Package ‘gyro’

October 13, 2022

Type Package

Title Hyperbolic Geometry

Version 1.1.1

Author Stéphane Laurent

Maintainer Stéphane Laurent <laurent_step@outlook.fr>

Description Hyperbolic geometry in the Minkowski model and the Poincaré model. The methods are based on the gyrovector space theory developed by A. A. Ungar that can be found in the book ‘Analytic Hyperbolic Geometry: Mathematical Foundations And Applications’ [doi:10.1142/5914]. The package provides functions to plot three-dimensional hyperbolic polyhedra and to plot hyperbolic tilings of the Poincaré disk.

License GPL-3

URL https://github.com/stla/gyro

BugReports https://github.com/stla/gyro/issues

Imports clipr, cxhull (>= 0.3.0), graphics, grDevices, Morpho, plotrix, purrr, Rcpp, rgl, rstudioapi, Rvcg, RCDT, randomcoloR

Suggests arrangements, knitr, rmarkdown, trekcolors, uniformly

LinkingTo Rcpp

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.1

SystemRequirements C++ 11

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-08-20 08:00:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>changesOfSign</td>
<td>2</td>
</tr>
<tr>
<td>gyroABt</td>
<td>3</td>
</tr>
<tr>
<td>gyrocentroid</td>
<td>4</td>
</tr>
<tr>
<td>gyrodemos</td>
<td>4</td>
</tr>
<tr>
<td>gyromidpoint</td>
<td>5</td>
</tr>
<tr>
<td>gyrosegment</td>
<td>6</td>
</tr>
<tr>
<td>gyrotriangle</td>
<td>7</td>
</tr>
<tr>
<td>gyrotube</td>
<td>9</td>
</tr>
<tr>
<td>hdelaunay</td>
<td>10</td>
</tr>
<tr>
<td>hreflection</td>
<td>11</td>
</tr>
<tr>
<td>PhiMU</td>
<td>12</td>
</tr>
<tr>
<td>PhiUM</td>
<td>13</td>
</tr>
<tr>
<td>plotGyrohull3d</td>
<td>13</td>
</tr>
<tr>
<td>plotHdelaunay</td>
<td>16</td>
</tr>
<tr>
<td>tiling</td>
<td>18</td>
</tr>
</tbody>
</table>

Index 19

changesOfSign

Changes of sign

Description

Sometimes, the coordinates of the vertices of a polyhedron are given with changes of sign (with a symbol +/-). This function performs the changes of sign.

Usage

```r
changesOfSign(M, changes = "all")
```

Arguments

- `M`
 - a numeric matrix of coordinates of some points (one point per row)
- `changes`
 - either the indices of the columns of `M` where the changes of sign must be done, or "all" to select all the indices

Value

A numeric matrix, `M` transformed by the changes of sign.
Examples

```r
library(gyro)
library(rgl)
## ~~ rhombicosidodecahedron ~~##
phi <- (1 + sqrt(5)) / 2
vs1 <- rbind(
  c(1, 1, phi^3),
  c(phi^2, phi, 2 * phi),
  c(2 + phi, 0, phi^2)
)
vs2 <- rbind(vs1, vs1[, c(2, 3, 1)], vs1[, c(3, 1, 2)]) # even permutations
vs <- changesOfSign(vs2)
open3d(windowRect = c(50, 50, 562, 562), zoom = 0.65)
plotGyrohull3d(vs)
```

gyroABt

Point on a gyroline

Description

Point of coordinate \(t \) on the gyroline passing through two given points \(A \) and \(B \). This is \(A \) for \(t=0 \) and this is \(B \) for \(t=1 \). For \(t=1/2 \) this is the gyromidpoint of the gyrosegment joining \(A \) and \(B \).

Usage

```r
gyroABt(A, B, t, s = 1, model = "U")
```

Arguments

- **A, B** two distinct points
- **t** a number
- **s** positive number, the radius of the Poincaré ball if model="M", otherwise, if model="U", this number defines the hyperbolic curvature
- **model** the hyperbolic model, either "M" (Möbius model, i.e. Poincaré model) or "U" (Ungar model, i.e. hyperboloid model)

Value

A point.
gyrocentroid \textit{Gyrocentroid}

\textbf{Description}

Gyrocentroid of a triangle.

