Package ‘gwrpvr’

October 19, 2017

Type Package
Title Genome-Wide Regression P-Value (Gwrpv)
Version 1.0
Date 2017-10-13
Author Gregory Connor [aut],
 Michael O'Neill [trl, aut, cre]
Maintainer Michael O'Neill <m.oneill@ucd.ie>
Description Computes the sample probability value (p-value)
 for the estimated coefficient from a standard
 genome-wide univariate regression. It computes the exact
 finite-sample p-value under the assumption that the measured
 phenotype (the dependent variable in the regression) has
 a known Bernoulli-normal mixture distribution.
 Finite-sample genome-wide regression p-values (Gwrpv) with
 a non-normally distributed phenotype (Gregory Connor and
URL https://doi.org/10.1101/204727
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-10-19 17:47:54 UTC

R topics documented:
calc_pvalue ... 2
close_to_normal .. 3
gwrpv .. 4
gwrpvr .. 5
```
gwrpv_batch ................................................................. 5
highlow ................................................................. 7
loop_calc_pvalue ....................................................... 7
regresults ............................................................... 8

Index 9

| calc_pvalue | calc_pvalue() |

**Description**

calculate the pvalue : called from loop_calc_pvalue()

**Usage**

```
calc_pvalue(n0a, n1a, n2a, n0, n1, n2, pa, pb, x, mua, mub, sumsqx, siga, sigb, vary, beta, skipiter, pvalue)
```

**Arguments**

- **n0a**
  - outer loop index
- **n1a**
  - middle loop index
- **n2a**
  - inner loop index
- **n0**
  - the major allele homozygotes
- **n1**
  - the major allele heterozygotes
- **n2**
  - the minor allele zygotes
- **pa**
  - parameter of the mixture distribution, a real number between zero and one with
    \[pa+pb=1\]
- **pb**
  - parameter of the mixture distribution, a real number between zero and one with
    \[pa+pb=1\]
- **x**
  - a zero mean explanatory variable from the SNP data set
- **mua**
  - parameter of the mixture distribution, can be any real number
- **mub**
  - parameter of the mixture distribution, can be any real number
- **sumsqx**
  - sum of the squares of x
- **siga**
  - parameter of the mixture distribution, can be any real number
- **sigb**
  - parameter of the mixture distribution, can be any real number
- **vary**
  - vary <- pa*(mua^2+siga^2)+pb*(mub^2+sigb^2)-(pa*mua+pb*mub)^2
- **beta**
  - the beta from the regression being tested
- **skipiter**
  - flag to determine if we can skip some calculations
- **pvalue**
  - the input pvalue prior to calculating new improved pvalue

**Value**

- **pvalue**
This is a CLT-linked run-time control.

Description

If the number of observations is large enough that a normality approximation holds for the y average across the major homozygote subsample, then the code skips the time-consuming loop over n0, n1 and n2 and and uses the normal approximation for the average y for the major homozygote subsample. The remaining loop is only over n1 and n2. The only new input/output variables are input lognearnorm (the magnitude of maximum allowed tolerance (in log 10 format) for the sum of squared deviation of skewness and kurtosis from their normal values and output stopiter (a zero if the code does not mandate a stop to the iterative estimation and a one if it does). The input variable lognearnorm has a default value set so that users only have to enter it if they want to over-ride the default value.

Usage

close_to_normal(totnobs, n0, n1, n2, pa, pb, mua, mub, siga, sigb, beta, nearnorm)

Arguments

totnobs the sum of n0, n1, n2
n0 the major allele homozygotes
n1 the major allele heterozygotes
n2 the minor allele zygotes
pa parameter of the mixture distribution, a real number between zero and one with pa+pb=1
pb parameter of the mixture distribution, a real number between zero and one with pa+pb=1
mua parameter of the mixture distribution, can be any real number
mub parameter of the mixture distribution, can be any real number
siga parameter of the mixture distribution, can be any real number
sigb parameter of the mixture distribution, can be any real number
beta the beta from the regression being tested
nearnorm must be in log base 10 format, with default value set to -5

Value

list(skewbeta = skewbeta, kurtbeta = kurtbeta, sigbeta = sigbeta, skipiter = skipiter)
**gwrpv**

*Genome-Wide Regression P-Value (gwrpv) in R*

**Description**

Computes the sample probability value (p-value) for the estimated coefficient from a standard genome-wide univariate regression. It computes the exact finite-sample p-value under the assumption that the measured phenotype (the dependent variable in the regression) has a known Bernoulli-normal mixture distribution.

**Usage**

