Package ‘hardhat’

February 27, 2020

Title Construct Modeling Packages

Version 0.1.2

Maintainer Davis Vaughan <davis@rstudio.com>

Description Building modeling packages is hard. A large amount of effort generally goes into providing an implementation for a new method that is efficient, fast, and correct, but often less emphasis is put on the user interface. A good interface requires specialized knowledge about S3 methods and formulas, which the average package developer might not have. The goal of 'hardhat' is to reduce the burden around building new modeling packages by providing functionality for preprocessing, predicting, and validating input.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Roxygen list(markdown = TRUE)

Suggests recipes (>= 0.1.8),
testthat (>= 2.1.0),
covr,
knitr,
rmarkdown,
usethis,
roxygen2,
develtools

Imports glue,
rlang (>= 0.4.1),
tibble,
vctrs (>= 0.2.3)

URL https://github.com/tidymodels/hardhat

BugReports https://github.com/tidymodels/hardhat/issues

VignetteBuilder knitr
R topics documented:

modeling-package .. 2
add_intercept_column ... 3
default_formula_blueprint 4
default_recipe_blueprint 9
default_xy_blueprint 11
delete_response ... 13
forge ... 14
get_data_classes ... 15
get_levels ... 16
is_blueprint ... 17
model_frame ... 18
model_matrix ... 19
model_offset .. 20
mold .. 22
new_default_formula_blueprint 23
new_formula_blueprint 24
new_model ... 27
refresh_blueprint ... 28
run_mold ... 29
scream .. 30
shrink ... 32
spruce .. 34
standardize ... 34
update_blueprint .. 35
validate_column_names 36
validate_no_formula_duplication 38
validate_outcomes_are_binary 39
validate_outcomes_are_factors 41
validate_outcomes_are_numeric 42
validate_outcomes_are_univariate 43
validate_prediction_size 44
validate_predictors_are_numeric 46

Index 48

modeling-package Create a modeling package

Description

create_modeling_package() will:

- Call usethis::create_package() to set up a new R package.
- Call use_modeling_deps().
- Call use_modeling_files().

use_modeling_deps() will:

- Add hardhat, rlang, and stats to Imports
- Add recipes to Suggests
If roxygen2 is available, use roxygen markdown

use_modeling_files() will:

- Add a package documentation file
- Generate and populate 3 files in R/:
 - {{model}}-constructor.R
 - {{model}}-fit.R
 - {{model}}-predict.R

Usage

create_modeling_package(path, model, fields = NULL, open = interactive())

use_modeling_deps()

use_modeling_files(model)

Arguments

path
A path. If it exists, it is used. If it does not exist, it is created, provided that the parent path exists.

model
A string. The name of the high level modeling function that users will call. For example, "linear_regression". This will be used to populate the skeleton. Spaces are not allowed.

fields
A named list of fields to add to DESCRIPTION, potentially overriding default values. See usethis::use_description() for how you can set personalized defaults using package options.

open
If TRUE, activates the new project:
 - If RStudio desktop, the package is opened in a new session.
 - If on RStudio server, the current RStudio project is activated.
 - Otherwise, the working directory and active project is changed.

Value

create_modeling_package() returns the project path invisibly.
use_modeling_deps() returns invisibly.
use_modeling_files() return model invisibly.

Description

This function adds an integer column of 1’s to data.

Usage

add_intercept_column(data, name = "(Intercept)")
default_formula_blueprint

Arguments

data A data frame or matrix.
name The name for the intercept column. Defaults to "(Intercept)", which is the same name that stats::lm() uses.

Details

If a column named name already exists in data, then data is returned unchanged and a warning is issued.

Value

data with an intercept column.

Examples

add_intercept_column(mtcars)
add_intercept_column(mtcars, "intercept")
add_intercept_column(as.matrix(mtcars))

default_formula_blueprint

Default formula blueprint

Description

This page holds the details for the formula preprocessing blueprint. This is the blueprint used by default from mold() if x is a formula.

Usage

default_formula_blueprint(
 intercept = FALSE,
 allow_novel_levels = FALSE,
 indicators = TRUE
)

S3 method for class 'formula'
mold(formula, data, ..., blueprint = NULL)

Arguments

intercept A logical. Should an intercept be included in the processed data? This information is used by the process function in the mold and forge function list.
allow_novel_levels A logical. Should novel factor levels be allowed at prediction time? This information is used by the clean function in the forge function list, and is passed on to scream().
default_formula_blueprint

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>indicators</td>
<td>A logical. Should factors be expanded into dummy variables?</td>
</tr>
<tr>
<td>formula</td>
<td>A formula specifying the predictors and the outcomes.</td>
</tr>
<tr>
<td>data</td>
<td>A data frame or matrix containing the outcomes and predictors.</td>
</tr>
<tr>
<td>...</td>
<td>Not used.</td>
</tr>
<tr>
<td>blueprint</td>
<td>A preprocessing blueprint. If left as NULL, then a <code>default_formula_blueprint()</code> is used.</td>
</tr>
</tbody>
</table>

Details

While not different from base R, the behavior of expanding factors into dummy variables when an intercept is *not* present should be documented.

- When an intercept is present, factors are expanded into $K-1$ new columns, where K is the number of levels in the factor.
- When an intercept is *not* present, factors are expanded into all K columns (one-hot encoding).

Offsets can be included in the formula method through the use of the inline function `stats::offset()`. These are returned as a tibble with 1 column named `".offset"` in the `$extras$offset` slot of the return value.

Value

For `default_formula_blueprint()`, a formula blueprint.

Mold

When `mold()` is used with the default formula blueprint:

- **Predictors**
 - The RHS of the formula is isolated, and converted to its own 1 sided formula: `~` RHS.
 - Runs `stats::model.frame()` on the RHS formula and uses `data`.
 - If `indicators = TRUE`, it then runs `stats::model.matrix()` on the result.
 - If `indicators = FALSE`, factors are removed before `model.matrix()` is run, and then added back afterwards. No interactions or inline functions involving factors are allowed.
 - If any offsets are present from using `offset()`, then they are extracted with `model_offset()`.
 - If `intercept = TRUE`, adds an intercept column.
 - Coerces the result of the above steps to a tibble.