\textbf{Usage}

\texttt{gyrocentroid(A, B, C, s = 1, model = "U")}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{A, B, C} three distinct points
 \item \texttt{s} positive number, the radius of the Poincaré ball if \texttt{model="M"}, otherwise, if \texttt{model="U"}, this number defines the hyperbolic curvature (the smaller, the more curved)
 \item \texttt{model} the hyperbolic model, either \texttt{"M"} (Möbius model, i.e. Poincaré model) or \texttt{"U"} (Ungar model, i.e. hyperboloid model)
\end{itemize}

\textbf{Value}

A point, the gyrocentroid of the triangle \texttt{ABC}.

\textbf{gyrodemos \textit{Examples of the ‘gyro’ package}}

\textbf{Description}

Some examples of hyperbolic polyhedra realized with the ‘gyro’ package.

\textbf{Usage}

\texttt{gyrodemos()}

\textbf{Value}

No value. The function firstly copies the demo files in a temporary directory. If you use RStudio, the function opens these files. Otherwise it prints a message giving the instructions to access to these files.
Note

The BarthLike file has this name because the figure it generates looks like the Barth sextic (drawing by Patrice Jeener):

Description

The gyromidpoint of a gyrosegment.

Usage

gyromidpoint(A, B, s = 1, model = "U")
Arguments

A, B two distinct points (of the same dimension)
s positive number, the radius of the Poincaré ball if model="M", otherwise, if model="U", this number defines the hyperbolic curvature
model the hyperbolic model, either "M" (Möbius model, i.e. Poincaré model) or "U" (Ungar model, i.e. hyperboloid model)

Value

A point, the gyromidpoint of a the gyrosegment joining A and B.

Note

This is the same as gyroABt(A, B, 1/2, s) but the calculation is more efficient.

gyrosegment Gyrosegment

Description

Gyrosegment joining two given points.

Usage

gyrosegment(A, B, s = 1, model = "U", n = 100)

Arguments

A, B two distinct points (of the same dimension)
s positive number, the radius of the Poincaré ball if model="M", otherwise, if model="U", this number defines the hyperbolic curvature
model the hyperbolic model, either "M" (Möbius model, i.e. Poincaré model) or "U" (Ungar model, i.e. hyperboloid model)
n number of points forming the gyrosegment from A to B

Value

A numeric matrix with n rows. Each row is a point of the gyrosegment from A (the first row) to B (the last row).

Note

The gyrosegment is obtained from gyroABt by varying t from 0 to 1.
Examples

```r
library(gyro)

# a 2D example ####
A <- c(1, 2); B <- c(1, 1)
opar <- par(mfrow = c(1, 2), mar = c(2, 2, 2, 0.5))
plot(rbind(A, B), type = "p", pch = 19, xlab = NA, ylab = NA,
xlim = c(0, 2), ylim = c(0, 2), main = "s = 0.2")
s <- 0.2
AB <- gyrosegment(A, B, s)
lines(AB, col = "blue", lwd = 2)
text(t(A), expression(italic(A)), pos = 2)
text(t(B), expression(italic(B)), pos = 3)

# this is an hyperbola whose asymptotes meet at the origin
# approximate asymptotes
lines(rbind(c(0, 0), gyroABt(A, B, t = -20, s)), lty = "dashed")
lines(rbind(c(0, 0), gyroABt(A, B, t = 20, s)), lty = "dashed")

# plot the gyromidoint
points(rbind(gyromidpoint(A, B, s)), type = "p", pch = 19, col = "red")

# another one, with a different 's'
plot(rbind(A, B), type = "p", pch = 19, xlab = NA, ylab = NA,
xlim = c(0, 2), ylim = c(0, 2), main = "s = 0.1")
s <- 0.1
AB <- gyrosegment(A, B, s)
lines(AB, col = "blue", lwd = 2)
text(t(A), expression(italic(A)), pos = 2)
text(t(B), expression(italic(B)), pos = 3)

# approximate asymptotes
lines(rbind(c(0, 0), gyroABt(A, B, t = -20, s)), lty = "dashed")
lines(rbind(c(0, 0), gyroABt(A, B, t = 20, s)), lty = "dashed")

# plot the gyromidoint
points(rbind(gyromidpoint(A, B, s)), type = "p", pch = 19, col = "red")

# a 3D hyperbolic triangle ####
library(rgl)
A <- c(1, 0, 0); B <- c(0, 1, 0); C <- c(0, 0, 1)
s <- 0.3
AB <- gyrosegment(A, B, s)
AC <- gyrosegment(A, C, s)
BC <- gyrosegment(B, C, s)
view3d(30, 30, zoom = 0.75)
lines3d(AB, lwd = 3); lines3d(AC, lwd = 3); lines3d(BC, lwd = 3)
```

Gyrotriangle in 3D space
3D gyrotriangle as a mesh.

