, indicating dynamic height [ m^2/s^2 ]. If not supplied, this defaults to a vector of 0 values, with length matching that of `z`.

- **sea_surface_geopotential**  
  vector of same length as `z` and `latitude`, indicating geopotential at zero sea pressure [ m^2/s^2 ]. If not supplied, this defaults to a vector of 0 values, with length matching that of `z`.

**Value**

sea pressure [ dbar ]

**Examples**

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
r <- gsw_pt_second_derivatives(SA, CT)
stopifnot(all.equal(r$pt_SA_SA/1e-3,
c(0.160370858371208, 0.168785497957769, 0.168647220588324,
 0.198377949876584, 0.210181899321236, 0.22001896513329)))
stopifnot(all.equal(r$pt_SA_CT,
c(0.001185581323691, 0.001187068518686, 0.001217629686266,
 0.00133254154015, 0.001379674342678, 0.001418371539325)))
stopifnot(all.equal(r$pt_CT_CT/1e-3,
c(-0.121979811279463, -0.123711264754503, -0.140136818504977,
 -0.140645384127949, -0.113781055410824, -0.082417269009484)))
```
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated
2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab
source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed
on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained,
a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.
com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software sys-
tems.

Historical Note

The geo_strf_dyn_height and sea_surface_geopotential parameters were added in GSW-R
version 1.0-6.

References

http://www.teos-10.org/pubs/gsw/html/gsw_p_from_z.html

See Also

Other things related to depth: gsw_z_from_p()

Examples

```r
z <- -c(10, 50, 125, 250, 600, 1000)
latitude <- 4
p <- gsw_p_from_z(z, latitude)
stopifnot(all.equal(p/1e3, c(0.010055726724518, 0.050283543374874, 0.125731858435610,
 0.251540299593468, 0.604210012340727, 1.007990337692001)))
```

---

gsw_rho

In-situ density

Description

In-situ density, using the 75-term equation for specific volume.

Usage

```r
gsw_rho(SA, CT, p)
```
Arguments

- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

in-situ density [kg/m^3]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the `library/gsw_data_v3.0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3.06.11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_beta(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rh_t_exact(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
rho <- gsw_rho(SA, CT, p)
stopifnot(all.equal(rho/1e3, c(1.021839935738108, 1.022262457966867, 1.024427195413316, 1.027790152759127, 1.029837779000189, 1.032002453224572)))
```
**gsw_rho_alpha_beta**  

*In-situ density, thermal expansion coefficient and haline contraction coefficient (75-term equation)*

**Description**

Calculate the in-situ density, the expansion coefficient (with respect to Conservative Temperature) and the haline contraction coefficient (with respect to Absolute Salinity), using the 75-term equation.

**Usage**

\[
gsw\_rho\_alpha\_beta(SA, CT, p)
\]

**Arguments**

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

**Value**

A list containing in-situ density \( \rho \) [ kg/m\(^3\) ], thermal expansion coefficient \( \alpha \) [ 1/degC ], and haline contraction coefficient \( \beta \) [ kg/g ].

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit ‘98f0fd40dd9ceb0ba82e9d750e935a7d0459’.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**References**

**gsw_rho_first_derivatives**

Density First Derivatives wrt SA, CT and p (75-term equation)

### Description

Density First Derivatives wrt SA, CT and p (75-term equation)

### Usage

```r
gsw_rho_first_derivatives(SA, CT, p)
```

### Arguments

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

### Value

- list containing `drho_dSA` [ kg^2/(g m^3) ], `drho_dCT` [ kg/(K m^3) ] and `drho_dp` [ kg/(Pa m^3) ]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ecb0ba82e9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_beta(), gsw_pot_rho_t Exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_rho(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_rho_first_derivatives(SA, CT, p)
stopifnot(all.equal(r$drho_dSA, c(0.733153791778356, 0.733624109867480, 0.743950957375504, 0.771357282286743, 0.777581141431288, 0.781278296628328)))
stopifnot(all.equal(r$drho_dCT, c(-0.331729027977015, -0.329838643311336, -0.288013324730644, -0.178012962919839, -0.150654632545556, -0.133556437868984)))
stopifnot(all.equal(r$drho_dp, 1e-6*c(0.420302360738476, 0.420251070273888, 0.426773054953941, 0.447763615252861, 0.452011501791479, 0.454118117103094)))
```

```
gsw_rho_first_derivatives_wrt_enthalpy

Density First Derivatives wrt enthalpy (75-term equation)

Description

Density First Derivatives wrt enthalpy (75-term equation)
```
gsw_rho_first_derivatives_wrt_enthalpy

Usage

gsw_rho_first_derivatives_wrt_enthalpy(SA, CT, p)

Arguments

SA                   Absolute Salinity [ g/kg ]
CT                   Conservative Temperature [ degC ]
p                   sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing rho_SA_wrt_h [ (kg/m^3)/(g/kg) ] and rho_h [ (kg/m^3)/(J/kg) ].

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ecb0ba82ec9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(),
gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(),
gsw_beta(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives(),
gsw_rho_ice(), gsw_rho_t_exact(), gsw_rho(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(),
gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(),
gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_rho_first_derivatives_wrt_enthalpy(SA, CT, p)
stopifnot(all.equal(r$rho_SA_wrt_h,
c(0.733147960400929, 0.733595114830609, 0.743886977147ac750e935a7d0459)),
c(0.771275693831993, 0.777414200397148, 0.781030546357425)))
stopifnot(all.equal(r$rho_h*1e4,
gsw_rho_ice

In-situ density of ice

description
In-situ density of ice [kg/m^3]

Usage

\texttt{gsw\_rho\_ice(t, p)}

Arguments

\begin{itemize}
\item \texttt{t} \hspace{1cm} \text{in-situ temperature (ITS-90) [degC]}
\item \texttt{p} \hspace{1cm} \text{sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar}
\end{itemize}

Value

\text{in-situ density [kg/m^3]}

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at \url{https://github.com/TEOS-10/GSW-C} with git commit '98f0fd40d9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the \texttt{library/gsw\_data\_v3\_0.mat} file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from \url{http://www.teos-10.org/software/gsw\_matlab\_v3\_06\_11.zip} on 2022-05-25, the .mat file was stored in the developer/create_data directory of \url{https://github.com/TEOS-10/GSW-R}, and then the dataset used in GSW-R was created based on that .mat file.

Please consult \url{http://www.teos-10.org} to learn more about the various TEOS-10 software systems.

References

\url{http://www.teos-10.org/pubs/gsw/html/gsw\_rho\_ice.html}

See Also

Other things related to density: gsw\_CT\_from\_rho(), gsw\_CT\_maxdensity(), gsw\_SA\_from\_rho(), gsw\_alpha\_on\_beta(), gsw\_alpha\_wrt\_t\_exact(), gsw\_alpha\_wrt\_t\_ice(), gsw\_alpha(), gsw\_beta\_const\_t\_exact(), gsw\_beta(), gsw\_pot\_rho\_t\_exact(), gsw\_rho\_alpha\_beta(), gsw\_rho\_first\_derivatives\_wrt\_enthalpy(), gsw\_rho\_first\_derivatives(), gsw\_rho\_t\_exact(), gsw\_rho(), gsw\_sigma0(), gsw\_sigma1(), gsw\_sigma2(), gsw\_sigma3(), gsw\_sigma4(), gsw\_specvol\_alpha\_beta(), gsw\_specvol\_anom\_standard(), gsw\_specvol\_ice(), gsw\_specvol\_t\_exact(), gsw\_specvol()
Examples

```r
 t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
 p <- c(10, 50, 125, 250, 600, 1000)
 rho <- gsw_rho_ice(t, p)
 stopifnot(all.equal(rho, c(918.2879969148962, 918.7043487325120, 918.6962796312690,
 918.7513732275766, 918.9291139833307, 919.0032237449378)))
```

Description

Second Derivatives of Density

Usage

```r
 gsw_rho_second_derivatives(SA, CT, p)
```

Arguments

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing `rho_SA_SA` [(kg/m^3)/(g/kg)^2], the second derivative of density with respect to Absolute Salinity, `rho_SA_CT` [(g/kg)/(g/kg)/degC], the derivative of density with respect to Absolute Salinity and Conservative Temperature, and `rho_CT_CT` [(kg/m^3)/degC^2], the second derivative of density with respect to Conservative Temperature.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ae750e935a7d0459’.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
References


Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)

r <- gsw_rho_second_derivatives(SA, CT, p)
```

Second Derivatives of Density wrt Enthalpy

```r
stopifnot(all.equal(r$rho_SA_SA/1e-3, c(0.207364734477357, 0.207415414547223,
 0.192903197286004, 0.135809142211237, 0.122627562106076,
 0.114642431905783)))
```

```r
stopifnot(all.equal(r$rho_SA_CT, c(-0.001832856561477, -0.001837354806146,
 -0.001988065808078, -0.002560181494807, -0.002708939446458,
 -0.002798484050141)))
```

```r
stopifnot(all.equal(r$rho_CT_CT, c(-0.007241243828334, -0.007267807914635,
 -0.007964270843331, -0.010008164822017, -0.010572200761984,
 -0.010939294762200)))
```

```r
all.equal(r$rho_SA_p, 1e-9*c(-0.617330965378778, -0.618403843947729,
 -0.655302447133274, -0.764800777480716, -0.792168044875350,
 -0.810125648949170))
```

```r
all.equal(r$rho_CT_p, 1e-8*c(-0.116597992537549, -0.11774271236102,
 -0.14171259466964, -0.214414626736539, -0.237704139801551,
 -0.255296606304074))
```