- **Outcomes**
 - The LHS of the formula is isolated, and converted to its own 1 sided formula: `~` LHS.
 - Runs `stats::model.frame()` on the LHS formula and uses `data`.
 - Coerces the result of the above steps to a tibble.
When `forge()` is used with the default formula blueprint:

- It calls `shrink()` to trim `new_data` to only the required columns and coerce `new_data` to a tibble.
- It calls `scream()` to perform validation on the structure of the columns of `new_data`.
- **Predictors**
 - It runs `stats::model.frame()` on `new_data` using the stored terms object corresponding to the `predictors`.
 - If, in the original `mold()` call, `indicators = TRUE` was set, it then runs `stats::model.matrix()` on the result.
 - If, in the original `mold()` call, `indicators = FALSE` was set, it runs `stats::model.matrix()` on the result without the factor columns, and then adds them on afterwards.
 - If any offsets are present from using `offset()` in the original call to `mold()`, then they are extracted with `model_offset()`.
 - If `intercept = TRUE` in the original call to `mold()`, then an intercept column is added.
 - It coerces the result of the above steps to a tibble.
- **Outcomes**
 - It runs `stats::model.frame()` on `new_data` using the stored terms object corresponding to the `outcomes`.
 - Coerces the result to a tibble.

Differences From Base R

There are a number of differences from base R regarding how formulas are processed by `mold()` that require some explanation.

Multivariate outcomes can be specified on the LHS using syntax that is similar to the RHS (i.e. `outcome_1 + outcome_2 ~ predictors`). If any complex calculations are done on the LHS and they return matrices (like `stats::poly()`), then those matrices are flattened into multiple columns of the tibble after the call to `model.frame()`. While this is possible, it is not recommended, and if a large amount of preprocessing is required on the outcomes, then you are better off using a `recipes::recipe()`.

Global variables are not allowed in the formula. An error will be thrown if they are included. All terms in the formula should come from `data`.

By default, intercepts are not included in the predictor output from the formula. To include an intercept, set `blueprint = default_formula_blueprint(intercept = TRUE)`. The rationale for this is that many packages either always require or never allow an intercept (for example, the `earth` package), and they do a large amount of extra work to keep the user from supplying one or removing it. This interface standardizes all of that flexibility in one place.

Examples

```r
# Setup

train <- iris[1:100,]
test <- iris[101:150,]
```
Formula Example

Call mold() with the training data
processed <- mold(
 log(Sepal.Width) ~ Sepal.Length + Species,
 train,
 blueprint = default_formula_blueprint(intercept = TRUE)
)

Then, call forge() with the blueprint and the test data
to have it preprocess the test data in the same way
forge(test, processed$blueprint)

Use `outcomes = TRUE` to also extract the preprocessed outcome
forge(test, processed$blueprint, outcomes = TRUE)

Factors without an intercept

No intercept is added by default
processed <- mold(Sepal.Width ~ Species, train)

So factor columns are completely expanded
into all `K` columns (the number of levels)
processed$predictors

Global variables

y <- rep(1, times = nrow(train))

In base R, global variables are allowed in a model formula
frame <- model.frame(Species ~ y + Sepal.Length, train)
head(frame)

mold() does not allow them, and throws an error
tryCatch(
 expr = mold(Species ~ y + Sepal.Length, train),
 error = function(e) print(e$message)
)

Dummy variables and interactions

By default, factor columns are expanded
and interactions are created, both by
calling model.matrix(). Some models (like
tree based models) can take factors directly
but still might want to use the formula method.
In those cases, set `indicators = FALSE` to not
run model.matrix() on factor columns. Interactions
are still allowed and are run on numeric columns.

blueprint_no_indicators <- default_formula_blueprint(indicators = FALSE)

processed <- mold(


```
```Species + Sepal.Width:Sepal.Length,
train,
blueprint = blueprint_no_indicators
)

processed$predictors

An informative error is thrown when `indicators = FALSE` and
factors are present in interaction terms or in inline functions
try(mold(Sepal.Width ~ Sepal.Length:Species, train, blueprint = blueprint_no_indicators))
try(mold(Sepal.Width ~ paste0(Species), train, blueprint = blueprint_no_indicators))

Multivariate outcomes

Multivariate formulas can be specified easily
processed <- mold(Sepal.Width + log(Sepal.Length) ~ Species, train)
processed$outcomes

Inline functions on the LHS are run, but any matrix
output is flattened (like what happens in `model.matrix()``)
(essentially this means you don’t wind up with columns
in the tibble that are matrices)
processed <- mold(poly(Sepal.Length, degree = 2) ~ Species, train)
processed$outcomes

TRUE
cmp(processed$outcomes) == 2

Multivariate formulas specified in mold()
carry over into forge()
forge(test, processed$blueprint, outcomes = TRUE)

Offsets

Offsets are handled specially in base R, so they deserve special
treatment here as well. You can add offsets using the inline function
offset()
processed <- mold(Sepal.Width ~ offset(Sepal.Length) + Species, train)

processed$extras$offset

Multiple offsets can be included, and they get added together
processed <- mold(
 Sepal.Width ~ offset(Sepal.Length) + offset(Petal.Width),
 train
)

identical(
 processed$extras$offset$.offset,
 train$Sepal.Length + train$Petal.Width
)

Forging test data will also require
and include the offset
forge(test, processed$blueprint)

Intercept only

Because '1' and '0' are intercept modifying terms, they are
not allowed in the formula and are controlled by the
'intercept' argument of the blueprint. To use an intercept
only formula, you should supply 'NULL' on the RHS of the formula.
mold(~ NULL, train, blueprint = default_formula_blueprint(intercept = TRUE))

default_recipe_blueprint

Default recipe blueprint

Description

This page holds the details for the recipe preprocessing blueprint. This is the blueprint used by default from `mold()` if `x` is a recipe.