Usage

```r
gyrotriangle(
  A,
  B,
  C,
  s = 1,
  model = "u",
  iterations = 5,
  palette = NULL,
  bias = 1,
  interpolate = "linear",
  g = identity
)
```

Arguments

- **A, B, C**: three distinct 3D points
- **s**: positive number, the radius of the Poincaré ball if `model="M"`, otherwise, if `model="U"`, this number defines the hyperbolic curvature (the smaller, the more curved)
- **model**: the hyperbolic model, either "M" (Möbius model, i.e. Poincaré model) or "U" (Ungar model, i.e. hyperboloid model)
- **iterations**: the gyrotriangle is constructed by iterated subdivisions, this argument is the number of iterations
- **palette**: a vector of colors to decorate the triangle, or NULL if you don’t want to use a color palette
- **bias, interpolate**: if palette is not NULL, these arguments are passed to `colorRamp`
- **g**: a function from [0,1] to [0,1]; if palette is not NULL, this function is applied to the scalars defining the colors (the normalized gyrodistances to the gyrocentroid of the gyrotriangle)

Value

A `mesh3d` object.

Examples

```r
library(gyro)
library(rgl)
A <- c(1, 0, 0); B <- c(0, 1, 0); C <- c(0, 0, 1)
ABC <- gyrotriangle(A, B, C, s = 0.3)
open3d(windowRect = c(50, 50, 562, 562))
view3d(30, 30, zoom = 0.75)
```
shade3d(ABC, color = "navy", specular = "cyan")

using a color palette
library(trekcolors)
ABC <- gyrotriangle(
 A, B, C, s = 0.5,
 palette = trek_pal("klingon"), bias = 1.5, interpolate = "spline"
)
open3d(windowRect = c(50, 50, 562, 562))
view3d(zoom = 0.75)
shade3d(ABC)

hyperbolic icosahedron
library(rgl)
library(Rvcg) # to get the edges with the `vcgGetEdge` function
icosahedron <- icosahedron3d() # mesh with 12 vertices, 20 triangles
vertices <- t(icosahedron$vb[-4,])
triangles <- t(icosahedron$it)
edges <- as.matrix(vcgGetEdge(icosahedron)[, c("vert1", "vert2")])
s <- 0.3
open3d(windowRect = c(50, 50, 562, 562))
view3d(zoom = 0.75)
for(i in 1:nrow(triangles)){
 triangle <- triangles[i,]
 A <- vertices[triangle[1],]
 B <- vertices[triangle[2],]
 C <- vertices[triangle[3],]
 gtriangle <- gyrotriangle(A, B, C, s)
 shade3d(gtriangle, color = "midnightblue")
}
for(i in 1:nrow(edges)){
 edge <- edges[i,]
 A <- vertices[edge[1],]
 B <- vertices[edge[2],]
 gtube <- gyrotube(A, B, s, radius = 0.03)
 shade3d(gtube, color = "lemonchiffon")
}
spheres3d(vertices, radius = 0.05, color = "lemonchiffon")

gyrotube

Gyrotube (tubular gyrosegment)

Description

Tubular gyrosegment joining two given 3D points.

Usage

`gyrotube(A, B, s = 1, model = "U", n = 100, radius, sides = 90, caps = FALSE)`
Arguments

A, B distinct 3D points
s positive number, the radius of the Poincaré ball if model="M", otherwise, if model="U", this number defines the hyperbolic curvature (higher value, less curved)
model the hyperbolic model, either "M" (Möbius model, i.e. Poincaré model) or "U" (Ungar model, i.e. hyperboloid model)
n number of points forming the gyrosegment
radius radius of the tube around the gyrosegment
sides number of sides in the polygon cross section
caps Boolean, whether to put caps on the ends of the tube

Value

A mesh3d object.