Description

Second Derivatives of Density wrt Enthalpy

Usage

```r
gsw_rho_second_derivatives_wrt_enthalpy(SA, CT, p)
```

Arguments

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
Value

A list containing \( \rho_{SA-SA} \) \((\text{kg/m}^3)/(\text{g/kg})^2\), the second derivative of density with respect to Absolute Salinity, \( \rho_{SA-h} \) \((\text{g/kg})/(\text{g/kg})/(\text{J/kg})\), the derivative of density with respect to Absolute Salinity and enthalpy, and \( \rho_{h-h} \) \((\text{kg/m}^3)/(\text{J/kg})^2\), the second derivative of density with respect to enthalpy.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_rho_second_derivatives_wrt_enthalpy(SA, CT, p)
stopifnot(all.equal(r$rho_SA_SA/1e-3, c(0.207325714908677, 0.207131960039965, 0.192001360206293, 0.133399974356615, 0.116504845152129, 0.103433221305694)))
stopifnot(all.equal(r$rho_SA_h/1e-6, c(-0.459053080088382, -0.460370569872258, -0.498605615416296, -0.642833108550133, -0.682091962941161, -0.706793055445909)))
stopifnot(all.equal(r$rho_h_h/1e-9, c(-0.454213854637790, -0.455984900239309, -0.499870030989387, -0.628337767293403, -0.664021595759308, -0.687367088752173)))
```
**gsw_rho_t_exact**  
In-situ Density of Seawater

**Description**
In-situ Density of Seawater

**Usage**
gsw_rho_t_exact(SA, t, p)

**Arguments**
- **SA**: Absolute Salinity [ g/kg ]
- **t**: in-situ temperature (ITS-90) [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

**Value**
in-situ density [ kg/m^3 ]

**Implementation Note**
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.
The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

**References**

**See Also**
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_beta(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rho(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()
Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
rho <- gsw_rhog_t_exact(SA, t, p)
stopifnot(all.equal(rho/1e3, c(1.021840173185531, 1.022262689926782, 1.024427715941676, 1.027790201811623, 1.029837714725961, 1.032002404116447)))
```

---

**gsw_SAAR**

**Absolute Salinity Anomaly Ratio**

**Description**

Absolute Salinity Anomaly Ratio

**Usage**

`gsw_SAAR(p, longitude, latitude)`

**Arguments**

- **p**
  - sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

- **longitude**
  - longitude in decimal degrees, positive to the east of Greenwich. (This is called `long` in the TEOS-10 Matlab code.)

- **latitude**
  - latitude in decimal degrees, positive to the north of the equator. (This is called `lat` in the TEOS-10 Matlab code.)

**Value**

A list containing `SAAR`, which is the (unitless) Absolute Salinity Anomaly Ratio, and `in_ocean` is set to 1 if `SAAR` is nonzero, or to 0 otherwise.

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit 98f0fd40d9ceb0ba82e9d47ae750e935a7d0459. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
Bugs

The definition of \texttt{in\_ocean} is incorrect, because the C function named \texttt{gsw\_saar}, which is called by the present R function, does not calculate \texttt{in\_ocean}, as the base Matlab function named \texttt{gsw\_SAAR} does. However, examination of the Matlab code shows that \texttt{in\_ocean} is set to 0 along with \texttt{SAAR}, whenever the original estimate of the latter is nonfinite. Thus, points that would be signalled as being on the land by the Matlab code are indicated in the same way with the present R function. However, other points may also be indicated as being on land, if \texttt{SAAR} is simply zero in the first calculation. Whether this poses a problem in practice is an open question, since it seems likely that this function would only be called with oceanic locations, anyway. If problems arise for users, a patch can be written to improve things.

References

\url{http://www.teos-10.org/pubs/gsw/html/gsw\_SAAR.html}

Examples

```r
p <- c(10, 50, 125, 250, 600, 1000)
longitude <- c(188, 188, 188, 188, 188, 188)
latitude <- c(4, 4, 4, 4, 4, 4)
SAAR <- gsw_SAAR(p, longitude, latitude)
stopifnot(all.equal(1e3*SAAR\$SAAR, c(0.004794295602143, 0.007668755837570, 0.018919828449091,
 0.077293264028981, 0.161974583039298, 0.270652408428964)))
stopifnot(all.equal(SAAR\$in_ocean, rep(1, 6)))
```

---

gsw\_SA\_freezing\_from\_CT

*Compute Absolute Salinity at Freezing Conservative Temperature*

Description

Compute Absolute Salinity at Freezing Conservative Temperature

Usage

```r
gsw_SA_freezing_from_CT(CT, p, saturation_fraction = 1)
```

Arguments

- `CT`: Conservative Temperature [degC]
- `p`: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- `saturation\_fraction`: fraction of air in water [unitless]

Value

Absolute Salinity [g/kg]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

CT <- c(-0.11901, -0.15608, -0.72138, -1.97738, -2.31728, -2.56764)
p <- c( 10, 50, 125, 250, 600, 1000)
saturation_fraction <- 1
SA <- gsw_SA_freezing_from_CT(CT, p, saturation_fraction)
stopifnot(all.equal(SA, c(2.280500648179144, 2.416867651098550, 11.973503162175106, 32.868973869711390, 34.017513292374431, 32.859871943514150)))

Description

Compute Absolute Salinity at Freezing Point (Polynomial version)

Usage

gsw_SA_freezing_from_CT_poly(CT, p, saturation_fraction = 1)

Arguments

CT Conservative Temperature [ degC ]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
saturation_fraction fraction of air in water [unitless]

Value

Absolute Salinity [ g/kg ]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

CT <- c(-0.11901, -0.15608, -0.72138, -1.97738, -2.31728, -2.56764)
p <- c(10, 50, 125, 250, 600, 1000)
saturation_fraction <- 1
SA <- gsw_SA_freezing_from_CT_poly(CT, p, saturation_fraction)
stopifnot(all.equal(SA, c(2.281810267792954, 2.418134292641376, 11.971996354752958, 32.867931280363138, 34.015087798162732, 32.856434894818825)))

---

**gsw_SA_freezing_from_t**

*Compute Absolute Salinity at Freezing in-situ Temperature*

**Description**

Compute Absolute Salinity at Freezing in-situ Temperature

**Usage**

```r
gsw_SA_freezing_from_t(t, p, saturation_fraction = 1)
```

**Arguments**

- `t`: in-situ temperature (ITS-90) [degC]
- `p`: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- `saturation_fraction`: fraction of air in water [unitless]

**Value**

Absolute Salinity [g/kg]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

t <- c(-0.11901, -0.15608, -0.72138, -1.97738, -2.31728, -2.56764)
p <- c(  10,  50,  125,  250,  600, 1000)
saturation_fraction <- 1
SA <- gsw_SA_freezing_from_t_poly(t, p, saturation_fraction)
stopifnot(all.equal(SA, c(2.015798440008186, 2.150742019102164, 11.679080083422074, 32.844196564019278, 34.138949682974413, 33.100945437175568)))

Description

Compute Absolute Salinity at Freezing in-situ Temperature (Polynomial version)

Usage

gsw_SA_freezing_from_t_poly(t, p, saturation_fraction = 1)

Arguments

t in-situ temperature (ITS-90) [degC]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
saturation_fraction fraction of air in water [unitless]
Value

Absolute Salinity [ g/kg ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

t <- c(-0.11901, -0.15608, -0.72138, -1.97738, -2.31728, -2.56764)  
p <- c(10, 50, 125, 250, 600, 1000)  
saturation_fraction <- 1  
SA <- gsw_SA_freezing_from_t_poly(t, p, saturation_fraction)  
stopifnot(all.equal(SA, c(2.017072489768256, 2.151989342038462, 11.677649626115608, 32.843128114999026, 34.136459306273451, 33.097427522625182)))

gsw_SA_from_rho

Compute Absolute Salinity from Density, etc

Description

Compute Absolute Salinity from Density, etc

Usage

gsw_SA_from_rho(rho, CT, p)

Arguments

rho  seawater density [ kg/m^3 ]
CT   Conservative Temperature [ degC ]
p    sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
**Value**

Absolute Salinity [ g/kg ]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40d9c6e0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

**References**


**See Also**

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_beta(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rh_first_derivatives_wrt_enthalpy(), gsw_rh_first_derivatives(), gsw_rh_ice(), gsw_rh_t_exact(), gsw_rh(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

**Examples**

```r
rho <- c(1021.8482, 1022.2647, 1024.4207, 1027.7841, 1029.8287, 1031.9916)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
SA <- gsw_SA_from_rho(rho, CT, p)
stopifnot(all.equal(SA, c(34.712080120418108, 34.891723808488869, 35.026202257609505, 34.847160842234572, 34.736398269039945, 34.7322288107974)))
```

---

**Description**

Calculate Absolute Salinity from Practical Salinity, pressure, longitude, and latitude.

**Usage**

gsw_SA_from_SP(SP, p, longitude, latitude)
Arguments

SP  Practical Salinity (PSS-78) [ unitless ]

p   sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

longitude longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)

latitude latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Details

If SP is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with `expand.grid`.

Value

Absolute Salinity [ g/kg ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at `https://github.com/TEOS-10/GSW-C` with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from `http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip` on 2022-05-25, the .mat file was stored in the developer/create_data directory of `https://github.com/TEOS-10/GSW-R`, and then the dataset used in GSW-R was created based on that .mat file.