Usage

```r
default_recipe_blueprint(
  intercept = FALSE,
  allow_novel_levels = FALSE,
  fresh = TRUE
)
```

```r
mold(x, data, ..., blueprint = NULL)
```

Arguments

- **intercept**
 A logical. Should an intercept be included in the processed data? This information is used by the `process` function in the `mold` and `forge` function list.

- **allow_novel_levels**
 A logical. Should novel factor levels be allowed at prediction time? This information is used by the `clean` function in the `forge` function list, and is passed on to `scream()`.

- **fresh**
 Should already trained operations be re-trained when `prep()` is called?

- **x**
 An unprepped recipe created from `recipes::recipe()`.

- **data**
 A data frame or matrix containing the outcomes and predictors.

- **...**
 Not used.

- **blueprint**
 A preprocessing blueprint. If left as `NULL`, then a `default_recipe_blueprint()` is used.

Value

For `default_recipe_blueprint()`, a recipe blueprint.
Mold

When `mold()` is used with the default recipe blueprint:

- It calls `recipes::prep()` to prep the recipe.
- It calls `recipes::juice()` to extract the outcomes and predictors. These are returned as tibbles.
- If `intercept = TRUE`, adds an intercept column to the predictors.

Forge

When `forge()` is used with the default recipe blueprint:

- It calls `shrink()` to trim `new_data` to only the required columns and coerce `new_data` to a tibble.
- It calls `scream()` to perform validation on the structure of the columns of `new_data`.
- It calls `recipes::bake()` on the `new_data` using the prepped recipe used during training.
- It adds an intercept column onto `new_data` if `intercept = TRUE`.

Examples

```r
library(recipes)
# ---------------------------------------------------------------------------
# Setup
train <- iris[1:100,]
test <- iris[101:150,]
# ---------------------------------------------------------------------------
# Recipes example
# Create a recipe that logs a predictor
rec <- recipe(Species ~ Sepal.Length + Sepal.Width, train) %>%
  step_log(Sepal.Length)
processed <- mold(rec, train)
# Sepal.Length has been logged
processed$predictors
processed$outcomes
# The underlying blueprint is a prepped recipe
processed$blueprint$recipe
# Call forge() with the blueprint and the test data
# to have it preprocess the test data in the same way
forge(test, processed$blueprint)
# Use 'outcomes = TRUE' to also extract the preprocessed outcome!
# This logged the Sepal.Length column of 'new_data'
forge(test, processed$blueprint, outcomes = TRUE)
# ---------------------------------------------------------------------------
```
With an intercept

You can add an intercept with `intercept = TRUE`
processed <- mold(rec, train, blueprint = default_recipe_blueprint(intercept = TRUE))

processed$predictors

But you also could have used a recipe step
rec2 <- step_intercept(rec)

mold(rec2, iris)$predictors

Non standard roles

If you have custom recipe roles, they are processed and returned in
the `$extras$roles` slot of the return value of `mold()` and `forge()`.

rec_roles <- recipe(train) %>%
 update_role(Sepal.Width, new_role = "predictor") %>%
 update_role(Species, new_role = "outcome") %>%
 update_role(Sepal.Length, new_role = "custom_role") %>%
 update_role(Petal.Length, new_role = "custom_role2")

processed_roles <- mold(rec_roles, train)

processed_roles$extras

forge(test, processed_roles$blueprint)

default_xy_blueprint

Default XY blueprint

Description

This page holds the details for the XY preprocessing blueprint. This is the blueprint used by default from `mold()` if `x` and `y` are provided separately (i.e. the XY interface is used).

Usage

```r
default_xy_blueprint(intercept = FALSE, allow_novel_levels = FALSE)
```

```r
## S3 method for class 'data.frame'
mold(x, y, ..., blueprint = NULL)
```

```r
## S3 method for class 'matrix'
mold(x, y, ..., blueprint = NULL)
```

Arguments

- `intercept` A logical. Should an intercept be included in the processed data? This information is used by the `process` function in the `mold` and `forge` function list.
allow_novel_levels
A logical. Should novel factor levels be allowed at prediction time? This information is used by the clean function in the forge function list, and is passed on to scream().

x
A data frame or matrix containing the predictors.

y
A data frame, matrix, or vector containing the outcomes.

... Not used.

blueprint
A preprocessing blueprint. If left as NULL, then a default_xy_blueprint() is used.

Details
As documented in standardize(), if y is a vector, then the returned outcomes tibble has 1 column with a standardized name of ".outcome".

The one special thing about the XY method’s forge function is the behavior of outcomes = TRUE when a vector y value was provided to the original call to mold(). In that case, mold() converts y into a tibble, with a default name of .outcome. This is the column that forge() will look for in new_data to preprocess. See the examples section for a demonstration of this.

Value
For default_xy_blueprint(), an XY blueprint.

Mold
When mold() is used with the default xy blueprint:

- It converts x to a tibble.
- It adds an intercept column to x if intercept = TRUE.
- It runs standardize() on y.

Forge
When forge() is used with the default xy blueprint:

- It calls shrink() to trim new_data to only the required columns and coerce new_data to a tibble.
- It calls scream() to perform validation on the structure of the columns of new_data.
- It adds an intercept column onto new_data if intercept = TRUE.

Examples

Setup
train <- iris[1:100,]
test <- iris[101:150,]

train_x <- train[, "Sepal.Length", drop = FALSE]
train_y <- train[, "Species", drop = FALSE]

test_x <- test[, "Sepal.Length", drop = FALSE]
test_y <- test[, "Species", drop = FALSE]

First, call mold() with the training data
processed <- mold(train_x, train_y)

Then, call forge() with the blueprint and the test data
to have it preprocess the test data in the same way
forge(test_x, processed$blueprint)

Intercept
processed <- mold(train_x, train_y, blueprint = default_xy_blueprint(intercept = TRUE))
forge(test_x, processed$blueprint)

XY Method and forge(outcomes = TRUE)
You can request that the new outcome columns are preprocessed as well, but
they have to be present in `new_data`!
processed <- mold(train_x, train_y)

Can't do this!
try(forge(test_x, processed$blueprint, outcomes = TRUE))

Need to use the full test set, including `y`
forge(test, processed$blueprint, outcomes = TRUE)

With the XY method, if the Y value used in `mold()` is a vector,
then a column name of `.outcome` is automatically generated.
This name is what forge() looks for in `new_data`.