Examples

```r
library(gyro)
library(rgl)
A <- c(1, 2, 0); B <- c(1, 1, 0)
tube <- gyrotube(A, B, s = 0.2, radius = 0.02)
shade3d(tube, color = "orangered")

# a 3D hyperbolic triangle ####
library(rgl)
A <- c(1, 0, 0); B <- c(0, 1, 0); C <- c(0, 0, 1)
s <- 0.3
r <- 0.03
AB <- gyrotube(A, B, s, radius = r)
AC <- gyrotube(A, C, s, radius = r)
BC <- gyrotube(B, C, s, radius = r)
view3d(30, 30, zoom = 0.75)
shade3d(AB, color = "gold")
shade3d(AC, color = "gold")
shade3d(BC, color = "gold")
spheres3d(rbind(A, B, C), radius = 0.04, color = "gold")
```

hdelaunay Hyperbolic Delaunay triangulation

Description

Computes the hyperbolic Delaunay triangulation of a set of points.
Usage

```r
hdelaunay(points, model = "M")
```

Arguments

- **points**: points in the unit disk given as a numeric matrix with two columns
- **model**: the hyperbolic model, either "M" (Möbius model, i.e. Poincaré model) or "U" (Ungar model, i.e. hyperboloid model)

Value

A list with five fields `vertices`, `edges`, `triangles`, `ntriangles`, and `centroids`, a matrix giving the gyrocentroids of the triangles. The input points matrix and the output vertices matrix are the same up to the order of the rows if `model="M"`, and if `model="U"`, the points in the output vertices matrix are obtained by isomorphism.

See Also

- `plotHdelaunay`

Examples

```r
library(gyro)
library(uniformly)
set.seed(666)
points <- runif_in_sphere(10L, d = 2)
hdelaunay(points)
```

hreflection

Hyperbolic reflection

Description

Hyperbolic reflection in the Poincaré disk.

Usage

```r
hreflection(A, B, M)
```

Arguments

- **A, B**: two points in the Poincaré disk defining the reflection line
- **M**: a point in the Poincaré disk to be reflected

Value

A point in the Poincaré disk, the image of M by the hyperbolic reflection with respect to the line passing through A and B.
Examples

```r
library(gyro)
library(plotrix)
A <- c(0.45, 0.78)
B <- c(0.1, -0.5)
M <- c(0.7, 0)
opar <- par(mar = c(0, 0, 0, 0))
plot(NULL, type = "n", xlim = c(-1, 1), ylim = c(-1, 1), asp = 1,
axes = FALSE, xlab = NA, ylab = NA)
draw.circle(0, 0, radius = 1, lwd = 2)
lines(gyrosegment(A, B, model = "M"))
points(rbind(A, B), pch = 19)
points(rbind(M), pch = 19, col = "blue")
P <- hreflection(A, B, M)
points(rbind(P), pch = 19, col = "red")
par(opar)
```

PhiMU

Isomorphism from Ungar gyrovector space to Möbius gyrovector space

Description

Isomorphism from the Ungar gyrovector space to the Möbius gyrovector space.

Usage

```r
PhiMU(A, s = 1)
```

Arguments

- `A` a point in the Ungar vector space with curvature `s`
- `s` a positive number, the hyperbolic curvature of the Ungar vector space

Value

The point of the Poincaré ball of radius `s` corresponding to `A` by isomorphism.
PhiUM

Isomorphism from Möbius gyrovector space to Ungar gyrovector space

Description

Isomorphism from the Möbius gyrovector space to the Ungar gyrovector space.

Usage

\[
\text{PhiUM}(A, s = 1)
\]

Arguments

- **A**: a point whose norm is lower than \(s \)
- **s**: positive number, the radius of the Poincaré ball

Value

The point of the Ungar gyrovector space corresponding to \(A \) by isomorphism.

plotGyrohull3d

Hyperbolic convex hull

Description

Plot the hyperbolic convex hull of a set of 3D points.

Usage

\[
\text{plotGyrohull3d}(\text{points, s = 1, model = "U", iterations = 5, n = 100, edgesAsTubes = TRUE, verticesAsSpheres = edgesAsTubes, edgesColor = "yellow", spheresColor = edgesColor, tubesRadius = 0.03, spheresRadius = 0.05, facesColor = "navy", bias = 1, interpolate = "linear", g = identity})
\]
Arguments

points: matrix of 3D points, one point per row

s: positive number, the radius of the Poincaré ball if model="M", otherwise, if model="U", this number defines the hyperbolic curvature (the smaller, the more curved)

model: the hyperbolic model, either "M" (Möbius model, i.e. Poincaré model) or "U" (Ungar model, i.e. hyperboloid model)

iterations: argument passed to gyrotriangle

n: argument passed to gyrotube or gyrosegment, the number of points for each edge

edgesAsTubes: Boolean, whether to represent tubular edges

verticesAsSpheres: Boolean, whether to represent the vertices as spheres

edgesColor: a color for the edges

spheresColor: a color for the spheres, if verticesAsSpheres = TRUE

tubesRadius: radius of the tubes, if edgesAsTubes = TRUE

spheresRadius: radius of the spheres, if verticesAsSpheres = TRUE

facesColor: this argument sets the color of the faces; it can be either a single color or a color palette, i.e. a vector of colors; if it is a color palette, it will be passed to the argument palette of gyrotriangle

bias, interpolate, g: these arguments are passed to gyrotriangle in the case when facesColor is a color palette