Please consult `http://www.teos-10.org` to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to salinity: `gsw_C_from_SP()`, `gsw_SA_from_SP_Baltic()`, `gsw_SA_from_Sstar()`,
`gsw_SP_from_C()`, `gsw_SP_from_SA()`, `gsw_SP_from_SK()`, `gsw_SP_from_SR()`, `gsw_SP_from_Sstar()`,
`gsw_SR_from_SP()`, `gsw_Sstar_from_SA()`, `gsw_Sstar_from_SP()`, `gsw_deltaSA_from_SP()`

Examples

```r
SP <- c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)
p <- c(10, 50, 125, 250, 600, 1000)
lat <- c(4, 4, 4, 4, 4, 4)
long <- c(188, 188, 188, 188, 188, 188)
SA <- gsw_SA_from_SP(SP, p, long, lat)
stopifnot(all.equal(SA, c(34.711778344814114, 34.891522618230098, 35.025544862476920,
 34.847229026189588, 34.736628474576051, 34.732363065590846)))
```
Convert from Practical Salinity to Absolute Salinity (Baltic)

Description

Calculate Absolute Salinity from Practical Salinity, pressure, longitude, and latitude.

Usage

gsw_SA_from_SP_Baltic(SP, longitude, latitude)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Practical Salinity (PSS-78) [ unitless ]</td>
</tr>
<tr>
<td>longitude</td>
<td>longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)</td>
</tr>
<tr>
<td>latitude</td>
<td>latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)</td>
</tr>
</tbody>
</table>

Details

If SP is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with expand.grid.

Value

Absolute Salinity [ g/kg ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ce80ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to salinity: `gsw_C_from_SP()`, `gsw_SA_from_SP()`, `gsw_SA_from_Sstar()`, `gsw_SP_from_C()`, `gsw_SP_from_SA()`, `gsw_SP_from_SK()`, `gsw_SP_from_SR()`, `gsw_SP_from_Sstar()`, `gsw_SR_from_SP()`, `gsw_Sstar_from_SA()`, `gsw_Sstar_from_SP()`, `gsw_deltaSA_from_SP()`

Examples

```r
SP <- c(6.5683, 6.6719, 6.8108, 7.2629, 7.4825, 10.2796)
lon <- c(20, 20, 20, 20, 20, 20)
lat <- c(59, 59, 59, 59, 59, 59)
SA <- gsw_SA_from_SP_Baltic(SP, lon, lat)
stopifnot(all.equal(SA, c(6.669945432342856, 6.773776430742856, 6.912986138057142,
 7.36694191885713, 7.586183837142856, 10.389520570971428)))
```

---

gsw_SA_from_Sstar

**Absolute Salinity from Preformed Salinity**

**Description**

Calculate Absolute Salinity from Preformed Salinity, pressure, longitude, and latitude.

**Usage**

```r
gsw_SA_from_Sstar(Sstar, p, longitude, latitude)
```

**Arguments**

- **Sstar**: Preformed Salinity [ g/kg ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **longitude**: longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
- **latitude**: latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

**Details**

If Sstar is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with `expand.grid`.

**Value**

Absolute Salinity [ g/kg ]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_SP(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()

Examples

Sstar <- c(34.7115, 34.8912, 35.0247, 34.8436, 34.7291, 34.7197)
p <- c(10, 50, 125, 250, 600, 1000)
lat <- c(4, 4, 4, 4, 4, 4)
long <- c(188, 188, 188, 188, 188, 188)
SA <- gsw_SA_from_Sstar(Sstar, p, long, lat)
stopifnot(all.equal(SA, c(34.711724663585905, 34.891561223296009, 35.025594598699882, 34.847235885385913, 34.736694493054166, 34.732387111902753)))

gsw_seaice_fraction_to_freeze_seawater

Sea ice Fraction to Cool Seawater to Freezing

Description

Sea ice Fraction to Cool Seawater to Freezing

Usage

gsw_seaice_fraction_to_freeze_seawater(SA, CT, p, SA_seaice, t_seaice)
Arguments

- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **SA_seaice**: Absolute Salinity of sea ice [g/kg]
- **t_seaice**: initial temperature of sea ice [degC]

Value

A list containing `SA_freeze`, `CT_freeze` and `w_Ih`.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

References


Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(-1.7856, -1.4329, -1.8103, -1.2600, -0.6886, 0.4403)
p <- c(10, 50, 125, 250, 600, 1000)
SA_seaice <- c(5, 4.8, 3.5, 2.5, 1, 0.4)
t_seaice <- c(-5.7856, -4.4329, -3.8103, -4.2600, -3.8603, -3.4036)
r <- gsw_seaice_fraction_to_freeze_seawater(SA, CT, p, SA_seaice, t_seaice)
stopifnot(all.equal(r$SA_freeze, c(34.671271207148074, 34.703449677481224, 34.950192062047861, 34.52527379661880, 34.077349518029997, 33.501836583274191)))
stopifnot(all.equal(r$CT_freeze, c(-1.8954197110000293, -1.927935638317893, -1.999943183939312, -2.071674444370745, -2.318866156443864, -2.603185031462614)))
stopifnot(all.equal(r$w_seaice, c(0.001364063868629, 0.006249283768465, 0.002391958850970, 0.009952101583387, 0.019541106156815, 0.035842627277027)))
```
**gsw_sigma0**

*Potential density anomaly referenced to 0 dbar*

**Description**

This uses the 75-term density equation, and returns potential density referenced to a pressure of 0 dbar, minus 1000 kg/m³.

**Usage**

`gsw_sigma0(SA, CT)`

**Arguments**

- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]

**Value**

potential density anomaly [kg/m³]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**References**


**See Also**

Other things related to density: `gsw_CT_from_rho()`, `gsw_CT_maxdensity()`, `gsw_SA_from_rho()`, `gsw_alpha_on_beta()`, `gsw_alpha_wrt_t_exact()`, `gsw_alpha_wrt_t_ice()`, `gsw_alpha()`, `gsw_beta_const_t_exact()`, `gsw_beta()`, `gsw_pot_rho_t_exact()`, `gsw_rho_alpha_beta()`, `gsw_rho_first_derivatives_wrt_enthalpy()`, `gsw_rho_first_derivatives()`, `gsw_rho_t_exact()`, `gsw_rho()`, `gsw_sigma1()`, `gsw_sigma2()`, `gsw_sigma3()`, `gsw_sigma4()`, `gsw_specvol_alpha_beta()`, `gsw_specvol_anom_standard()`, `gsw_specvol_ice()`, `gsw_specvol_t_exact()`, `gsw_specvol()`
**Examples**

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
sigma0 <- gsw_sigma0(SA, CT)
stopifnot(all.equal(sigma0, c(21.797900819337656, 22.052215404397316, 23.892985307893923, 26.667608665972011, 27.107380455119710, 27.409748977090885)))
```

---

**gsw_sigma1**

*Potential density anomaly referenced to 1000 dbar*

**Description**

This uses the 75-term density equation, and returns potential density referenced to a pressure of 1000 dbar, minus 1000 kg/m^3.

**Usage**

```r
gsw_sigma1(SA, CT)
```

**Arguments**

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]

**Value**

potential density anomaly [ kg/m^3 ]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit `98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459`. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**References**

See Also
Other things related to density: `gsw_CT_from_rho()`, `gsw_CT_maxdensity()`, `gsw_SA_from_rho()`, `gsw_alpha_on_beta()`, `gsw_alpha_wrt_t_exact()`, `gsw_alpha_wrt_t_ice()`, `gsw_alpha()`, `gsw_beta_const_t_exact()`, `gsw_beta()`, `gsw_pot_rho_t_exact()`, `gsw_rho_alpha_beta()`, `gsw_rho_first_derivatives_wrt_enthalpy()`, `gsw_rho_first_derivatives()`, `gsw_rho_ice()`, `gsw_rho_t_exact()`, `gsw_rho()`, `gsw_sigma0()`, `gsw_sigma2()`, `gsw_sigma3()`, `gsw_sigma4()`, `gsw_specvol_alpha_beta()`, `gsw_specvol_anom_standard()`, `gsw_specvol_ice()`, `gsw_specvol_t_exact()`, `gsw_specvol()`

Examples
```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
sigma1 <- gsw_sigma1(SA, CT)
stopifnot(all.equal(sigma1, c(25.955618850310202, 26.213131422420247, 28.125423775188438, 31.126360038882382, 31.63772422733368, 32.002453224572037)))
```

Description
This uses the 75-term density equation, and returns potential density referenced to a pressure of 2000 dbar, minus 1000 kg/m^3.

Usage
```r
gsw_sigma2(SA, CT)
```

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SA</strong></td>
<td>Absolute Salinity [ g/kg ]</td>
</tr>
<tr>
<td><strong>CT</strong></td>
<td>Conservative Temperature [ degC ]</td>
</tr>
</tbody>
</table>

Value
potential density anomaly [ kg/m^3 ]

Implementation Note
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82ce9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.
gsw_sigma3

References


See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(),
gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(),
gsw_beta(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(),
gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_rho(), gsw_sigma0(),
gsw_sigma1(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(),
gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
sigma2 <- gsw_sigma2(SA,CT)
stopifnot(all.equal(sigma2, c(30.023152223799116, 30.283783336283477, 32.265556840289719,
35.474550881051073, 36.067289438047737, 36.492606494879510))

gsw_sigma3

Potential density anomaly referenced to 3000 dbar

Description

This uses the 75-term density equation, and returns potential density referenced to a pressure of
3000 dbar, minus 1000 kg/m^3.

Usage

gsw_sigma3(SA, CT)

Arguments

SA Absolute Salinity [ g/kg ]
CT Conservative Temperature [ degC ]

Value

potential density anomaly with reference pressure 3000 dbar [ kg/m^3 ]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0b82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_rho(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

SA <- c(34.7118, 34.8915, 35.0265, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
sigma3 <- gsw_sigma3(SA, CT)
stopifnot(all.equal(sigma3, c(34.003747849903675, 34.267409891564057, 36.316415829697917, 39.732367693977039, 40.397934186745033, 40.881795690566832)))

gsw_sigma4

Potential density anomaly referenced to 4000 dbar

Description

This uses the 75-term density equation, and returns potential density referenced to a pressure of 4000 dbar, minus 1000 kg/m^3.