Y is a vector!

y_vec <- train_y$Species

processed_vec <- mold(train_x, y_vec)

This throws an informative error that tell you
to include an `.outcome` column in `new_data`.
try(forge(iris, processed_vec$blueprint, outcomes = TRUE))

test2 <- test
test2$.outcome <- test2$Species
test2$Species <- NULL

This works, and returns a tibble in the $outcomes slot
forge(test2, processed_vec$blueprint, outcomes = TRUE)

delete_response

Delete the response from a terms object
Description

delete_response() is exactly the same as delete.response(), except that it fixes a long standing bug by also removing the part of the "dataClasses" attribute corresponding to the response, if it exists.

Usage

delete_response(terms)

Arguments

terms A terms object.

Details

The bug is described here:

Value

terms with the response sections removed.

Examples

framed <- model_frame(Species ~ Sepal.Width, iris)
attr(delete.response(framed$terms), "dataClasses")
attr(delete_response(framed$terms), "dataClasses")

forge

Forge prediction-ready data

Description

forge() applies the transformations requested by the specific blueprint on a set of new_data. This new_data contains new predictors (and potentially outcomes) that will be used to generate predictions.

All blueprints have consistent return values with the others, but each is unique enough to have its own help page. Click through below to learn how to use each one in conjunction with forge().

- XY Method - default_xy_blueprint()
- Formula Method - default_formula_blueprint()
- Recipes Method - default_recipe_blueprint()

Usage

forge(new_data, blueprint, ..., outcomes = FALSE)
Arguments

new_data A data frame or matrix of predictors to process. If outcomes = TRUE, this should also contain the outcomes to process.

blueprint A preprocessing blueprint.

... Not used.

outcomes A logical. Should the outcomes be processed and returned as well?

Details

If the outcomes are present in new data, they can optionally be processed and returned in the outcomes slot of the returned list by setting outcomes = TRUE. This is very useful when doing cross validation where you need to preprocess the outcomes of a test set before computing performance.

Value

A named list with 3 elements:

- predictors: A tibble containing the preprocessed new data predictors.
- outcomes: If outcomes = TRUE, a tibble containing the preprocessed outcomes found in new data. Otherwise, NULL.
- extras: Either NULL if the blueprint returns no extra information, or a named list containing the extra information.

Examples

See the blueprint specific documentation linked above
for various ways to call forge with different
blueprints.

train <- iris[1:100,]
test <- iris[101:150,]

Formula
processed <- mold(
 log(Sepal.Width) ~ Species,
 train,
 blueprint = default_formula_blueprint(indicators = FALSE)
)

forge(test, processed$blueprint, outcomes = TRUE)

get_data_classes Extract data classes from a data frame or matrix

Description

When predicting from a model, it is often important for the new data to have the same classes as the original data used to fit the model. get_data_classes() extracts the classes from the original training data.
Usage

get_data_classes(data)

Arguments

data A data frame or matrix.

Value

A named list. The names are the column names of data and the values are character vectors containing the class of that column.

Examples

get_data_classes(iris)

get_data_classes(as.matrix(mtcars))

Unlike .MFclass(), the full class vector is returned
data <- data.frame(col = ordered(c("a", "b")))

.MFclass(data$col)

get_data_classes(data)

get_levels Extract factor levels from a data frame

Description

get_levels() extracts the levels from any factor columns in data. It is mainly useful for extracting the original factor levels from the predictors in the training set. get_outcome_levels() is a small wrapper around get_levels() for extracting levels from a factor outcome that first calls standardize() on y.

Usage

get_levels(data)

get_outcome_levels(y)

Arguments

data A data.frame to extract levels from.
y The outcome. This can be:
 • A factor vector
 • A numeric vector
 • A 1D numeric array
 • A numeric matrix with column names
 • A 2D numeric array with column names
 • A data frame with numeric or factor columns
is_blueprint

Value

A named list with as many elements as there are factor columns in `data` or `y`. The names are the names of the factor columns, and the values are character vectors of the levels.

If there are no factor columns, `NULL` is returned.

See Also

`stats::getXlevels()`

Examples

```r
# Factor columns are returned with their levels
get_levels(iris)

# No factor columns
get_levels(mtcars)

# `standardize()` is first run on `y`
# which converts the input to a data frame
# with an automatically named column, `".outcome``
get_outcome_levels(y = factor(letters[1:5]))
```

```

is_blueprint(x)

Arguments

x An object.

Examples

is_blueprint(default_xy_blueprint())
```
Construct a model frame

Description

model_frame() is a stricter version of stats::model.frame(). There are a number of differences, with the main being that rows are never dropped and the return value is a list with the frame and terms separated into two distinct objects.

Usage

model_frame(formula, data)

Arguments

- formula: A formula or terms object representing the terms of the model frame.
- data: A data frame or matrix containing the terms of formula.

Details

The following explains the rationale for some of the difference in arguments compared to stats::model.frame():

- subset: Not allowed because the number of rows before and after model_frame() has been run should always be the same.
- na.action: Not allowed and is forced to "na.pass" because the number of rows before and after model_frame() has been run should always be the same.
- drop.unused.levels: Not allowed because it seems inconsistent for data and the result of model_frame() to ever have the same factor column but with different levels, unless specified though original.levels. If this is required, it should be done through a recipe step explicitly.
- xlev: Not allowed because this check should have been done ahead of time. Use scream() to check the integrity of data against a training set if that is required.
- ...: Not exposed because offsets are handled separately, and it is not necessary to pass weights here any more because rows are never dropped (so weights don’t have to be subset alongside the rest of the design matrix). If other non-predictor columns are required, use the "roles" features of recipes.