Value

No value, called for plotting.

Examples

library(gyro)
library(rgl)

Triangular orthobicopula
points <- rbind(
 c(1, -1/sqrt(3), sqrt(8/3)),
 c(1, -1/sqrt(3), -sqrt(8/3)),
 c(-1, -1/sqrt(3), sqrt(8/3)),
 c(-1, -1/sqrt(3), -sqrt(8/3)),
 c(0, 2/sqrt(3), sqrt(8/3)),
 c(0, 2/sqrt(3), -sqrt(8/3)),
 c(1, sqrt(3), 0),
 c(1, -sqrt(3), 0),
 c(-1, sqrt(3), 0),
 c(-1, -sqrt(3), 0),
 c(2, 0, 0),
 c(-2, 0, 0))
plotGyrohull3d

)
open3d(windowRect = c(50, 50, 562, 562))
view3d(zoom = 0.7)
plotGyrohull3d(points, s = 0.4)

a non-convex polyhedron with triangular faces
vertices <- rbind(
 c(-2.1806973249, -2.1806973249, -2.1806973249),
 c(-3.5617820682, 0.00000000000, 0.00000000000),
 c(0.00000000000, -3.5617820682, 0.00000000000),
 c(0.00000000000, 0.00000000000, -3.5617820682),
 c(-2.1806973249, -2.1806973249, 2.18069732490),
 c(0.00000000000, 0.00000000000, 3.56178206820),
 c(-2.1806973249, 2.18069732490, -2.1806973249),
 c(0.00000000000, 3.56178206820, 0.00000000000),
 c(-2.1806973249, 2.18069732490, 2.18069732490),
 c(2.18069732490, -2.1806973249, -2.1806973249),
 c(3.56178206820, 0.00000000000, 0.00000000000),
 c(2.18069732490, -2.1806973249, 2.18069732490),
 c(2.18069732490, 2.18069732490, -2.1806973249),
 c(2.18069732490, 2.18069732490, 2.18069732490))
triangles <- 1 + rbind(
 c(3, 2, 0),
 c(0, 1, 3),
 c(2, 1, 0),
 c(4, 2, 5),
 c(5, 1, 4),
 c(4, 1, 2),
 c(6, 7, 3),
 c(3, 1, 6),
 c(6, 1, 7),
 c(5, 7, 8),
 c(8, 1, 5),
 c(7, 1, 8),
 c(9, 2, 3),
 c(3, 10, 9),
 c(9, 10, 2),
 c(5, 2, 11),
 c(11, 10, 5),
 c(2, 10, 11),
 c(3, 7, 12),
 c(12, 10, 3),
 c(7, 10, 12),
 c(13, 7, 5),
 c(5, 10, 13),
 c(13, 10, 7))
edges0 <- do.call(c, lapply(1:nrow(triangles), function(i){
 face <- triangles[i,]
 list(
 sort(c(face[1], face[2])),
 sort(c(face[1], face[3])),
 sort(c(face[2], face[3]))
)
}))
```r
edges <- do.call(rbind, edges0)
edges <- edges[!duplicated(edges), ]
s <- 2
library(rgl)
open3d(windowRect = c(50, 50, 1074, 562))
mfrow3d(1, 2)
view3d(zoom = 0.65)
for(i in 1:nrow(triangles)){
  triangle <- triangles[i, ]
  A <- vertices[triangle[1], ]
  B <- vertices[triangle[2], ]
  C <- vertices[triangle[3], ]
  gtriangle <- gyrotriangle(A, B, C, s)
  shade3d(gtriangle, color = "violetred")
}
for(i in 1:nrow(edges)){
  edge <- edges[i, ]
  A <- vertices[edge[1], ]
  B <- vertices[edge[2], ]
  gtube <- gyrotube(A, B, s, radius = 0.06)
  shade3d(gtube, color = "darkviolet")
}
spheres3d(vertices, radius = 0.09, color = "deeppink")
# now plot the hyperbolic convex hull
next3d()
view3d(zoom = 0.65)
plotGyrohull3d(vertices, s)

# an example of color palette ####
library(trekcolors)
library(uniformly)
set.seed(666)
points <- runif_on_sphere(50, d = 3)
open3d(windowRect = c(50, 50, 562, 562))
plotGyrohull3d(
  points, edgesColor = "brown",
  facesColor = trek_pal("lcars_series"), g = function(u) 1-u^2)
```