```r
gwrpv(beta, n0, n1, n2, mua, siga, mub, sigb, pa, pb, logdelta = -16, lognearnorm = -5, logtopsum = 8)
```

**Arguments**

- `beta`: the beta being tested
- `n0`: number of major allele homozygotes
- `n1`: number of major allele heterozygotes
- `n2`: number of minor allele zygotes
- `mua`: parameter of the mixture distribution, can be any real number
- `siga`: parameter of the mixture distribution, can be any real number
- `mub`: parameter of the mixture distribution, can be any real number
- `sigb`: parameter of the mixture distribution, can be any real number
- `pa`: parameter of the mixture distribution, a real number between zero and one with `pa+pb=1`
- `pb`: parameter of the mixture distribution, a real number between zero and one with `pa+pb=1`
- `logdelta`: must be in log base 10 format, with default value set to -16
- `lognearnorm`: must be in log base 10 format, with default value set to -5
- `logtopsum`: must be in log base 10 format, with default value set to 8

**Value**

gwrpv returns a list containing:

- `$pvalue`: p-value of a two-sided hypothesis test for a true coefficient of zero
- `$skew`: skewness
- `$skurt`: kurtosis of the coefficient estimate under assumed model
- `$skiptype`: type of trimming/skip which took place (zero means no trimming)
- `$totnobs`: total number of observations
- `$loopruns`: number of sums in the main computation for each regression case

.
Examples

```r
beta <- 6.05879
n0 <- 499
n1 <- 1
n2 <- 0
mua <- 13.87226
siga <- 2.58807
mub <- 4.62829
sigb <- 2.51803
pa <- 0.96544
pb <- 0.03456 # alternatively: pb <- 1.0 - pa
gwrpv(beta, n0, n1, n2, mua, siga, mub, sigb, pa, pb)

note default values have been used for the trim parameters above
in the following example we explicitly set the trim parameters
#
g <- gwrpv(beta, n0, n1, n2, mua, siga, mub, sigb, pa, pb, logdelta=-16, lognearnorm=-5, logtopsum=8)
g$pvalue
```

Description

Computes the sample probability value (p-value) for the estimated coefficient from a standard genome-wide univariate regression. It computes the exact finite-sample p-value under the assumption that the measured phenotype (the dependent variable in the regression) has a known Bernoulli-normal mixture distribution.

Details

The gwrpv package provides two functions: gwrpv and gwrpv_batch.

Usage

```r
gwrpv_batch(regresults, mua, siga, mub, sigb, pa, pb, logdelta = -16, lognearnorm = -5, logtopsum = 8)
```
Arguments

regresults a list of four lists.
  $\beta$ the list of betas being tested
  $n0$ the list of major allele homozygotes
  $n1$ the list of major allele heterozygotes
  $n2$ the list of minor allele zygotes

mua parameter of the mixture distribution, can be any real number
siga parameter of the mixture distribution, can be any real number
mub parameter of the mixture distribution, can be any real number
sigb parameter of the mixture distribution, can be any real number
pa parameter of the mixture distribution, a real number between zero and one with $\text{pa}+\text{pb}=1$
pb parameter of the mixture distribution, a real number between zero and one with $\text{pa}+\text{pb}=1$
logdelta must be in log base 10 format, with default value set to -16
lognearnorm must be in log base 10 format, with default value set to -5
logtopsum must be in log base 10 format, with default value set to 8

Value

gwrpv_batch returns a list of lists containing the lists:

  $pvalue$ p-value of a two-sided hypothesis test for a true coefficient of zero
  $skew$ skewness
  $kurt$ kurtosis of the coefficient estimate under assumed model
  $skiptype$ type of trimming/skip which took place (zero means no trimming)
  $totnobs$ total number of observations
  $loopruns$ number of sums in the main computation for each regression case

Examples

beta <- c(6.05879, -6.05879, 2.72055, -2.72055, 1.93347, -1.93347, 0.88288, -0.88288, 4.28421, -4.28421)
n0 <- c(499, 499, 495, 495, 490, 490, 451, 451, 998, 998)
n1 <- c(1, 1, 5, 5, 10, 10, 48, 48, 2, 2)
n2 <- c(0, 0, 0, 0, 0, 0, 1, 1, 0, 0)
myregresults <- list(beta = beta, n0 = n0, n1 = n1, n2 = n2)
mua <- 13.87226
siga <- 2.58807
mub <- 4.62829
sigb <- 2.51803
pa <- 0.96544
pb <- 1.0 - pa
```r
store results in a user-defined variable g

