Package ‘hagis’

September 6, 2023

Title Analysis of Plant Pathogen Pathotype Complexities, Distributions and Diversity

Version 3.1.11

Description Analysis of plant pathogen pathotype survey data. Functions provided calculate distribution of susceptibilities, distribution of complexities with statistics, pathotype frequency distribution, as well as diversity indices for pathotypes. This package is meant to be a direct replacement for Herrmann, Löwer and Schachtel's (1999) <doi:10.1046/j.1365-3059.1999.00325.x> Habgood-Gilmour Spreadsheet, 'HaGiS', previously used for pathotype analysis.

Depends R (>= 3.4.0)

Imports data.table, ggplot2, pander, stats, utils

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Suggests ape, dplyr, knitr, rmarkdown, testthat, vegan, vdiffrr, roxyglobals

VignetteBuilder knitr

RoxygenNote 7.2.3

Language en-US

BugReports https://github.com/openplantpathology/hagis/issues

X-schema.org-applicationCategory Tools

X-schema.org-keywords plant-pathology, pathotype, pathogen-survey, virulence analysis, differential set, assessment scale

X-schema.org-isPartOf https://openplantpathology.org

Config/roxyglobals/filename globals.R

Config/roxyglobals/unique FALSE
autoplot.hagis.complexities

Description

Creates a **ggplot2** object of the frequency of complexity (percent per complexity) or a **ggplot2** object of the distribution (number per complexity) calculated by `calculate_complexities()`.

Usage

```r
## S3 method for class 'hagis.complexities'
autoplot(object, type, color = NULL, order = NULL, ...)
```
Arguments

- **object**
 A hagis complexities object generated by `calculate_complexities()`. Character.

- **type**
 A vector of values for which the bar plot is desired. Specify whether to return a graph of the frequency of complexities as a percentage, "percentage", or as the count, "count". Character.

- **color**
 A named or hexadecimal color value to use for the bar color

- **order**
 Sort the x-axis of the bar chart by ascending or descending order of frequency. Accepts ascending or descending input values. Defaults to complexity value. Character.

- **...**
 Passed to the chosen `geom(s)`

Value

A ggplot2 object

Examples

```r
# Using the built-in data set, `P_sojae_survey`
data(P_sojae_survey)

# calculate susceptibilities with a 60 % cutoff value
complexities <- calculate_complexities(x = P_sojae_survey,
  cutoff = 60,
  control = "susceptible",
  sample = "Isolate",
  gene = "Rps",
  perc_susc = "perc.susc")

# Visualize the distribution (count or actual values)
autoplot(complexities, type = "count")

# Visualize the frequency (percentages)
autoplot(complexities, type = "percentage")
```

Description

Creates a ggplot2 object of the gene summaries calculated by `summarize_gene()`

Usage

```r
## S3 method for class 'hagis.gene.summary'
autoplot(object, type, color = NULL, order = NULL, ...)
```
calculate_complexities

Calculate Distribution of Complexities by Sample

Description

Calculate the distribution of susceptibilities by sample id.

Usage

```
calculate_complexities(x, cutoff, control, sample, gene, perc_susc)
```
`calculate_diversities` Calculate Diversities Indices

Description

Calculate five pathogen diversity indices. Diversity indices include:

Arguments

- `x`: a data.frame containing the data.
- `control`: value used to denote the susceptible control in the gene column. Character.
- `sample`: column providing the unique identification for each sample being tested. Character.
- `gene`: column providing the gene(s) being tested. Character.
- `perc_susc`: column providing the percent susceptible reactions. Character.

Value

`calculate_complexities` returns an object of class `hagis.complexities`. An object of class `hagis.complexities` is a list containing the following components:

- `grouped_complexities`: a `data.table::data.table()` object of grouped complexities.
- `individual_complexities`: a `data.table::data.table()` object of individual complexities.

Examples

```r
# Using the built-in data set, `P_sojae_survey`
data(P_sojae_survey)
P_sojae_survey

# calculate susceptibilities with a 60% cutoff value
complexities <- calculate_complexities(x = P_sojae_survey, 
cutoff = 60, 
control = "susceptible", 
sample = "Isolate", 
gene = "Rps", 
perc_susc = "perc.susc")

complexities
summary(complexities)
```

• Simple diversity index, which will show the proportion of unique pathotypes to total samples. As the values gets closer to 1, there is greater diversity in pathotypes within the population. Simple diversity is calculated as:

\[D = \frac{N_p}{N_s} \]

where \(N_p \) is the number of pathotypes and \(N_s \) is the number of samples.

