Package ‘gsynth’
August 25, 2018

Type Package
Title Generalized Synthetic Control Method
Version 1.0.9
Date 2018-08-07
Author Yiqing Xu, Licheng Liu
Maintainer Yiqing Xu <yiqingxu@ucsd.edu>
Description Provides causal inference with interactive fixed-effect models. It imputes counterfactuals for each treated unit using control group information based on a linear interactive fixed-effects model that incorporates unit-specific intercepts interacted with time-varying coefficients. This method generalizes the synthetic control method to the case of multiple treated units and variable treatment periods, and improves efficiency and interpretability. This version supports unbalanced panels and implements the matrix completion method. Main reference: Yiqing Xu (2017) <doi:10.1017/pan.2016.2>.

URL http://yiqingxu.org/software/gsynth/gsynth_examples.html
NeedsCompilation yes
License GPL-2
Imports Rcpp (>= 0.12.3), ggplot2 (>= 2.1.0), GGally (>= 1.0.1), doParallel (>= 1.0.10), foreach (>= 1.4.3), abind (>= 1.4-0), mvtnorm (>= 1.0-6), MASS (>= 7.3.47)
SystemRequirements A C++11 compiler.
Depends R (>= 2.10)
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.0.1
Repository CRAN
Date/Publication 2018-08-24 22:14:01 UTC

R topics documented:

 gsynth-package ... 2
gsynth ... 3
Description

Implements the generalized synthetic control method based on interactive fixed effect models.

Details

Implements the generalized synthetic control method. It imputes counterfactuals for each treated unit using control group information based on a linear interactive fixed effects model that incorporates unit-specific intercepts interacted with time-varying coefficients.

See `gsynth` for details.

Author(s)

Yiqing Xu <yiqingxu@ucsd.edu>, University of California, San Diego
Licheng Liu <liulch.16@sem.tsinghua.edu.cn>, Tsinghua University

References

For more details, see http://yiqingxu.org/software/gsynth/gsynth_examples.html.
gsynth

Generalized Synthetic Control Method

Description

Implements the generalized synthetic control method based on interactive fixed effect models.

Usage

```
gsynth(formula=NULL, data, y, d, x = NULL, na.rm = FALSE, 
index, weight = NULL, force = "unit", r = 0, lambda = NULL, 
nlambda = 10, CV = TRUE, k = 5, EM = FALSE, estimator = "ife", 
se = FALSE, nboots = 200, 
inference = "nonparametric", cov.ar = 1, parallel = TRUE, 
cores = NULL, tol = 0.001, seed = NULL, min.T0 = 5, 
conf.lvl = 0.95, normalize = FALSE)
```

Arguments

- **formula**: an object of class "formula": a symbolic description of the model to be fitted.
- **data**: a data frame (must be with a dichotomous treatment but balanced is not required).
- **y**: outcome.
- **d**: treatment.
- **x**: time-varying covariates.
- **na.rm**: a logical flag indicating whether to list-wise delete missing data. The algorithm will report an error if missing data exist.
- **index**: a two-element string vector specifying the unit (group) and time indicators. Must be of length 2.
- **weight**: a string specifying the weighting variable(if any) to estimate the weighted average treatment effect. Default is weight = NULL.
- **force**: a string indicating whether unit or time fixed effects will be imposed. Must be one of the following, "none", "unit", "time", or "two-way". The default is "unit".
- **r**: an integer specifying the number of factors. If CV = TRUE, the cross validation procedure will select the optimal number of factors from r to 5.
- **lambda**: a single or sequence of positive numbers specifying the hyper-parameter sequence for matrix completion method. If lambda is a sequence and CV = 1, cross-validation will be performed.
- **nlambda**: an integer specifying the length of hyper-parameter sequence for matrix completion method. Default is nlambda = 10.
- **CV**: a logical flag indicating whether cross-validation will be performed to select the optimal number of factors or hyper-parameter in matrix completion algorithm. If r is not specified, the procedure will search through r = 0 to 5.
gsynth

k

a positive integer specifying cross-validation times for matrix completion algorithm. Default is \(k = 5 \).