Usage

gsw_sigma4(SA, CT)
Arguments

SA  Absolute Salinity [ g/kg ]
CT  Conservative Temperature [ degC ]

Value

potential density anomaly with reference pressure 4000 dbar [ kg/m^3 ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ce0ba82e9d47ac750e935a7d0459'.

The C function uses data from the lib/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_beta(), gsw_beta_const_t_exact(), gsw_beta(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_rho(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
sigma4 <- gsw_sigma4(SA,CT)
stopifnot(all.equal(sigma4, c(37.900374609834898, 38.166979617032439, 40.28876075282549, 43.896091033421953, 44.631677245327637, 45.171871312020839)))
**gsw_sound_speed**

**Sound speed**

**Description**

Speed of sound in seawater, using the 75-term equation for specific volume.

**Usage**

```r
gsw_sound_speed(SA, CT, p)
```

**Arguments**

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

**Value**

sound speed [ m/s ]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit `98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459`.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**References**


**See Also**

Other things related to sound: `gsw_sound_speed_ice()`, `gsw_sound_speed_t_exact()`
Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
speed <- gsw_sound_speed_ice(SA, CT, p)
stopifnot(all.equal(speed/1e3, c(1.542426412426373, 1.542558891663385, 1.530801535436184,
 1.494551099295314, 1.487622786765276, 1.484271672296205)))
```

Description

Speed of sound in ice.

Usage

```r
gsw_sound_speed_ice(t, p)
```

Arguments

- `t` in-situ temperature (ITS-90) [degC]
- `p` sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

sound speed [m/s]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to sound: gsw_sound_speed_t_exact(), gsw_sound_speed()
Examples

```r
t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
speed <- gsw_sound_speed_t_exact(t, p)
stopifnot(all.equal(speed/1e3, c(3.111311360346254, 3.116492565497544, 3.1158336203452,
 3.115637032488204, 3.115377253092692, 3.113321384499191)))
```

Description

Sound Speed in Seawater

Usage

```r
gsw_sound_speed_t_exact(SA, t, p)
```

Arguments

- **SA**: Absolute Salinity [ g/kg ]
- **t**: in-situ temperature (ITS-90) [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

sound speed [ m/s ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also

Other things related to sound: `gsw_sound_speed_ice()`, `gsw_sound_speed()`

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.0103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
sound_speed <- gsw_sound_speed_t_exact(SA,CT,p)
stopifnot(all.equal(sound_speed/1e3, c(1.542615803587414, 1.542703534065789, 1.530844979136360,
 1.494409996920661, 1.483934609078705)))
```

## gsw_specvol

### Specific Volume of Seawater

**Description**

Specific Volume of Seawater

**Usage**

```r
gsw_specvol(SA, CT, p)
```

**Arguments**

- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

**Value**

Specific volume (1/density)

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.
Specific Volume, alpha, and beta

Description

Specific Volume, alpha, and beta

Usage

gsw_specvol_alpha_beta(SA, CT, p)

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [ g/kg ]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [ degC ]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

Value

a list holding specvol, the specific volume [ m^3/kg ], alpha, the thermal expansion coefficient [ 1/degC ], and beta, the haline contraction coefficient [ kg/g ].
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta(), gsw_pot_rho_t_exact(), gsw_rho_alpha_beta(), gsw_rho_first_derivatives_wrt_enthalpy(), gsw_rho_first_derivatives(), gsw_rho_ice(), gsw_rho_t_exact(), gsw_rho(), gsw_sigma0(), gsw_sigma1(), gsw_sigma2(), gsw_sigma3(), gsw_sigma4(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol_t_exact(), gsw_specvol()

Examples

```r
c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
c(10, 50, 125, 250, 600, 1000)
c(0.978626852431313, 0.978222365701325, 0.976155264597929, 0.972961258011157, 0.971026719344908, 0.96898944622149)
c(0.324638934509245, 0.32265537959731, 0.281145723210171, 0.17319971634478, 0.146289673594824, 0.129414845334599)
c(0.071483987596135, 0.7176475122900095, 0.726211643644768, 0.750508751749777, 0.755852064788492, 0.75705813384370)
```

Description

Note that the TEOS function named specific_volume_anomaly is not provided in the C library, so it is not provided in R, either.
Usage

```r
gsw_specvol_anom_standard(SA, CT, p)
```

Arguments

- **SA**: Absolute Salinity [g/kg]
- **CT**: Conservative Temperature [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Specific volume anomaly [m^3/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3.0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to density: 
- `gsw_CT_from_rho()`, `gsw_CT_maxdensity()`, `gsw_SA_from_rho()`,
- `gsw_alpha_on_beta()`, `gsw_alpha_wrt_t_exact()`, `gsw_alpha_wrt_t_ice()`, `gsw_alpha()`, `gsw_beta_const_t_exact()`,
- `gsw_beta()`, `gsw_pot_rho_t_exact()`, `gsw_rho_alpha_beta()`, `gsw_rho_first_derivatives_wrt_enthalpy()`,
- `gsw_rho_first_derivatives()`, `gsw_rho_ice()`, `gsw_rho_t_exact()`, `gsw_rho()`, `gsw_sigma0()`,
- `gsw_sigma1()`, `gsw_sigma2()`, `gsw_sigma3()`, `gsw_sigma4()`, `gsw_specvol_alpha_beta()`, `gsw_specvol_ice()`,
- `gsw_specvol_t_exact()`, `gsw_specvol()`

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
a <- gsw_specvol_anom_standard(SA, CT, p)
stopifnot(all.equal(a*1e5, c(0.601051894897400, 0.578609769250563, 0.142190453761838, 0.104335535578967, 0.0763839577725)))
```
First Derivatives of Specific Volume

Usage

gsw_specvol_first_derivatives(SA, CT, p)

Arguments

SA    Absolute Salinity [g/kg]
CT    Conservative Temperature [degC]
p     sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing $v_{SA}$ [(m$^3$/kg)/(g/kg)], the derivative of specific volume with respect to Absolute Salinity, $v_{CT}$ [(m$^3$/kg)/degC], the derivative of specific volume with respect to Conservative Temperature, and $v_p$ [(m$^3$/kg)/dbar], the derivative of specific volume with respect to pressure. (Note that the last quantity is denoted $v_P$ in the documentation for the Matlab function.)

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

 **gsw_specvol_first_derivatives_wrt_enthalpy**

**First Derivatives of Specific Volume wrt Enthalpy**

**Description**

First Derivatives of Specific Volume wrt Enthalpy

**Usage**

`gsw_specvol_first_derivatives_wrt_enthalpy(SA, CT, p)`

**Arguments**

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

**Value**

A list containing `v_SA_wrt_h` [ (m^3/kg)/(g/kg) ] and `v_h`.

**Examples**

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_specvol_first_derivatives(SA, CT, p)
stopifnot(all.equal(r$v_SA/1e-6,
 c(-0.702149096451073, -0.702018847212088, -0.708895319156155,
 -0.730208155560782, -0.733175729406169, -0.733574625737474)))
stopifnot(all.equal(r$v_CT/1e-6,
 c(0.317700378655107, -0.702018847212088, -0.708895319156155,
 -0.730208155560782, -0.733175729406169, -0.733574625737474)))
stopifnot(all.equal(r$v_p/1e-12,
 c(-0.402527990904794, -0.402146232553089, -0.406663124765787,
 -0.423877042622481, -0.426198431093548, -0.426390351853055)))
```
### Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

### References


### See Also

Other things related to enthalpy: `gsw_CT_from_enthalpy()`, `gsw_dynamic_enthalpy()`, `gsw_enthalpy_CT_exact()`, `gsw_enthalpy_diff()`, `gsw_enthalpy_first_derivatives_CT_exact()`, `gsw_enthalpy_first_derivatives()`, `gsw_enthalpy_ice()`, `gsw_enthalpy_t_exact()`, `gsw_enthalpy()`, `gsw_frazil_properties_potential_poly()`, `gsw_frazil_properties_potential()`, `gsw_pot_enthalpy_from_pt_ice_poly()`, `gsw_pot_enthalpy_from_pt_ice()` `gsw_pot_enthalpy_ice_freezing_poly()`, `gsw_pot_enthalpy_ice_freezing()` `gsw_pt_from_pot_enthalpy_ice_poly()`, `gsw_pt_from_pot_enthalpy_ice()`, `gsw_specvol_first_derivatives()`

### Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_specvol_first_derivatives_wrt_enthalpy(SA, CT, p)
stopifnot(all.equal(r$v_SA_wrt_h/1e-6,
 c(-0.702143511679586, -0.701991101310494, -0.708834353735310,
 -0.730130919555592, -0.733018321892082, -0.733342002723321))
stopifnot(all.equal(r$v_h/1e-10,
 c(0.795862623587769, 0.790648383268264, 0.687443468257647,
 0.422105846942233, 0.355778874334799, 0.314053664039933)))
```

---

**gsw_specvol_ice**  
**Specific Volume of Ice**

### Description

Specific Volume of Ice
Usage

`gsw_specvol_ice(t, p)`

Arguments

- **t**: in-situ temperature (ITS-90) [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

Specific volume [m^3/kg]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to density: `gsw_CT_from_rho()`, `gsw_CT_maxdensity()`, `gsw_SA_from_rho()`, `gsw_alpha_on_beta()`, `gsw_alpha_wrt_t_exact()`, `gsw_alpha_wrt_t_ice()`, `gsw_alpha()`, `gsw_beta_const_t_exact()`, `gsw_beta()`, `gsw_pot_rho_t_exact()`, `gsw_rho_alpha_beta()`, `gsw_rho_first_derivatives_wrt_enthalpy()`, `gsw_rho_first_derivatives()`, `gsw_rho_ice()`, `gsw_rho_t_exact()`, `gsw_rho()`, `gsw_sigma0()`, `gsw_sigma1()`, `gsw_sigma2()`, `gsw_sigma3()`, `gsw_sigma4()`, `gsw_specvol_alpha_beta()`, `gsw_specvol_anom_standard()`, `gsw_specvol_t_exact()`, `gsw_specvol()`

Examples