It is important to always use the results of model_frame() with model_matrix() rather than stats::model.matrix() because the tibble in the result of model_frame() does not have a terms object attached. If model.matrix(terms, tibble) is called directly, then a call to model.frame() will be made automatically, which can give faulty results.

Value

A named list with two elements:

- "data": A tibble containing the model frame.
- "terms": A terms object containing the terms for the model frame.
Examples

```r
# Example usage

framed <- model_frame(Species ~ Sepal.Width, iris)
framed$data
framed$terms

# Missing values never result in dropped rows

iris2 <- iris
iris2$Sepal.Width[1] <- NA
framed2 <- model_frame(Species ~ Sepal.Width, iris2)
head(framed2$data)
nrow(framed2$data) == nrow(iris2)
```

model_matrix

Construct a design matrix

Description

`model_matrix()` is a stricter version of `stats::model.matrix()`. Notably, `model_matrix()` will *never* drop rows, and the result will be a tibble.

Usage

```r
model_matrix(terms, data)
```

Arguments

- **terms**: A terms object to construct a model matrix with. This is typically the terms object returned from the corresponding call to `model_frame()`.
- **data**: A tibble to construct the design matrix with. This is typically the tibble returned from the corresponding call to `model_frame()`.

Details

The following explains the rationale for some of the difference in arguments compared to `stats::model.matrix()`:

- **contrasts.arg**: Set the contrasts argument, `options("contrasts")` globally, or assign a contrast to the factor of interest directly using `stats::contrasts()`. See the examples section.
- **xlev**: Not allowed because `model.frame()` is never called, so it is unnecessary.
- **...**: Not allowed because the default method of `model.matrix()` does not use it, and the `lm` method uses it to pass potential offsets and weights through, which are handled differently in hardhat.
Value

A tibble containing the design matrix.

Examples

```r
# Example usage
framed <- model_frame(Sepal.Width ~ Species, iris)
model_matrix(framed$terms, framed$data)

# Missing values never result in dropped rows
iris2 <- iris
iris2$Species[1] <- NA
framed2 <- model_frame(Sepal.Width ~ Species, iris2)
model_matrix(framed2$terms, framed2$data)

# Default contrasts
y <- factor(c("a", "b"))
x <- data.frame(y = y)
framed <- model_frame(~y, x)

# Setting contrasts directly
y_with_contrast <- y
contrasts(y_with_contrast) <- contr.sum(2)
x2 <- data.frame(y = y_with_contrast)
framed2 <- model_frame(~y, x2)

# Compare!
model_matrix(framed$terms, framed$data)
model_matrix(framed2$terms, framed2$data)

# Also, can set the contrasts globally
global_override <- c(unordered = "contr.sum", ordered = "contr.poly")
rlang::with_options(
  expr = {
    model_matrix(framed$terms, framed$data)
  },
  contrasts = global_override
)
```

model_offset

Extract a model offset
Description

`model_offset()` extracts a numeric offset from a model frame. It is inspired by `stats::model.offset()`, but has nicer error messages and is slightly stricter.

Usage

```r
model_offset(terms, data)
```

Arguments

- `terms`: A "terms" object corresponding to `data`, returned from a call to `model.frame()`.
- `data`: A data frame returned from a call to `model.frame()`.

Details

If a column that has been tagged as an offset is not numeric, a nice error message is thrown telling you exactly which column was problematic.

`stats::model.offset()` also allows for a column named "(offset)" to be considered an offset along with any others that have been tagged by `stats::offset()`. However, `stats::model.matrix()` does not recognize these columns as offsets (so it doesn’t remove them as it should). Because of this inconsistency, columns named "(offset)" are not treated specially by `model_offset()`.

Value

A numeric vector representing the offset.

Examples

```r
x <- model.frame(Species ~ offset(Sepal.Width), iris)
model_offset(terms(x), x)

xx <- model.frame(Species ~ offset(Sepal.Width) + offset(Sepal.Length), iris)
model_offset(terms(xx), xx)
```

Problematic columns are caught with intuitive errors
```r
tryCatch(
  expr = {
    x <- model.frame(~ offset(Species), iris)
    model_offset(terms(x), x)
  },
  error = function(e) {
    print(e$message)
  }
)
```
mold data for modeling

Description

mold() applies the appropriate processing steps required to get training data ready to be fed into a model. It does this through the use of various blueprints that understand how to preprocess data that come in various forms, such as a formula or a recipe.

All blueprints have consistent return values with the others, but each is unique enough to have its own help page. Click through below to learn how to use each one in conjunction with mold().

- XY Method - default_xy_blueprint()
- Formula Method - default_formula_blueprint()
- Recipes Method - default_recipe_blueprint()

Usage

mold(x, ...)

Arguments

x An object. See the method specific implementations linked in the Description for more information.

... Not used.

Value

A named list containing 4 elements:

- predictors: A tibble containing the molded predictors to be used in the model.
- outcome: A tibble containing the molded outcomes to be used in the model.
- blueprint: A method specific "hardhat_blueprint" object for use when making predictions.
- extras: Either NULL if the blueprint returns no extra information, or a named list containing the extra information.

Examples

See the method specific documentation linked in Description
for the details of each blueprint, and more examples.

XY
mold(iris[, "Sepal.Width", drop = FALSE], iris$Species)

Formula
mold(Species ~ Sepal.Width, iris)

Recipe
library(recipes)
mold(recipe(Species ~ Sepal.Width, iris), iris)
Description

This page contains the constructors for the default blueprints. They can be extended if you want to add extra behavior on top of what the default blueprints already do, but generally you will extend the non-default versions of the constructors found in the documentation for `new_blueprint()`.