EM

a logical flag indicating whether an Expectation Maximization algorithm will be used (Gobillon and Magnac 2016).

estimator

a string that controls the estimation method, either "ife" (interactive fixed effects) or "mc" (the matrix completion method).

se

a logical flag indicating whether uncertainty estimates will be produced.

nboots

an integer specifying the number of bootstrap runs. Ignored if se = FALSE.

inference

a string specifying which type of inferential method will be used, either "parametric" or "nonparametric". "parametric" is recommended when the number of treated units is small. parametric bootstrap is not valid for matrix completion method. Ignored if estimator = "mc".

cov.ar

an integer specifying order of the auto regression process that the residuals follow. Used for parametric bootstrap procedure when data is in the form of unbalanced panel. The default value is 1.

parallel

a logical flag indicating whether parallel computing will be used in bootstrapping and/or cross-validation. Ignored if se = FALSE.

cores

an integer indicating the number of cores to be used in parallel computing. If not specified, the algorithm will use the maximum number of logical cores of your computer (warning: this could prevent you from multi-tasking on your computer).

tol

a positive number indicating the tolerance level.

seed

an integer that sets the seed in random number generation. Ignored if se = FALSE and r is specified.

min.T0

an integer specifying the minimum value of pre-treatment periods. Treated units with pre-treatment periods less than that will be removed automatically. This item is important for unbalanced panels. If users want to perform cross validation procedure to select the optimal number of factors from (r.min, r.max), they should set min.T0 larger than (r.max+1) if no individual fixed effects or (r.max+2) otherwise. If there are too few pre-treatment periods among all treated units, a smaller value of r.max is recommended.

conf.lvl

a positive number in the range of 0 and 1 specifying confidence levels for uncertainty estimates. The default value is 0.95.

normalize

a logic flag indicating whether to scale outcome and covariates. Useful for accelerating computing speed when magnitude of data is large. The default is normalize=FALSE.

Details

gsynth implements the generalized synthetic control method. It imputes counterfactuals for each treated unit using control group information based on a linear interactive fixed effects model that incorporates unit-specific intercepts interacted with time-varying coefficients. It generalizes the synthetic control method to the case of multiple treated units and variable treatment periods, and improves efficiency and interpretability. It allows the treatment to be correlated with unobserved unit and time heterogeneities under reasonable modeling assumptions. With a built-in cross-validation
procedure, it avoids specification searches and thus is easy to implement. Data must be with a
dichotomous treatment.