```r
t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
v <- gsw_specvol_ice(t, p)
stopifnot(all.equal(v, c(0.001088982980677, 0.001088489459509, 0.001088499019939, 0.00108843747301, 0.001088223220685, 0.001088135464776)))
```
Second Derivatives of Specific Volume

Usage

\[
gsw\text{-}specvol\text{-}second\text{-}derivatives(SA, CT, p)
\]

Arguments

- \(SA\) Absolute Salinity [g/kg]
- \(CT\) Conservative Temperature [degC]
- \(p\) sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

A list containing

- \(\text{specvol\_SA\_SA}\) \(\text{m}^3/\text{kg}/(\text{g/kg})^2\), the second derivative of specific volume with respect to Absolute Salinity,
- \(\text{specvol\_SA\_CT}\) \(\text{m}^3/\text{kg}/(\text{g/kg})/\text{degC}\), the derivative of specific volume with respect to Absolute Salinity and Conservative Temperature,
- \(\text{specvol\_CT\_CT}\) \(\text{m}^3/\text{kg}/\text{degC}^2\), the second derivative of specific volume with respect to Conservative Temperature,
- \(\text{specvol\_SA\_p}\) \(\text{m}^3/\text{kg}/(\text{g/kg})/\text{Pa}\), the derivative of specific volume with respect to Absolute Salinity and pressure,
- \(\text{specvol\_CT\_p}\) \(\text{m}^3/\text{kg}/\text{K}/\text{dbar}\), the derivative of specific volume with respect to Conservative Temperature and pressure.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit ‘98f0fd40dd9ce8b0ba82c9d47ac750e935a7d0459’. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

References

Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)

r <- gsw_specvol_second_derivatives(SA, CT, p)
stopifnot(all.equal(r$specvol_SA_SA/1e-8, c(0.080906777599140,
0.080915086639384, 0.084568844270812, 0.096725108896007,
0.09911765836648, 0.100302277946072)))
stopifnot(all.equal(r$specvol_SA_CT/1e-8, c(0.129965332117084,
0.130523053162130, 0.149555815430615, 0.217023290441810,
0.233892039070486, 0.243659989480325)))
stopifnot(all.equal(r$specvol_CT_CT/1e-7, c(0.071409582006642,
0.071582962051991, 0.077436153664104, 0.095329736274850,
0.100105336953738, 0.103044572835472)))
stopifnot(all.equal(r$specvol_SA_p/1e-14, c(0.116889015000936,
0.116897424150385, 0.121500614193893, 0.136008673596132,
0.139023051292893, 0.140819035259772)))
stopifnot(all.equal(r$specvol_CT_p/1e-14, c(0.085542828707964,
0.086723632576213, 0.112156562396990, 0.188269893599500,
0.211615556759369, 0.228609575849911)))

Description

Second Derivatives of Specific Volume wrt Enthalpy

Usage

gsw_specvol_second_derivatives_wrt_enthalpy(SA, CT, p)

Arguments

SA Absolute Salinity [ g/kg ]
CT Conservative Temperature [ degC ]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
gsw_specvol_second_derivatives_wrt_enthalpy

Value

A list containing specvol_SA_SA \( (m^3/kg)/(g/kg)^2 \), the second derivative of specific volume with respect to Absolute Salinity, specvol_SA_h \( (m^3/kg)/(g/kg)/(J/kg) \), the derivative of specific volume with respect to Absolute Salinity and enthalpy, and specvol_h_h \( (m^3/kg)/(J/kg)^2 \), the second derivative of specific volume with respect to enthalpy.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)

r <- gsw_specvol_second_derivatives_wrt_enthalpy(SA, CT, p)

stopifnot(all.equal(r$specvol_SA_SA/1e-8, c(0.080898741086877, 0.080931595349498, 0.084648485333225, 0.096952812049233, 0.099684475381589, 0.101288447077547)))
stopifnot(all.equal(r$specvol_SA_h/1e-12, c(0.325437133570796, 0.327060462851431, 0.375273569184178, 0.545188833073084, 0.58942488189351, 0.616181548209175)))
stopifnot(all.equal(r$specvol_h_h/1e-15, c(0.447949998681476, 0.449121446914278, 0.485998151346315, 0.59840711668961, 0.628708349875318, 0.647433212216398)))
```
gsw_specvol_t_exact

Specific Volume of Seawater

Description
Specific Volume of Seawater

Usage
gsw_specvol_t_exact(SA, t, p)

Arguments
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [ g/kg ]</td>
</tr>
<tr>
<td>t</td>
<td>in-situ temperature (ITS-90) [ degC ]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
</tbody>
</table>

Value
Specific volume [ m^3/kg ]

Implementation Note
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also
Other things related to density: gsw_CT_from_rho(), gsw_CT_maxdensity(), gsw_SA_from_rho(), gsw_alpha_on_beta(), gsw_alpha_wrt_t_exact(), gsw_alpha_wrt_t_ice(), gsw_alpha(), gsw_beta_const_t_exact(), gsw_beta(), gsw_beta_t_exact(), gsw_Rho_t_exact(), gsw_Rho_ice(), gsw_Rho_first_derivatives_wrt_enthalpy(), gsw_Rho_first_derivatives(), gsw_Rho(), gsw_Sigma0(), gsw_Sigma1(), gsw_Sigma2(), gsw_Sigma3(), gsw_Sigma4(), gsw_specvol_alpha_beta(), gsw_specvol_anom_standard(), gsw_specvol_ice(), gsw_specvol()
gsw_spiciness0

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
v <- gsw_specvol_t_exact(SA, t, p)
stopifnot(all.equal(v*1e3, c(0.978626625025472, 0.978222143734527, 0.976154768597586,
0.972961211575438, 0.971026779948624, 0.968989990731808)))
```

---

gsw_spiciness0  Seawater Spiciness at p=0 dbar

Description

Calculate seawater spiciness referenced to 0 dbar (i.e. the surface).

Usage

`gsw_spiciness0(SA, CT)`

Arguments

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]

Value

- spiciness [ kg/m^3 ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the `library/gsw_data_v3.0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3.06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3.06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to spiciness: `gsw_spiciness1()`, `gsw_spiciness2()`
Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
spiciness <- gsw_spiciness1(SA, CT)
stopifnot(all.equal(spiciness, c(5.728998558542941, 5.749940496782486, 4.163547112671111, 1.069362556641764, 0.426428274444305, 0.089725188494086)))
```

Description

Calculate seawater spiciness referenced to 1000 dbar.

Usage

`gsw_spiciness1(SA, CT)`

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [ g/kg ]</td>
</tr>
<tr>
<td>CT</td>
<td>Conservative Temperature [ degC ]</td>
</tr>
</tbody>
</table>

Value

spiciness [ kg/m^3 ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to spiciness: `gsw_spiciness0()`, `gsw_spiciness2()`
Examples
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
spiciness <- gsw_spiciness2(SA, CT)
stopifnot(all.equal(spiciness, c(6.311038322123224, 6.326411175472160, 4.667218659743284, 1.351722468726905, 0.628494082166029, 0.224779784908478)))

gsw_spiciness2 Seawater Spiciness at p=2000 dbar

Description
Calculate seawater spiciness referenced to 2000 dbar.

Usage
gsw_spiciness2(SA, CT)

Arguments
SA Absolute Salinity [ g/kg ]
CT Conservative Temperature [ degC ]

Value
spiciness [ kg/m^3 ]

Implementation Note
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.
The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.
Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

See Also
Other things related to spiciness: gsw_spiciness0(), gsw_spiciness1()
**Examples**

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
spiciness <- gsw_spiciness2(SA, CT)
stopifnot(all.equal(spiciness, c(6.874671751873180, 6.884616399155135, 5.154458892387083,
1.624327800598636, 0.823490797424952, 0.355069307641827)))
```

---

**gsw_SP_from_C**

*Convert from Electrical Conductivity to Practical Salinity*

**Description**

Convert from Electrical Conductivity to Practical Salinity

**Usage**

```r
gsw_SP_from_C(C, t, p)
```

**Arguments**

- **C**: conductivity [mS/cm]
- **t**: in-situ temperature (ITS-90) [degC]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

**Value**

Practical Salinity (PSS-78) [unitless]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ce619b0ba82e9d47ac750c935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**References**

gsw_SP_from_SA

See Also

Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_SP(), gsw_SA_from_Sstar(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SA_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()

Other things related to conductivity: gsw_C_from_SP()

Examples

C <- c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c( 10, 50, 125, 250, 600, 1000)
SP <- gsw_SP_from_C(C,t,p)
stopifnot(all.equal(SP, c(20.009869599086951, 20.265511864874270, 22.981513062527689, 31.204503263727982, 34.032315787432829, 36.400308494388170)))

gsw_SP_from_SA

Convert from Absolute Salinity to Practical Salinity

Description

Calculate Practical Salinity from Absolute Salinity, pressure, longitude, and latitude.

Usage

gsw_SP_from_SA(SA, p, longitude, latitude)

Arguments

SA Absolute Salinity [ g/kg ]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
longitude longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
latitude latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Details

If SP is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with expand.grid.

Note: unlike the corresponding Matlab function, this does not return a flag indicating whether the location is in the ocean.

Value

Practical Salinity (PSS-78) [ unitless ]
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_SP(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(10, 50, 125, 250, 600, 1000)
lat <- c(4, 4, 4, 4, 4, 4)
long <- c(188, 188, 188, 188, 188, 188)
SP <- gsw_SP_from_SA(SA, p, long, lat)
stopifnot(all.equal(SP, c(34.548721553448317, 34.727477488096639, 34.860554877708005, 34.68097112271791, 34.567971663653388, 34.560036751118204)))
```