Usage

```r
new_default_formula_blueprint(
mold,
forge,
intercept = FALSE,
allow_novel_levels = FALSE,
ptypes = NULL,
formula = NULL,
indicators = TRUE,
terms = list(predictors = NULL, outcomes = NULL),
..., 
subclass = character()
)
```

```r
new_default_recipe_blueprint(
mold,
forge,
intercept = FALSE,
allow_novel_levels = FALSE,
fresh = TRUE,
ptypes = NULL,
recipe = NULL,
extra_role_ptypes = NULL,
..., 
subclass = character()
)
```

```r
new_default_xy_blueprint(
mold,
forge,
intercept = FALSE,
allow_novel_levels = FALSE,
ptypes = NULL,
..., 
subclass = character()
)
```
Arguments

mold
A named list with two elements, `clean` and `process`, see the `new_blueprint()` section, Mold Functions, for details.

forge
A named list with two elements, `clean` and `process`, see the `new_blueprint()` section, Forge Functions, for details.

intercept
A logical. Should an intercept be included in the processed data? This information is used by the `process` function in the `mold` and `forge` function list.

allow_novel_levels
A logical. Should novel factor levels be allowed at prediction time? This information is used by the `clean` function in the `forge` function list, and is passed on to `scream()`.

ptypes
Either `NULL`, or a named list with 2 elements, `predictors` and `outcomes`, both of which are 0-row tibbles. `ptypes` is generated automatically at `mold()` time and is used to validate `new_data` at prediction time. At `mold()` time, the information found in `blueprint$`mold$process()$ptype` is used to set `ptypes` for the blueprint.

formula
Either `NULL`, or a formula that specifies how the predictors and outcomes should be preprocessed. This argument is set automatically at `mold()` time.

indicators
A logical. Should factors be expanded into dummy variables?

terms
A named list of two elements, `predictors` and `outcomes`. Both elements are `terms` objects that describe the terms for the outcomes and predictors separately. This argument is set automatically at `mold()` time.

... Name-value pairs for additional elements of blueprints that subclass this blueprint.

subclass
A character vector. The subclasses of this blueprint.

fresh
Should already trained operations be re-trained when `prep()` is called?

recipe
Either `NULL`, or an unprepped recipe. This argument is set automatically at `mold()` time.

extra_role_ptypes
A named list. The names are the unique non-standard recipe roles (i.e. everything except "predictors" and "outcomes"). The values are prototypes of the original columns with that role. These are used for validation in `forge()`.

new_formula_blueprint
Create a new preprocessing blueprint

Description

These are the base classes for creating new preprocessing blueprints. All blueprints inherit from the one created by `new_blueprint()`, and the default method specific blueprints inherit from the other three here.

If you want to create your own processing blueprint for a specific method, generally you will subclass one of the method specific blueprints here. If you want to create a completely new preprocessing blueprint for a totally new preprocessing method (i.e. not the formula, xy, or recipe method) then you should subclass `new_blueprint()`.
new_formula_blueprint

Usage

new_formula_blueprint(
mold,
forge,
intercept = FALSE,
allow_novel_levels = FALSE,
ptypes = NULL,
formula = NULL,
indicators = TRUE,
...,
subclass = character()
)

new_recipe_blueprint(
mold,
forge,
intercept = FALSE,
allow_novel_levels = FALSE,
fresh = TRUE,
ptypes = NULL,
recipe = NULL,
...,
subclass = character()
)

new_xy_blueprint(
mold,
forge,
intercept = FALSE,
allow_novel_levels = FALSE,
ptypes = NULL,
...,
subclass = character()
)

new_blueprint(
mold,
forge,
intercept = FALSE,
allow_novel_levels = FALSE,
ptypes = NULL,
...,
subclass = character()
)

Arguments

mold A named list with two elements, clean and process, see the new_blueprint() section, Mold Functions, for details.

forge A named list with two elements, clean and process, see the new_blueprint() section, Forge Functions, for details.
intercept A logical. Should an intercept be included in the processed data? This information is used by the `process` function in the `mold` and `forge` function list.

allow_new_levels A logical. Should novel factor levels be allowed at prediction time? This information is used by the `clean` function in the `forge` function list, and is passed on to `scream()`.

ptypes Either `NULL`, or a named list with 2 elements, `predictors` and `outcomes`, both of which are 0-row tibbles. `ptypes` is generated automatically at `mold()` time and is used to validate `new_data` at prediction time. At `mold()` time, the information found in `blueprint$mold$process()`$ptype` is used to set `ptypes` for the blueprint.

formula Either `NULL`, or a formula that specifies how the predictors and outcomes should be preprocessed. This argument is set automatically at `mold()` time.

indicators A logical. Should factors be expanded into dummy variables?

... Name-value pairs for additional elements of blueprints that subclass this blueprint.

subclass A character vector. The subclasses of this blueprint.

fresh Should already trained operations be re-trained when `prep()` is called?

recipe Either `NULL`, or an unprepped recipe. This argument is set automatically at `mold()` time.

Value

A preprocessing blueprint, which is a list containing the inputs used as arguments to the function, along with a class specific to the type of blueprint being created.

Mold Functions

`blueprint$mold` should be a named list with two elements, both of which are functions:

- **clean**: A function that performs initial cleaning of the user’s input data to be used in the model.
 - **Arguments**:
 - If this is an xy blueprint, `blueprint`, `x` and `y`.
 - Otherwise, `blueprint` and `data`.
 - **Output**: A named list of three elements:
 - `blueprint`: The blueprint, returned and potentially updated.
 - `x`: The cleaned predictor data.
 - `y`: The cleaned outcome data.
 - **Arguments**:
 - If this is an xy blueprint, `blueprint`, `x` and `y`.
 - Otherwise, `blueprint` and `data`.