Value

Y.dat: a matrix storing data of the outcome variable.
Y: name of the outcome variable.
D: name of the treatment variable.
X: name of the time-varying control variables.
index: name of the unit and time indicators.
id: a vector of unit IDs.
time: a vector of time periods.
obs.missing: a matrix storing status of each unit at each time point. 0 for missing, 1 for
corel group units, 2 for treat group units at pre-treatment period, 3 for treat
group units at post-treatment period, and 4 for removed treated group units. Useful for unbalanced panel data.
id.tr: a vector of IDs for the treatment units.
id.co: a vector of IDs for the control units.
D.tr: a matrix of treatment indicator for the treated unit outcome.
I.tr: a matrix of observation indicator for the treated unit outcome.
Y.tr: data of the treated unit outcome.
Y.ct: predicted counterfactuals for the treated units.
Y.co: data of the control unit outcome.
eff: difference between actual outcome and predicted Y(0).
Y.bar: average values of Y.tr, Y.ct, and Y.co over time.
att: average treatment effect on the treated over time (it is averaged based on the
timing of the treatment if it is different for each unit).
att.avg: average treatment effect on the treated.
force: user specified force option.
sameT0: TRUE if the timing of the treatment is the same.
T: the number of time periods.
N: the total number of units.
p: the number of time-varying observables.
Ntr: the number of treated units.
Nco: the number of control units.
T0: a vector that stores the timing of the treatment for balanced panel data.
tr: a vector indicating treatment status for each unit.
pre: a matrix indicating the pre-treatment/non-treatment status.
post: a matrix indicating the post-treatment status.
r.cv the number of factors included in the model – either supplied by users or automatically chosen via cross-validation.
lambda.cv the optimal hyper-parameter in matrix completion method chosen via cross-validation.
res.co residuals of the control group units.
beta coefficients of time-varying observables from the interactive fixed effect model.
sigma2 the mean squared error of interactive fixed effect model.
IC the information criterion.
est.co result of the interactive fixed effect model based on the control group data. An interFE object.
eff.cnt difference between actual outcome and predicted Y(0); rearranged based on the timing of the treatment.
Y.tr.cnt data of the treated unit outcome, rearranged based on the timing of the treatment.
Y.ct.cnt data of the predicted Y(0), rearranged based on the timing of the treatment.
MSPE mean squared prediction error of the cross-validated model.
CV.out result of the cross-validation procedure.
niter the number of iterations in the estimation of the interactive fixed effect model.
factor estimated time-varying factors.
lambda.co estimated loadings for the control group.
lambda.tr estimated loadings for the treatment group.
wgt.implied estimated weights of each of the control group unit for each of the treatment group unit.
mu estimated ground mean.
xi estimated time fixed effects.
alpha.tr estimated unit fixed effects for the treated units.
alpha.co estimated unit fixed effects for the control units.
validX a logic value indicating if multicollinearity exists.
inference a string indicating bootstrap procedure.
est.att inference for att.
est.att.avg inference for att.avg.
est.beta inference for beta.
est.ind inference for att of each treated unit.
att.boot bootstrap results for att.
beta.boot bootstrap results for beta.

Author(s)
Yiqing Xu <yiqingxu@ucsd.edu>
Licheng Liu <liulch.16@sem.tsinghua.edu.cn>
References

For more details, see http://yiqingxu.org/software/gsynth/gsynth_examples.html.

For more details about the matrix completion method, see https://github.com/susanathey/MCPPanel.

See Also

plot.gsynth and print.gsynth

Examples

library(gsynth)
data(gsynth)
out <- gsynth(Y ~ D + X1 + X2, data = simdata, parallel = FALSE,
 index = c("id","time"), force = "two-way",
 CV = TRUE, r = c(0, 5), se = FALSE)
print(out)
Interactive Fixed Effects Models

Description

Estimating interactive fixed effect models.

Usage

```
interFE(formula = NULL, data, Y, X, index, r = 0, force = "none",
        se = TRUE, nboots = 500, seed = NULL, normalize = FALSE)
```

Arguments

- `formula`: an object of class "formula": a symbolic description of the model to be fitted.
- `data`: a data frame (must be with a dichotomous treatment but balanced is not required).
- `Y`: outcome.
- `X`: time-varying covariates.
- `index`: a two-element string vector specifying the unit (group) and time indicators. Must be of length 2.
- `r`: an integer specifying the number of factors.
- `force`: a string indicating whether unit or time fixed effects will be imposed. Must be one of the following, "none", "unit", "time", or "two-way". The default is "unit".
- `se`: a logical flag indicating whether uncertainty estimates will be produced via bootstrapping.
- `nboots`: an integer specifying the number of bootstrap runs. Ignored if se = FALSE.
- `seed`: an integer that sets the seed in random number generation. Ignored if se = FALSE and r is specified.
- `normalize`: a logic flag indicating whether to scale outcome and covariates. Useful for accelerating computing speed when magnitude of data is large. The default is normalize = FALSE.

Details

`interFE` estimates interactive fixed effect models proposed by Bai (2009).