library(gwrpv)

store results in a user-defined variable g

highlow <- gwrpv_batch(myregresults, mua, siga, mub, sigb, pa, pb)

store results in a user-defined variable g

highlow <- gwrpv_batch(myregresults, mua, siga, mub, sigb, pa, pb, logdelta=-16, logearnorm=-4, logtopsum=8)

g$pvalue
```

### highlow

**Description**

If possible, trim the upper and lower bounds

**Usage**

```r
highlow(downtrim, n, pa, pb)
```

**Arguments**

- `downtrim`: lower bound
- `n`: upper bound
- `pa`: parameter of the mixture distribution, a real number between zero and one with `pa+pb=1`
- `pb`: parameter of the mixture distribution, a real number between zero and one with `pa+pb=1`

**Value**

```r
c(lhigh, llow)) # return the new upper and lower bounds
```

### loop_calc_pvalue

**Description**

calls `calc_pvalue()`

**Usage**

```r
loop_calc_pvalue(lowone, highone, lowtwo, hightwo, lowthree, highthree, n0a, n1a, n2a, n0, n1, n2, pa, pb, x, mua, mub, sumsqx, siga, sigb, vary, beta, skipiter, pvalue)
```
Arguments

- lowone: lower bound outer loop
- highone: upper bound outer loop
- lowtwo: lower bound middle loop
- hightwo: upper bound middle loop
- lowthree: lower bound inner loop
- highthree: upper bound inner loop
- n0a: outer loop index
- n1a: middle loop index
- n2a: inner loop index
- n0: the major allele homozygotes
- n1: the major allele heterozygotes
- n2: the minor allele zygotes
- pa: parameter of the mixture distribution, a real number between zero and one with pa+pb=1
- pb: parameter of the mixture distribution, a real number between zero and one with pa+pb=1
- x: a zero mean explanatory variable from the SNP data set
- mua: parameter of the mixture distribution, can be any real number
- mub: parameter of the mixture distribution, can be any real number
- sumsqx: sum of the squares of x
- siga: parameter of the mixture distribution, can be any real number
- sigb: parameter of the mixture distribution, can be any real number
- vary: \[ \text{vary} <- \text{pa*(mua}^2+\text{siga}^2)+\text{pb*(mub}^2+\text{sigb}^2)-(\text{pa*mua+pb*mub})^2 \]
- beta: the beta from the regression being tested
- skipiter: flag to determine if we can skip some calculations
- pvalue: the input pvalue prior to calculating new improved pvalue

Value

- pvalue

regresults: sample data

Description

A sample dataset of input regression results based on machine-level accurate cumulative normal values. Rather than just typing in a few digits of the 2.5 the norminverse function in RATS was used to create sample-case betas which are exact

Format

csv format file with 4 variables (beta, n0, n1, n2) and 120 rows
Index

calc_pvalue, 2
close_to_normal, 3

gwrpv, 4
gwrpv_batch, 5
gwrpvr, 5
gwrpvr-package (gwrpvr), 5
highlow, 7
loop_calc_pvalue, 7
regresults, 8