## gsw_SP_from_SK

### Calculate Practical Salinity from Knudsen Salinity

**Description**

Calculate Practical Salinity from Knudsen Salinity

**Usage**

```r
gsw_SP_from_SK(SK)
```

**Arguments**

- **SK**: Knudsen Salinity [ parts per thousand, ppt ]
**Value**

Practical Salinity (PSS-78) [ unitless ]

**References**


**See Also**

Other things related to salinity: `gsw_C_from_SP()`, `gsw_SA_from_SP_Baltic()`, `gsw_SA_from_SP()`, `gsw_SA_from_Sstar()`, `gsw_SP_from_C()`, `gsw_SP_from_SA()`, `gsw_SP_from_SR()`, `gsw_SP_from_Sstar()`, `gsw_SR_from_SP()`, `gsw_Sstar_from_SA()`, `gsw_Sstar_from_SP()`, `gsw_deltaSA_from_SP()`

**Examples**

```r
SK <- c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)
SP <- gsw_SP_from_SK(SK)
stopifnot(all.equal(SP, c(34.548342096952908, 34.727295637119113, 34.860409847645435, 34.680755706371187, 34.567658670360110, 34.559651800554022)))
```

---

**gsw_SP_from_SR**  
*Calculate Practical Salinity from Reference Salinity*

**Description**

Calculate Practical Salinity from Reference Salinity

**Usage**

`gsw_SP_from_SR(SR)`

**Arguments**

- `SR`  
  Reference Salinity [ g/kg ]

**Value**

Practical Salinity (PSS-78) [ unitless ]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip)
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_SP(),
gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(),
gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()

Examples

```r
SR <- c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)
SP <- gsw_SP_from_SR(SR)
stopifnot(all.equal(SP, c(34.386552667080714, 34.564513505458834, 34.696889296869848,
34.518231743800094, 34.405762086435850, 34.397799632817147)))
```


gw_SP_from_Sstar Practical Salinity from Preformed Salinity

Description

Practical Salinity from Preformed Salinity

Usage

```r
gsw_SP_from_Sstar(Sstar, p, longitude, latitude)
```

Arguments

- **Sstar**: Preformed Salinity [g/kg]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **longitude**: longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)
- **latitude**: latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)

Value

Practical Salinity (PSS-78) [unitless]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3.0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_SP(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SR_from_SP(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()

Examples

```
Sstar <- c(34.7115, 34.8912, 35.0247, 34.8436, 34.7291, 34.7197)
p <- c(10, 50, 125, 250, 600, 1000)
longitude <- 188
latitude <- 4
SP <- gsw_SP_from_Sstar(Sstar, p, longitude, latitude)
stopifnot(all.equal(SP, c(34.548646570969929, 34.727538423586189, 34.860549501859502, 34.681006826476434, 34.568065697992346, 34.560023926979518)))
```

---

gsw_SP_salinometer

**Practical Salinity from Salinometer Reading**

**Description**

Calculate Practical Salinity from salinometer readings of conductivity ratio and bath temperature.

**Usage**

gsw_SP_salinometer(ratio, temperature)

**Arguments**

- **ratio**: Conductivity ratio [ unitless ]. (This is called Rt in the GSW documentation.)
- **temperature**: Bath temperature [ degC ]. (This is called t in the GSW documentation.)
Value

Practical salinity on the PSS-77 scale [ unitless ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

```r
ratio <- c(0.9345, 0.95123, 0.91807, 0.8886, 0.8169, 0.6687)
temperature <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
SP <- gsw_SP_salinometer(ratio, temperature)
stopifnot(all.equal(SP,
 c(32.431728787558541, 33.085035719966307, 31.800791917322833,
 30.692490757036179, 27.979281308696116, 22.474597460508491)))
```

---

gsw_SR_from_SP  

Calculate Reference Salinity from Practical Salinity

Description

Calculate Reference Salinity from Practical Salinity

Usage

```r
gsw_SR_from_SP(SP)
```

Arguments

- `SP`  
  Practical Salinity (PSS-78) [ unitless ]

Value

Reference Salinity [ g/kg ]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40ddceeb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_SP(), gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(), gsw_SP_from_Sstar(), gsw_Sstar_from_SA(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()

Examples

```r
SP <- c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)
SR <- gsw_SR_from_SP(SP)
stopifnot(all.equal(SR, c(34.711611927085727, 34.891255045714303, 35.024882197714305, 34.84453578285724, 34.73102934857159, 34.72296521428587)))
```

gsw_Sstar_from_SA

Convert from Absolute Salinity to Preformed Salinity

Description

Calculate Preformed Salinity from Absolute Salinity, pressure, longitude, and latitude.

Usage

gsw_Sstar_from_SA(SA, p, longitude, latitude)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Absolute Salinity [ g/kg ]</td>
</tr>
<tr>
<td>p</td>
<td>sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar</td>
</tr>
<tr>
<td>longitude</td>
<td>longitude in decimal degrees, positive to the east of Greenwich. (This is called long in the TEOS-10 Matlab code.)</td>
</tr>
<tr>
<td>latitude</td>
<td>latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)</td>
</tr>
</tbody>
</table>
Details

If SA is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with `expand.grid`.

Value

Preformed Salinity [ g/kg ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


See Also

Other things related to salinity: gsw_C_from_SP(), gsw_SA_from_SP_Baltic(), gsw_SA_from_SP(),
gsw_SA_from_Sstar(), gsw_SP_from_C(), gsw_SP_from_SA(), gsw_SP_from_SK(), gsw_SP_from_SR(),
gsw_SP_from_Sstar(), gsw_SR_from_SP(), gsw_Sstar_from_SP(), gsw_deltaSA_from_SP()

Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(10, 50, 125, 250, 600, 1000)
lat <- c(4, 4, 4, 4, 4, 4)
long <- c(188, 188, 188, 188, 188)
Sstar <- gsw_Sstar_from_SA(SA, p, long, lat)
stopifnot(all.equal(Sstar, c(34.711575335926490, 34.8913877337822, 35.024705401162166, 34.84356418358302, 34.729005527604883, 34.719712883389462)))
```
**gsw_Sstar_from_SP**

*Convert from Practical Salinity to Preformed Salinity*

**Description**

Calculate Preformed Salinity from Practical Salinity, pressure, longitude, and latitude.

**Usage**

```r
gsw_Sstar_from_SP(SP, p, longitude, latitude)
```

**Arguments**

- **SP**
  - Practical Salinity (PSS-78) [unitless]
- **p**
  - sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **longitude**
  - longitude in decimal degrees, positive to the east of Greenwich. (This is called `long` in the TEOS-10 Matlab code.)
- **latitude**
  - latitude in decimal degrees, positive to the north of the equator. (This is called `lat` in the TEOS-10 Matlab code.)

**Details**

If SP is a matrix and if its dimensions correspond to the lengths of longitude and latitude, then the latter are converted to analogous matrices with `expand.grid`.

**Value**

Preformed Salinity [g/kg]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**References**

See Also

Other things related to salinity: `gsw_C_from_SP()`, `gsw_SA_from_SP_Baltic()`, `gsw_SA_from_SP()`, `gsw_SA_from_Sstar()`, `gsw_SP_from_C()`, `gsw_SP_from_SA()`, `gsw_SP_from_SK()`, `gsw_SP_from_SR()`, `gsw_SP_from_Sstar()`, `gsw_SA_from_SP()`, `gsw_Sstar_from_SA()`, `gsw_deltaSA_from_SP()`

Examples

```r
SP <- c(34.5487, 34.7275, 34.8605, 34.6810, 34.5680, 34.5600)
p <- c(10, 50, 125, 250, 600, 1000)
lat <- c(4, 4, 4, 4, 4, 4)
long <- c(188, 188, 188, 188, 188, 188)
Sstar <- gsw_Sstar_from_SP(SP,p,long)
stopifnot(all.equal(Sstar, c(34.711553680880769, 34.891161395333754, 35.024650265047370, 34.843593141519356, 34.72903395955525, 34.719675962471783)))
```

gsw_thermobaric

Thermobaric coefficient (75-term equation)

Description

Thermobaric coefficient (75-term equation)

Usage

```r
gsw_thermobaric(SA, CT, p)
```

Arguments

- **SA**: Absolute Salinity [ g/kg ]
- **CT**: Conservative Temperature [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

thermobaric coefficient wrt Conservative Temperature [ 1/(K Pa) ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.
References


Examples

SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)

tb <- gsw_thermobaric(SA, CT, p)

stopifnot(all.equal(tb*1e11,
                c(0.141342632944971, 0.142352284525832, 0.163216280125501,
                  0.226030772122855, 0.246185239871747, 0.261474794884197)))

---

gsw_Turner_Rsubrho  

Turner Angle and Density Ratio

Description

This uses the 75-term density equation. The values of Turner Angle Tu and density ratio Rrho are calculated at mid-point pressures, p_mid.

Usage

gsw_Turner_Rsubrho(SA, CT, p)

Arguments

SA  
Absolute Salinity [ g/kg ]

CT  
Conservative Temperature [ degC ]

p  
sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

List containing Tu [ degrees ], Rsubrho [ unitless ], and p_mid [ dbar ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82e9d7ac750e935a7d0459’.
The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip
on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
r <- gsw_Turner_Rsubrho(SA, CT, p)
stopifnot(all.equal(r$Tu, c(-2.063858905281147, 41.758435216784427, 47.60696691687535,
 53.71035115170639, 45.52763858211527)))
stopifnot(all.equal(r$Rsubrho, 100*c(-0.009304335069039, -0.176564834348709, 0.2196277771740757,
 0.065271424662002, 1.087044054679743)))
stopifnot(all.equal(r$p_mid, 100*c(0.300, 0.875, 1.875, 4.250, 8.000)))
```