Value

- `beta`: estimated coefficients.
- `mu`: estimated grand mean.
- `factor`: estimated factors.
- `lambda`: estimated factor loadings.
interFE

VNT a diagonal matrix that consists of the r eigenvalues.
niter the number of iteration before convergence.
alpha estimated unit fixed effect (if force is "unit" or "two-way").
xi estimated time fixed effect (if force is "time" or "two-way").
residuals residuals of the estimated interactive fixed effect model.
sigma2 mean squared error of the residuals.
IC the information criterion.
ValidX a logical flag specifying whether there are valid covariates.
dat.Y a matrix storing data of the outcome variable.
dat.X an array storing data of the independent variables.
Y name of the outcome variable.
X name of the time-varying control variables.
index name of the unit and time indicators.
est.table a table of the estimation results.
est.boot a matrix storing results from bootstraps.

Author(s)

Yiqing Xu <yiqingxu@ucsd.edu>
Licheng Liu <liulch.16@sem.tsinghua.edu.cn>

References

See Also

print.interFE and gsynth

Examples

library(gsynth)
data(gsynth)
d <- simdata[-(1:150),] # remove the treated units
out <- interFE(Y ~ X1 + X2, data = d, index=c("id","time"),
 r = 2, force = "two-way", nboots = 50)
Description

Visualizes estimation results of the generalized synthetic control method.

Usage

```r
## S3 method for class 'gsynth'
plot(x, type = "gap", xlim = NULL, ylim = NULL,
     xlab = NULL, ylab = NULL, legendOff = FALSE, raw = "none",
     main = NULL, nfactors = NULL, id = NULL, axis.adjust = FALSE,
     theme.bw = FALSE, shade.post = NULL, ...)
```

Arguments

- **x**: a `gsynth` object.
- **type**: a string that specifies the type of the plot. Must be one of the following: "gap" (plotting the average treatment effect on the treated); "raw" (plotting the raw data); "counterfactual", or "ct" for short, (plotting predicted Y(0)'s); "factors" (plotting estimated factors); "loadings" (plotting the distribution of estimated factor loadings); "missing" (plotting status of each unit at each time point).
- **xlim**: a two-element numeric vector specifying the range of x-axis. When class of time variable is string, must specify not original value but a counting number e.g. `xlim=c(1,30)`.
- **ylim**: a two-element numeric vector specifying the range of y-axis.
- **xlab**: a string indicating the label of the x-axis.
- **ylab**: a string indicating the label of the y-axis.
- **legendOff**: a logical flag controlling whether to show the legend.
- **raw**: a string indicating whether or how raw data for the outcome variable will be shown in the "counterfactual" plot. Ignored if `type` is not "counterfactual". Must be one of the following: "none" (not showing the raw data); "band" (showing the middle 90 percentiles of the raw data); and "all" (showing the raw data as they are).
- **main**: a string that controls the title of the plot. If not supplied, no title will be shown.
- **nfactors**: a positive integer that specifies the number of factors to be shown. The maximum number is 4. Ignored if `type` is not "factors".
- **id**: a unit identifier of which the predicted counterfactual or the difference between actual and predicted counterfactual is to be shown. It can also be a vector specifying units to be plotted if `type`="missing" when data magnitude is large. Ignored if `type` is none of "missing", "counterfactual", "gap".
- **axis.adjust**: a logical flag indicating whether to adjust labels on x-axis. Useful when class of time variable is string and data magnitude is large.
print.gsyth

theme.bw a logical flag indicating whether to use a black/white theme.
shade.post a logical flag controlling whether to shade the post-treatment periods.
...
other argv.

Details

plot.gsynth visualizes the raw data used by, or estimation results obtained from, the generalized synthetic control method.

Author(s)

Yiqing Xu <yiqingxu@ucsd.edu>
Licheng Liu <liulch.16@sem.tsinghua.edu.cn>

References

See http://yiqingxu.org/software/gsynth/gsynth_examples.html for more detailed information.