- **process**: A function that performs the actual preprocessing of the data.
 - **Arguments**:
 - If this is an xy blueprint, `blueprint`, `x` and `y`.
 - Otherwise, `blueprint` and `data`.
new_model

- Output: A named list of 5 elements:
 * blueprint: The blueprint, returned and potentially updated.
 * predictors: A tibble of predictors.
 * outcomes: A tibble of outcomes.
 * ptypes: A named list with 2 elements, predictors and outcomes, where both elements are 0-row tibbles.
 * extras: Varies based on the blueprint. If the blueprint has no extra information, NULL. Otherwise a named list of the extra elements returned by the blueprint.

Both blueprint$mold$clean() and blueprint$mold$process() will be called, in order, from mold().

Forge Functions

blueprint$forge should be a named list with two elements, both of which are functions:

- clean: A function that performs initial cleaning of new_data:
 - Arguments:
 * blueprint, new_data, and outcomes.
 - Output: A named list of the following elements:
 * blueprint: The blueprint, returned and potentially updated.
 * predictors: A tibble containing the cleaned predictors.
 * outcomes: A tibble containing the cleaned outcomes.
 * extras: A named list of any extras obtained while cleaning. These are passed on to the process() function for further use.

- process: A function that performs the actual preprocessing of the data using the known information in the blueprint.
 - Arguments:
 * blueprint, new_data, outcomes, extras.
 - Output: A named list of the following elements:
 * blueprint: The blueprint, returned and potentially updated.
 * predictors: A tibble of the predictors.
 * outcomes: A tibble of the outcomes, or NULL.
 * extras: Varies based on the blueprint. If the blueprint has no extra information, NULL. Otherwise a named list of the extra elements returned by the blueprint.

Both blueprint$forge$clean() and blueprint$forge$process() will be called, in order, from forge().

new_model Constructor for a base model

Description

A model is a scalar object, as classified in Advanced R. As such, it takes uniquely named elements in ... and combines them into a list with a class of class. This entire object represent a single model.
Usage

new_model(..., blueprint = default_xy_blueprint(), class = character())

Arguments

... Name-value pairs for elements specific to the model defined by class.
blueprint A preprocessing blueprint returned from a call to mold().
class A character vector representing the class of the model.

Details

Because every model should have multiple interfaces, including formula and recipes interfaces, all models should have a blueprint that can process new data when predict() is called. The easiest way to generate a blueprint with all of the information required at prediction time is to use the one that is returned from a call to mold().

Value

A new scalar model object, represented as a classed list with named elements specified in

Examples

new_model(
 custom_element= "my-elem",
 blueprint = default_xy_blueprint(),
 class = "custom_model"
)

refresh_blueprint Refresh a preprocessing blueprint

Description

refresh_blueprint() is a developer facing generic function that is called at the end of update_blueprint(). It simply is a wrapper around the method specific new_*_blueprint() function that runs the updated blueprint through the constructor again to ensure that all of the elements of the blueprint are still valid after the update.

Usage

refresh_blueprint(blueprint)

Arguments

blueprint A preprocessing blueprint.

Details

If you implement your own custom blueprint, you should export a refresh_blueprint() method that just calls the constructor for your blueprint and passes through all of the elements of the blueprint to the constructor.
Value

blueprint is returned after a call to the corresponding constructor.

Examples

```r
blueprint <- default_xy_blueprint()
# This should never be done manually, but is essentially
# what `update_blueprint(blueprint, intercept = TRUE)` does for you
blueprint$intercept <- TRUE

# Then update_blueprint() will call refresh_blueprint() to ensure that the structure is correct
refresh_blueprint(blueprint)

# So you can’t do something like...
blueprint_bad <- blueprint
blueprint_bad$intercept <- 1

# ...because the constructor will catch it
try(refresh_blueprint(blueprint_bad))

# And update_blueprint() catches this automatically
try(update_blueprint(blueprint, intercept = 1))
```

run_mold
Call mold$clean() and mold$process()

Description

This is a purely developer facing function, that is only used if you are creating a completely new blueprint inheriting only from `new_blueprint()`, and not from one of the more common: `new_xy_blueprint()`, `new_recipe_blueprint()`, `new_formula_blueprint()`.

Usage

```r
run_mold(blueprint, ...)
```

Arguments

- `blueprint`
 A preprocessing blueprint.

- `...`
 Not used. Required for extensibility.

Details

Because `mold()` has different interfaces (like XY and formula), which require different arguments (x and y vs data), their corresponding blueprints also have different arguments for the `blueprint$mold$clean()` and `blueprint$mold$process()` functions. The sole job of `run_mold()` is simply to call these two functions with the right arguments.

The only time you need to implement a method for `run_mold()` is if you are creating a `new_blueprint()` that does not follow one of the three core blueprint types. In that special
case, create a method for `run_mold()` with your blueprint type, and pass through whatever arguments are necessary to call your blueprint specific `clean()` and `process()` functions.

If you go this route, you will also need to create a `mold()` method if `x` is not a data frame / matrix, recipe, or formula. If `x` is one of those types, then `run_mold()` will be called for you by the existing `mold()` method, you just have to supply the `run_mold()` method for your blueprint.

Value

The preprocessed result, as a named list.

```r
scream(data, ptype, allow_novel_levels = FALSE)
```

Arguments

- `data` A data frame containing the new data to check the structure of.
- `ptype` A data frame prototype to cast `data` to. This is commonly a 0-row slice of the training set.
- `allow_novel_levels` Should novel factor levels in `data` be allowed? The safest approach is the default, which throws a warning when novel levels are found, and coerces them to NA values. Setting this argument to `TRUE` will ignore all novel levels.
Details

`scream()` is called by `forge()` after `shrink()` but before the actual processing is done. Generally, you don’t need to call `scream()` directly, as `forge()` will do it for you.

If `scream()` is used as a standalone function, it is good practice to call `shrink()` right before it as there are no checks in `scream()` that ensure that all of the required column names actually exist in `data`. Those checks exist in `shrink()`.

Value

A tibble containing the required columns after any required structural modifications have been made.