plotHdelaunay
Plot hyperbolic Delaunay triangulation

Description

Plot a hyperbolic Delaunay triangulation obtained with `hdelaunay`.

Usage

```
plotHdelaunay()
```
plotHdelaunay

```r
hdel,
vertices = TRUE,
edges = TRUE,
circle = TRUE,
color = "distinct",
hue = "random",
luminosity = "random"
)
```

Arguments

- **hdel**: an output of `hdelaunay`
- **vertices**: Boolean, whether to plot the vertices
- **edges**: Boolean, whether to plot the edges
- **circle**: Boolean, whether to plot the unit circle; ignored for the Ungar model
- **color**: this argument controls the colors of the triangles; it can be `NA` for no color, "random" for random colors generated with `randomColor`, "distinct" for distinct colors generated with `distinctColorPalette`, a single color, a vector of colors (color i attributed to the i-th triangle), or a vectorized function mapping each point in the unit interval to a color
- **hue, luminosity**: passed to `randomColor` if color = "random"

Value

No returned value, just generates a plot.

Examples

```r
library(gyro)
library(uniformly)
set.seed(666)

points <- runif_in_sphere(35L, d = 2)
hdel <- hdelaunay(points, model = "M")
plotHdelaunay(hdel)

points <- runif_in_sphere(35L, d = 2, r = 0.7)
hdel <- hdelaunay(points, model = "U")
plotHdelaunay(hdel)

# example with colors given by a function ####
library(gyro)
library(trekcolors)

phi <- (1 + sqrt(5)) / 2
theta <- head(seq(0, pi/2, length.out = 11), -1L)
a <- phi^((2*theta/pi)^0.8 - 1)
u <- a * cos(theta)
```
\(v \leftarrow a \times \sin(\theta) \)
\(x \leftarrow c(0, u, -v, -u, v) \)
\(y \leftarrow c(0, v, u, -v, -u) \)
\(\text{pts} \leftarrow \text{cbind}(x, y) / 1.03 \)
\(\text{hdel} \leftarrow \text{hdelaunay}(\text{pts, model = } "M") \)

fcolor <- function(t){
 RGB <- colorRamp(trek_pal("klingon"))(t)
 rgb(RGB[,1L], RGB[,2L], RGB[,3L], maxColorValue = 255)
}

plotHdelaunay(
 hdel, vertices = FALSE, circle = FALSE, color = fcolor
)

tiling

Hyperbolic tiling

Description

Draw a hyperbolic tiling of the Poincaré disk.

Usage

```r
tiling(n, p, depth = 4, colors = c("navy", "yellow"), circle = TRUE, ...)
```

Arguments

- **n, p**
 - two positive integers satisfying \(1/n + 1/p < 1/2\)
- **depth**
 - positive integer, the number of recursions
- **colors**
 - two colors to fill the hyperbolic tiling
- **circle**
 - Boolean, whether to draw the unit circle
- **...**
 - additional arguments passed to `draw.circle`

Value

No returned value, just draws the hyperbolic tiling.

Note

The higher value of \(n\), the slower. And of course increasing \(depth\) slows down the rendering. The value of \(p\) has no influence on the speed.

Examples

```r
library(gyro)
tiling(3, 7, border = "orange")
```
Index

changesOfSign, 2
colorRamp, 8
distinctColorPalette, 17
draw.circle, 18
gyroABt, 3, 6
gyrocentroid, 4
gyrodemos, 4
gyromidpoint, 5
gyrosegment, 5, 6, 6, 14
gyrotriangle, 7, 14
gyrotube, 9, 14
hdelaunay, 10, 16, 17
hreflection, 11
mesh3d, 8, 10
PhiMU, 12
PhiUM, 13
plotGyrohull3d, 13
plotHdelaunay, 11, 16
randomColor, 17
tiling, 18