• Gleason diversity index, an alternate version of Simple diversity index, is less sensitive to sample size than the Simple index.

\[D = \frac{(N_p - 1)}{\log(N_s)} \]

Where \(N_p \) is the number of pathotypes and \(N_s \) is the number of samples.

• Shannon diversity index is typically between 1.5 and 3.5, as richness and evenness of the population increase, so does the Shannon index value.

\[D = - \sum_{i=1}^{R} p_i \log p_i \]

Where \(p_i \) is the proportional abundance of species \(i \).

• Simpson diversity index values range from 0 to 1, 1 represents high diversity and 0 represents no diversity. Where diversity is calculated as:

\[D = \sum_{i=1}^{R} p_i^2 \]

• Evenness ranges from 0 to 1, as the Evenness value approaches 1, there is a more even distribution of each pathotype’s frequency within the population. Where Evenness is calculated as:

\[D = \frac{H'}{\log(N_p)} \]

where \(H' \) is the Shannon diversity index and \(N_p \) is the number of pathotypes.

Usage

```r
calculate_diversities(x, cutoff, control, sample, gene, perc_susc)
```

Arguments

- `x`: a `data.frame` containing the data.
- `control`: value used to denote the susceptible control in the gene column. Character.
- `sample`: column providing the unique identification for each sample being tested. Character.
- `gene`: column providing the gene(s) being tested. Character.
- `perc_susc`: column providing the percent susceptible reactions. Character.
Value

hagis.diversities object containing

- Number of Samples
- Number of Pathotypes
- Simple Diversity Index
- Gleason Diversity Index
- Shannon Diversity Index
- Simpson Diversity Index
- Evenness Diversity Index

Examples

```r
# Using the built-in data set, P_sojae_survey
data(P_sojae_survey)

P_sojae_survey

# calculate susceptibilities with a 60 % cutoff value
diversities <- calculate_diversities(x = P_sojae_survey,
cutoff = 60,
control = "susceptible",
sample = "Isolate",
gene = "Rps",
perc_susc = "perc.susc")

divisities
```

create_binary_matrix
Create Binary Data Matrix From Pathotype Data

Description

Creates a binary data matrix from pathotype data representing the pathotype of each isolate. This binary data matrix can be used to visualize beta-diversity of pathotypes using vegan and ape.

Usage

create_binary_matrix(x, cutoff, control, sample, gene, perc_susc)
Arguments

x a data.frame containing the data.
cutoff value for percent susceptible cutoff. Numeric.
control value used to denote the susceptible control in the gene column. Character.
sample column providing the unique identification for each sample being tested. Character.
gene column providing the gene(s) being tested. Character.
perc_susc column providing the percent susceptible reactions. Character.

Value

create_binary_matrix returns a binary matrix of pathotype data as a matrix object

Examples

Using the built-in data set, `P_sojae_survey`
data(P_sojae_survey)
P_sojae_survey

calculate susceptibilities with a 60 % cutoff value
final_matrix <- create_binary_matrix(x = P_sojae_survey,
cutoff = 60,
control = "susceptible",
sample = "Isolate",
gene = "Rps",
perc_susc = "perc.susc")

final_matrix

diversities_table
Custom Print for hagis Diversities Tables

Description

Print the frequency table of diversities from a hagis.diversities object The resulting object is a pander table (a text object for Markdown) for ease of use in reporting and viewing in the console.

Usage

diversities_table(x, ...)

Arguments

x a hagis.diversities object generated by calculate_diversities()
... other arguments passed to pander::panderOptions()
individual_pathotypes

Value

A `pander` object of diversities

See Also

`calculate_diversities()`, `individual_pathotypes()`

Examples

```r
# Using the built-in data set, P_sojae_survey
data(P_sojae_survey)
P_sojae_survey

# calculate susceptibilities with a 60% cutoff value
diversities <- calculate_diversities(x = P_sojae_survey,
cutoff = 60,
control = "susceptible",
sample = "Isolate",
gene = "Rps",
perc_susc = "perc.susc")

# print the diversities table
diversities_table(diversities)
```

Description

Print an object from a `hagis.diversities` object with individual pathotypes, i.e. each sample’s pathotype. The resulting object is a `pander` table (a text object for Markdown) for ease of use in reporting and viewing in the console.