---

gsw_t_deriv_chem_potential_water_t_exact

*Derivative of Chemical Potential of Water in Seawater wrt Temperature*

### Description

Derivative of Chemical Potential of Water in Seawater wrt Temperature

### Usage

`gsw_t_deriv_chem_potential_water_t_exact(SA, t, p)`

### Arguments

- **SA**: Absolute Salinity [ g/kg ]
- **t**: in-situ temperature (ITS-90) [ degC ]
- **p**: sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

### Value

derivative [ J/(g*degC) ]
Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82e9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
t <- c(28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036)
p <- c(10, 50, 125, 250, 600, 1000)
d <- gsw_t_deriv_chem_potential_water_t_exact(SA, t, p)
stopifnot(all.equal(d, c(-0.428798278908442, -0.423860344327343, -0.345277821010421, -0.164446485487145, -0.114228046736087, -0.076990819658225)))
```

---

gsw_t_freezing

Freezing Temperature of Seawater

Description

This uses the C function named gsw_t_freezing_exact, because the C function named gsw_t_freezing does not produce check values that match the Matlab function called gsw_t_freezing (see references for those test values).

Usage

```r
gsw_t_freezing(SA, p, saturation_fraction = 1)
```

Arguments

- **SA** Absolute Salinity [g/kg]
- **p** sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
- **saturation_fraction** fraction of air in water [unitless]
Value
in-situ freezing temperature (ITS-90) [ degC ]

Implementation Note
This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.
The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.
Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

Examples
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(10, 50, 125, 250, 600, 1000)
saturation_fraction <- 1
tf <- gsw_t_freezing(SA, p, saturation_fraction)
stopifnot(all.equal(tf, c(-1.902730710149803, -1.942908619287183, -2.006861069199743, -2.090985086875259, -2.351293130342102, -2.660498762776720)))

Derivatives of Freezing Water Properties

description
Derivatives of Freezing Water Properties

Usage
gsw_t_freezing_first_derivatives(SA, p, saturation_fraction = 1)

Arguments
SA Absolute Salinity [ g/kg ]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
saturation_fraction fraction of air in water [unitless]
**Value**

A list containing 
\[ t_{\text{freezing,SA}} \] [ K/(g/kg) ], the derivative of freezing temperature with Absolute Salinity and 
\[ t_{\text{freezing,p}} \] [ K/bar ], the derivative with respect to pressure.

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

**References**


**Examples**

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c(10, 50, 125, 250, 600, 1000)
saturation_fraction <- c(1, 0.8, 0.6, 0.5, 0.4, 0)
derivs <- gsw_t_freezing_first_derivatives(SA, p, saturation_fraction)
stopifnot(all.equal(derivs$tfreezing_SA,
 c(-0.056811800705787, -0.056856999671114, -0.056903079789292,
 -0.056904020028541, -0.056974588411844, -0.057082363270642)))
stopifnot(all.equal(derivs$tfreezing_p/1e-7,
 c(-0.74846831244338, -0.749793159953729, -0.75225023995510,
 -0.756170965036410, -0.767279572670040, -0.779936552091913)))
```

**Description**

Derivatives of Freezing Water Properties (Polynomial version)

**Usage**

```r
gsw_t_freezing_first_derivatives_poly(SA, p, saturation_fraction = 1)
```
Arguments

SA  Absolute Salinity [ g/kg ]

p  sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

saturation_fraction  fraction of air in water [unitless]

Value

a list containing tfreezing_SA [ K/(g/kg) ], the derivative of freezing temperature with Absolute Salinity and tfreezing_p [ K/dbar ], the derivative with respect to pressure.

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit ‘98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459’.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References


Examples

SA <- c( 34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
p <- c( 10, 50, 125, 250, 600, 1000)
saturation_fraction <- c( 1, 0.8, 0.6, 0.5, 0.4, 0)
derivs <- gsw_t_freezing_first_derivatives_poly(SA, p, saturation_fraction)
stopifnot(all.equal(derivs$tfreezing_SA,
c(-0.056810211094078, -0.056855567524973, -0.056901968693345,
-0.056903498206432, -0.056975157476629, -0.057083526206200)))
stopifnot(all.equal(derivs$tfreezing_p/1e-7,
c(-0.748987354878138, -0.750288853857513, -0.752676389629787,
-0.756549680608529, -0.767482625710990, -0.779985619685683)))
**gsw_t_from_CT**

*In situ temperature from Conservative Temperature*

**Description**

In situ temperature from Conservative Temperature

**Usage**

```r
gsw_t_from_CT(SA, CT, p)
```

**Arguments**

- **SA** Absolute Salinity [ g/kg ]
- **CT** Conservative Temperature [ degC ]
- **p** sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

**Value**

in-situ temperature (ITS-90) [ degC ]

**Implementation Note**

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at [https://github.com/TEOS-10/GSW-C](https://github.com/TEOS-10/GSW-C) with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'. The C function uses data from the `library/gsw_data_v3_0.mat` file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from [http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip](http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip) on 2022-05-25, the .mat file was stored in the developer/create_data directory of [https://github.com/TEOS-10/GSW-R](https://github.com/TEOS-10/GSW-R), and then the dataset used in GSW-R was created based on that .mat file.

Please consult [http://www.teos-10.org](http://www.teos-10.org) to learn more about the various TEOS-10 software systems.

**References**


**Examples**

```r
SA <- c(34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324)
CT <- c(28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236)
p <- c(10, 50, 125, 250, 600, 1000)
t <- gsw_t_from_CT(SA, CT, p)
stopifnot(all.equal(t, c(28.788580227725703, 28.432872246163946, 22.810323087627076, 10.260010752788906, 6.886286301029376, 4.403624452383043)))
```
Description

In situ Temperature from Potential Temperature at 0dbar

Usage

gsw_t_from_pt0_ice(pt0_ice, p)

Arguments

pt0_ice potential temperature of ice (ITS-90) [ degC ]
p sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar

Value

in-situ temperature (ITS-90) [ degC ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9ceb0ba82c9d47ac750e935a7d0459'.

The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

References

http://www.teos-10.org/pubs/gsw/html/gsw_t_from_pt0_ice.html

Examples

pt0_ice <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c(10, 50, 125, 250, 600, 1000)
t <- gsw_t_from_pt0_ice(pt0_ice, p)
stopifnot(all.equal(t, c(-10.78341208441074, -13.422068638139141, -12.205667526492039, -10.755496924674144, -8.184121042593350)))
Description

Computation of height (above sea level) from pressure, using the 75-term equation for specific volume.

Usage

gsw_z_from_p(p, latitude, geo_strf_dyn_height, sea_surface_geopotential)

Arguments

p          sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
latitude   latitude in decimal degrees, positive to the north of the equator. (This is called lat in the TEOS-10 Matlab code.)
geo_strf_dyn_height vector of same length as p and latitude, indicating dynamic height [ m^2/s^2 ]. If not supplied, this defaults to a vector of 0 values, with length matching that of p.
sea_surface_geopotential vector of same length as p and latitude, indicating geopotential at zero sea pressure [ m^2/s^2 ]. If not supplied, this defaults to a vector of 0 values, with length matching that of p.

Value

height [ m ]

Implementation Note

This R function uses a wrapper to a C function contained within the GSW-C system as updated 2021-12-28 at https://github.com/TEOS-10/GSW-C with git commit '98f0fd40dd9cecb0ba82c9d47ac750e935a7d0459'. The C function uses data from the library/gsw_data_v3_0.mat file provided in the GSW-Matlab source code, version 3.06-11. Unfortunately, this version of the mat file is no longer displayed on the TEOS-10.org website. Therefore, in the interests of making GSW-R be self-contained, a copy was downloaded from http://www.teos-10.org/software/gsw_matlab_v3_06_11.zip on 2022-05-25, the .mat file was stored in the developer/create_data directory of https://github.com/TEOS-10/GSW-R, and then the dataset used in GSW-R was created based on that .mat file.

Please consult http://www.teos-10.org to learn more about the various TEOS-10 software systems.

Historical Note

The geo_strf_dyn_height and sea_surface_geopotential parameters were added in GSW-R version 1.0-6.
saar

References


See Also

Other things related to depth: gsw_p_from_z()

Examples

```r
z <- gsw_z_from_p(c(10, 50, 125, 250, 600, 1000), 4)
stopifnot(all.equal(z/1e2, c(-0.099445834469453, -0.497180897012550, -1.242726219409978,
-2.484700576548589, -5.958253480356214, -9.920919060719987)))
```

---

saar  

Global SA lookup file

Description

This dataset is not intended for users, but rather for internal use within the gsw package. The dataset stores the 1.4M lookup table defined in the 8.3M file src/gsw_saar_data.c in the C library. (The .c file exceeds CRAN limitations on size.)

Details

The data are designed to replace C elements defined as below in src/gsw_saar_data.c:

```
static int gsw_nx=91, gsw_ny=45, gsw_nz=45;
static double longs_ref[91];
static double lats_ref[45];
static double p_ref[45];
static double ndepth_ref[4095];
static double saar_ref[184275];
static double delta_sa_ref[184275];
```

R storage is in a list named saar, with elements named as in the C code, i.e. gsw_nx etc.