See Also

gsynth and print.gsynth

print.gsynth Print Results

Description

Print results of the generalized synthetic control method.

Usage

S3 method for class 'gsynth'
print(x, ...)

Arguments

x a gsynth object.
...
other argv.

Author(s)

Yiqing Xu <yiqingxu@ucsd.edu>
Licheng Liu <liulch.16@sem.tsinghua.edu.cn>
References

For more details, see http://yiqingxu.org/software/gsynth/gsynth_examples.html.

See Also

gsynth and plot.gsynth

print.interFE

Description

Print results of interactive fixed effects estimation.

Usage

S3 method for class 'interFE'
print(x, ...)

Arguments

x an interFE object.
...
other argv.

Author(s)

Yiqing Xu <yiqingxu@ucsd.edu>
Licheng Liu <liulch.16@sem.tsinghua.edu.cn>

References

See Also

interFE and gsynth
simdata

Description
A simulated dataset.

Format
dataframe

References
For more details, see http://yiqingxu.org/software/gsynth/gsynth_examples.html.

turnout

Description
State-level voter turnout data.

Format
dataframe

References
For more details, see http://yiqingxu.org/software/gsynth/gsynth_examples.html.
Index

*Topic datasets
 simdata, 13
 turnout, 13
*Topic ts
 gsynth-internal, 7
 _gsynth_XXinv (gsynth-internal), 7
 _gsynth_Y_demean (gsynth-internal), 7
 _gsynth_beta_iter (gsynth-internal), 7
 _gsynth_data_ub_adj (gsynth-internal), 7
 _gsynth_fe_ad_covar_iter (gsynth-internal), 7
 _gsynth_fe_ad_inter_covar_iter (gsynth-internal), 7
 _gsynth_fe_ad_inter_iter (gsynth-internal), 7
 _gsynth_fe_ad_iter (gsynth-internal), 7
 _gsynth_fe_add (gsynth-internal), 7
 _gsynth_inter_fe (gsynth-internal), 7
 _gsynth_inter_fe_mcl (gsynth-internal), 7
 _gsynth_inter_fe_ub (gsynth-internal), 7
 _gsynth_panel_beta (gsynth-internal), 7
 _gsynth_panel_est (gsynth-internal), 7
 _gsynth_panel_factor (gsynth-internal), 7
 _gsynth_panel_fe (gsynth-internal), 7
 beta_iter (gsynth-internal), 7
 ct.adjsut (gsynth-internal), 7
 data_ub_adj (gsynth-internal), 7
 fe_ad_covar_iter (gsynth-internal), 7
 fe_ad_inter_covar_iter (gsynth-internal), 7
 fe_ad_inter_iter (gsynth-internal), 7
 fe_ad_iter (gsynth-internal), 7
 fe_add (gsynth-internal), 7

 gsynth, 2, 3, 9–12
 gsynth-package, 2
 synth.default (gsynth-internal), 7
 synth.formula (gsynth-internal), 7
 initialFit (gsynth-internal), 7
 inter_fe (gsynth-internal), 7
 inter_fe_mcl (gsynth-internal), 7
 inter_fe_ub (gsynth-internal), 7
 interFE, 6, 8, 12
 interFE.default (gsynth-internal), 7
 interFE.formula (gsynth-internal), 7
 panel_beta (gsynth-internal), 7
 panel_est (gsynth-internal), 7
 panel_factor (gsynth-internal), 7
 panel_fe (gsynth-internal), 7
 plot.gsynth, 7, 10, 12
 print.gsynth, 7, 11, 11
 print.interFE, 9, 12
 res.vcov (gsynth-internal), 7
 simdata, 13
 synth.boot (gsynth-internal), 7
 synth.core (gsynth-internal), 7
 synth.em (gsynth-internal), 7
 synth.mc (gsynth-internal), 7
 turnout, 13
 XXinv (gsynth-internal), 7
 Y_demean (gsynth-internal), 7