Usage

`individual_pathotypes(x, ...)`

Arguments

- `x` : a `hagis.diversities` object generated by `calculate_diversities()`
- `...` : other arguments passed to `pander::panderOptions()`

Value

A `pander` object of individual pathotypes
P_sojae_survey

See Also
calculate_diversities(), diversities_table()

Examples

Using the built-in data set, P_sojae_survey
data(P_sojae_survey)
P_sojae_survey

calculate susceptibilities with a 60 % cutoff value
diversities <- calculate_diversities(x = P_sojae_survey,
cutoff = 60,
control = "susceptible",
sample = "Isolate",
gene = "Rps",
perc_susc = "perc.susc")

print the diversities table
individual_pathotypes(diversities)

P_sojae_survey Phytophthora sojae Survey Example Data

Description

Data from a Phytophthora sojae survey

Usage

data(P_sojae_survey)

Format

An object of class data.table with 294 observations of 12 variables

Isolate P. sojae isolate identifier
Line Soybean cultivar
Rps Rps gene identifier
Total Total number of plants inoculated
HR (1) Number of plants that exhibit a hypersensitive response after inoculation
Lesion (2) Number of plants that develop a lesion at inoculation site
Lesion to cotyledon (3) Number of plants that develop a lesion, which advances to the hypocotyl of the seedling after infection
Dead (4) Number of dead plants that are observed after inoculation
total.susc The total number of susceptible plants (Lesion+Lesion to cotyledon+Dead)
total.resis The total number of resistant plants (equal to HR value)
sample_meta

Source

Data from an ongoing 2017 *Phytophthora sojae* survey in Michigan, conducted by A. G. McCoy *et al.*.

Examples

```r
data(P_sojae_survey)
P_sojae_survey
```

<table>
<thead>
<tr>
<th>sample_meta</th>
<th>Phytophthora sojae Survey Example Metadata</th>
</tr>
</thead>
</table>

Description

Metadata to accompany internal data from a *Phytophthora sojae* survey used for an example in the "Beta-diversity Analyses" vignette.

Usage

```r
data(sample_meta)
```

Format

An object of class `data.frame` with 21 observations of 2 variables

- **Sample** *P. sojae* sample identifier
- **Locale** US State where sample was collected, limited to Michigan

Source

Data from an ongoing 2017 *Phytophthora sojae* survey in Michigan, conducted by A. G. McCoy *et al.*

Examples

```r
data(sample_meta)
sample_meta
```
summarize_gene
Calculate and Summarize Distribution of Susceptibilities by Gene

Description

Calculate the distribution of susceptibilities by gene.

Usage

```r
summarize_gene(x, cutoff, control, sample, gene, perc_susc)
```

Arguments

- `x`: a data.frame containing the data.
- `control`: value used to denote the susceptible control in the gene column. Character.
- `sample`: column providing the unique identification for each sample being tested. Character.
- `gene`: column providing the gene(s) being tested. Character.
- `perc_susc`: column providing the percent susceptible reactions. Character.

Value

returns an object of class `hagis.gene.summary`. An object of class `hagis.gene.summary` is a `data.table::data.table()` containing the following components columns:

- `gene` the gene
- `N_virulent_isolates` the total number virulent isolates for a given gene in the gene column
- `percent_pathogenic` the frequency with which a gene is pathogenic

Examples

```r
# Using the built-in data set, `P_sojae_survey`
data(P_sojae_survey)

P_sojae_survey

# calculate susceptibilities with a 60 % cutoff value
susc <- summarize_gene(x = P_sojae_survey,
                        cutoff = 60,
                        control = "susceptible",
                        sample = "Isolate",
                        gene = "Rps",
                        perc_susc = "perc.susc")

susc
```
Index

* datasets
 P_sojae_survey, 10
 sample_meta, 11

 autoplot.hagis.complexities, 2
 autoplot.hagis.gene.summary, 3

 calculate_complexities, 4
 calculate_complexities(), 2, 3
 calculate_diversities, 5
 calculate_diversities(), 8–10
 class, 12
 create_binary_matrix, 7

 data.table::data.table(), 5, 12
 diversities_table, 8
 diversities_table(), 10

 individual_pathotypes, 9
 individual_pathotypes(), 9

 matrix, 8

 P_sojae_survey, 10
 pander, 8, 9
 pander::panderOptions(), 8, 9

 sample_meta, 11
 summarize_gene, 12
 summarize_gene(), 3, 4