C storage for these variables is allocated as needed, and the data are inserted, when gsw is launched. Thus, the existing C library code "knows" about the data as local storage, which keeps alterations to the C library to a minimum.

The saar dataset was created by the following R code. The netcdf file used in this code comes from the GSW-Fortran repository (at commit baa0c09ff8c7c974972a1a2902d8754c96a5b4cb) and its md5 value is dacb3f981e8e710ac2e83477701b3905.

```r
library(ncdf4)
nc <- nc_open("~/git/GSW-Fortran/test/gsw_data_v3_0.nc")
Use as.vector() since these will all get handed into C, which does not understand matrices.
p_ref <- as.vector(ncvar_get(nc, "p_ref"))
lats_ref <- as.vector(ncvar_get(nc, "lats_ref"))
```
longs_ref <- as.numeric(ncvar_get(nc, "longs_ref"))
ndepth_ref <- as.numeric(ncvar_get(nc, "ndepth_ref"))
ndepth_ref[!is.finite(ndepth_ref)] <- -9e99
saar_ref <- as.numeric(ncvar_get(nc, "SAAR_ref"))
saar_ref[!is.finite(saar_ref)] <- -9e99
delta_sa_ref <- as.numeric(ncvar_get(nc, "deltaSA_ref"))
delta_sa_ref[!is.finite(delta_sa_ref)] <- -9e99
saar <- list(gsw_nx=gsw_nx, gsw_ny=gsw_ny, gsw_nz=gsw_nz,
             longs_ref=longs_ref, lats_ref=lats_ref, p_ref=p_ref, ndepth_ref=ndepth_ref,
             saar_ref=saar_ref, delta_sa_ref=delta_sa_ref)
save(saar, file="saar.rda")
tools::resaveRdaFiles("saar.rda")
nc_close(nc)
Index

* things related to chemical potential
  gsw_chem_potential_water_ice, 17
  gsw_chem_potential_water_t_exact, 18
* things related to compressibility
  gsw_kappa, 76
  gsw_kappa_const_t_ice, 77
  gsw_kappa_ice, 78
  gsw_kappa_t_exact, 79
* things related to conductivity
  gsw_C_from_SP, 35
  gsw_SP_from_C, 163
* things related to density
  gsw_alpha, 9
  gsw_alpha_on_beta, 10
  gsw_alpha_wrt_t_exact, 11
  gsw_alpha_wrt_t_ice, 12
  gsw_beta, 13
  gsw_beta_const_t_exact, 15
  gsw_CT_from_rho, 31
  gsw_CT_maxdensity, 33
  gsw_pot_rho_t_exact, 101
  gsw_rho, 116
  gsw_rho_alpha_beta, 118
  gsw_rho_first_derivatives, 119
  gsw_rho_first_derivatives_wrt_enthalpy, 120
  gsw_rho_ice, 122
  gsw_rho_t_exact, 126
  gsw_SA_from_rho, 132
  gsw_sigma0, 139
  gsw_sigma1, 140
  gsw_sigma2, 141
  gsw_sigma3, 142
  gsw_sigma4, 143
  gsw_specvol, 148
  gsw_specvol_alpha_beta, 149
  gsw_specvol_anom_standard, 150
  gsw_specvol_ice, 154
  gsw_specvol_t_exact, 159
* things related to depth
  gsw_p_from_z, 115
  gsw_z_from_p, 182
* things related to energy
  gsw_Helmholtz_energy_ice, 71
* things related to enthalpy
  gsw_CT_from_enthalpy, 28
  gsw_dynamic_enthalpy, 39
  gsw_enthalpy, 40
  gsw_enthalpy_CT_exact, 41
  gsw_enthalpy_diff, 42
  gsw_enthalpy_first_derivatives, 43
  gsw_enthalpy_first_derivatives_CT_exact, 45
  gsw_enthalpy_ice, 46
  gsw_enthalpy_t_exact, 50
  gsw_frazil_properties_potential, 58
  gsw_frazil_properties_potential_poly, 60
  gsw_pot_enthalpy_from_pt_ice, 94
  gsw_pot_enthalpy_from_pt_ice_poly, 95
  gsw_pot_enthalpy_ice_freezing, 96
  gsw_pot_enthalpy_ice_freezing_poly, 100
  gsw_pt_from_pot_enthalpy_ice, 109
  gsw_pt_from_pot_enthalpy_ice_poly, 111
  gsw_specvol_first_derivatives, 152
  gsw_specvol_first_derivatives_wrt_enthalpy, 153
* things related to entropy
  gsw_CT_from_entropy, 29
  gsw_entropy_first_derivatives, 51
  gsw_entropy_from_pt, 52
  gsw_entropy_from_t, 53
  gsw_entropy_ice, 54
* things related to latent heat
  gsw_latentheat_evap_CT, 80
  gsw_latentheat_evap_t, 81
  gsw_latentheat_melting, 82
* things related to oxygen
  gsw_O2sol, 91
  gsw_O2sol_SP, 93
* things related to salinity
  gsw_C_from_SP, 35
  gsw_deltaSA_from_SP, 36
  gsw_SA_from_SP, 133
  gsw_SA_from_SP_Baltic, 135
  gsw_Sstar_from_SA, 136
  gsw_SP_from_SA, 164
  gsw_SP_from_SK, 165
  gsw_SP_from_SR, 166
  gsw_Sstar_from_SA, 170
  gsw_Sstar_from_SP, 172
* things related to sound
  gsw_sound_speed, 145
  gsw_sound_speed_ice, 146
  gsw_sound_speed_t_exact, 147
* things related to spiciness
  gsw_spiciness0, 160
  gsw_spiciness1, 161
  gsw_spiciness2, 162
argfix, 5
expand.grid, 134–136, 164, 171, 172
gsw, 6
gsw_adiabatic_lapse_rate_from_CT, 7
  gsw_adiabatic_lapse_rate_ice, 8
  gsw_alpha, 9, 11–15, 32, 34, 102, 117, 119–122, 126, 133, 139, 141–144, 149–151, 155, 159
  gsw_alpha_on_beta, 9, 10, 12–15, 32, 34, 102, 117, 119–122, 126, 133, 139, 141–144, 149–151, 155, 159
  gsw_alpha_wrt_t_exact, 9, 11, 13–15, 32, 34, 102, 117, 119–122, 126, 133, 139, 141–144, 149–151, 155, 159
  gsw_alpha_wrt_t_ice, 9, 11, 12, 14, 15, 32, 34, 102, 117, 119–122, 126, 133, 139, 141–144, 149–151, 155, 159
gsw_beta, 9, 11–13, 13, 15, 32, 34, 102, 117, 119–122, 126, 133, 139, 141–144, 149–151, 155, 159
  gsw_beta_const_t_exact, 9, 11–14, 15, 32, 34, 102, 117, 119–122, 126, 133, 139, 141–144, 149–151, 155, 159
  gsw_C_from_SP, 35, 37, 134, 136, 137, 164–168, 170, 171, 173
  gsw_cabbeling, 16
  gsw_chem_potential_water_ice, 17, 19
  gsw_chem_potential_water_t_exact, 18, 18
  gsw_cp_ice, 19
  gsw_cp_t_exact, 20
  gsw_CT_first_derivatives, 21
  gsw_CT_first_derivatives_wrt_t_exact, 22
  gsw_CT_freezing, 23
  gsw_CT_freezing_first_derivatives, 24
  gsw_CT_freezing_first_derivatives_poly, 25
  gsw_CT_freezing_poly, 27
  gsw_CT_from_enthalpy, 28, 39, 41–44, 46, 47, 50, 59, 60, 95–97, 101, 110, 111, 153, 154
  gsw_CT_from_entropy, 29, 52–55, 109
  gsw_CT_from_pt, 30
  gsw_CT_from_rho, 9, 11–15, 31, 34, 102, 117, 119–122, 126, 133, 139, 141–144, 149–151, 155, 159
  gsw_CT_from_t, 32
  gsw_CT_maxdensity, 9, 11–15, 32, 33, 102, 117, 119–122, 126, 133, 139, 141–144, 149–151, 155, 159
  gsw_CT_second_derivatives, 34
  gsw_deltaSA_from_SP, 36, 37, 134, 136, 137, 164–168, 170, 171, 173
  gsw_dilution_coefficient_t_exact, 38
  gsw_dynamic_enthalpy, 28, 39, 41–44, 46, 47, 50, 59, 60, 95–97, 101, 110, 111, 153, 154
  gsw_enthalpy, 28, 39, 40, 42–44, 46, 47, 50, 59, 60, 95–97, 101, 110, 111, 153, 154
  gsw_enthalpy_CT_exact, 28, 39, 41, 42, 43, 44, 46, 47, 50, 59, 60, 95–97, 101, 110, 111, 153, 154
  gsw_enthalpy_diff, 28, 39, 41, 42, 44,
INDEX

gsfw_spiciness0, 160, 161, 162
gsfw_spiciness1, 160, 161, 162
gsfw_spiciness2, 160, 161, 162
gsw_SR_from_SP, 36, 37, 134, 136, 137, 164–168, 169, 171, 173
gsw_Sstar_from_SA, 36, 37, 134, 136, 137, 164–168, 170, 170, 173
gsw_Sstar_from_SP, 36, 37, 134, 136, 137, 164–168, 170, 171, 172
gsw_t_deriv_chem_potential_water_t_exact, 175
gsw_t_freezing, 176
gsw_t_freezing_first_derivatives, 177
gsw_t_freezing_first_derivatives_poly, 178
gsw_t_from_CT, 180
gsw_t_from_pt0_ice, 181
gsw_thermobaric, 173
gsw_Turner_Rsubrho, 174
gsw_z_from_p, 116, 182

rep, 6

saar, 183