Examples

```r
# Setup
train <- iris[1:100,]
test <- iris[101:150,]

# mold() is run at model fit time
# and a formula preprocessing blueprint is recorded
x <- mold(log(Sepal.Width) ~ Species, train)

# Inside the result of mold() are the prototype tibbles
# for the predictors and the outcomes
ptype_pred <- x$blueprint$ptypes$predictors
ptype_out <- x$blueprint$ptypes$outcomes

# shrink() / scream()
# Pass the test data, along with a prototype, to
# shrink() to extract the prototype columns
test_shrunk <- shrink(test, ptype_pred)

# Now pass that to scream() to perform validation checks
# If no warnings / errors are thrown, the checks were
# successful!
scream(test_shrunk, ptype_pred)

# Outcomes
# To also extract the outcomes, use the outcome prototype
test_outcome <- shrink(test, ptype_out)
scream(test_outcome, ptype_out)

# Casting
# scream() uses vctrs::vec_cast() to intelligently convert
# new data to the prototype automatically. This means
# it can automatically perform certain conversions, like
# coercing character columns to factors.
test2 <- test
```
shrink

Subset only required columns

Description

shrink() subsets data to only contain the required columns specified by the prototype, ptype.
Usage

`shrink(data, ptype)`

Arguments

- `data` A data frame containing the data to subset.
- `ptype` A data frame prototype containing the required columns.

Details

`shrink()` is called by `forge()` before `scream()` and before the actual processing is done.

Value

A tibble containing the required columns.

Examples

```r
# Setup
train <- iris[1:100,]
test <- iris[101:150,]

# mold() is run at model fit time
# and a formula preprocessing blueprint is recorded
x <- mold(log(Sepal.Width) ~ Species, train)

# Inside the result of mold() are the prototype tibbles
# for the predictors and the outcomes
ptype_pred <- x$blueprint$ptypes$predictors
ptype_out <- x$blueprint$ptypes$outcomes

# Pass the test data, along with a prototype, to
# shrink() to extract the prototype columns
shrink(test, ptype_pred)

# To extract the outcomes, just use the
# outcome prototype
shrink(test, ptype_out)

# shrink() makes sure that the columns
# required by 'ptype' actually exist in the data
# and errors nicely when they don't
test2 <- subset(test, select = -Species)
try(shrink(test2, ptype_pred))
```
spruce
Spruce up predictions

Description

The family of spruce.*() functions convert predictions into a standardized format. They are generally called from a prediction implementation function for the specific type of prediction to return.

Usage

- `spruce_numeric(pred)`
- `spruce_class(pred_class)`
- `spruce_prob(pred_levels, prob_matrix)`

Arguments

- `pred`
 (type = "numeric") A numeric vector of predictions.
- `pred_class`
 (type = "class") A factor of "hard" class predictions.
- `pred_levels, prob_matrix`
 (type = "prob")
 - `pred_levels` should be a character vector of the original levels of the outcome used in training.
 - `prob_matrix` should be a numeric matrix of class probabilities with as many columns as levels in `pred_levels`, and in the same order.

Details

After running a spruce.*() function, you should _always_ use the validation function `validate_prediction_size()` to ensure that the number of rows being returned is the same as the number of rows in the input (`new_data`).

Value

A tibble, ideally with the same number of rows as the `new_data` passed to `predict()`. The column names and number of columns vary based on the function used, but are standardized.

standardize
Standardize the outcome

Description

Most of the time, the input to a model should be flexible enough to capture a number of different input types from the user. `standardize()` focuses on capturing the flexibility in the outcome.
Usage

```r
standardize(y)
```

Arguments

- `y` The outcome. This can be:
 - A factor vector
 - A numeric vector
 - A 1D numeric array
 - A numeric matrix with column names
 - A 2D numeric array with column names
 - A data frame with numeric or factor columns

Details

`standardize()` is called from `mold()` when using an XY interface (i.e. a `y` argument was supplied).

Value

All possible values of `y` are transformed into a tibble for standardization. Vectors are transformed into a tibble with a single column named ".outcome".

Examples

```r
standardize(1:5)
standardize(factor(letters[1:5]))
mat <- matrix(1:10, ncol = 2)
colnames(mat) <- c("a", "b")
standardize(mat)
df <- data.frame(x = 1:5, y = 6:10)
standardize(df)
```

update_blueprints

Update a preprocessing blueprint

Description

`update_blueprints()` is the correct way to alter elements of an existing `blueprint` object. It has two benefits over just doing `blueprint$elem <- new.elem`:

- The name you are updating *must* already exist in the blueprint. This prevents you from accidentally updating non-existent elements.
- The constructor for the blueprint is automatically run after the update by `refresh_blueprints()` to ensure that the blueprint is still valid.
validate_column_names

Usage

update_blueprint(blueprint, ...)

Arguments

blueprint A preprocessing blueprint.
...
Name-value pairs of existing elements in blueprint that should be updated.

Examples

blueprint <- default_xy_blueprint()

'intercept' defaults to FALSE
blueprint

update_blueprint(blueprint, intercept = TRUE)

Can't update non-existent elements
try(update_blueprint(blueprint, intercept = TRUE))

Can't add non-valid elements
try(update_blueprint(blueprint, intercept = 1))

validate_column_names

Ensure that data contains required column names

Description

validate - asserts the following:

- The column names of data must contain all original_names.

check - returns the following:

- ok A logical. Does the check pass?
- missing_names A character vector. The missing column names.

Usage

validate_column_names(data, original_names)

check_column_names(data, original_names)

Arguments

data A data frame to check.
original_names A character vector. The original column names.
Details

A special error is thrown if the missing column is named ".outcome". This only happens in the case where mold() is called using the xy-method, and a vector y value is supplied rather than a data frame or matrix. In that case, y is coerced to a data frame, and the automatic name ".outcome" is added, and this is what is looked for in forge(). If this happens, and the user tries to request outcomes using forge(..., outcomes = TRUE) but the supplied new data does not contain the required ".outcome" column, a special error is thrown telling them what to do. See the examples!

Value

validate_column_names() returns data invisibly.
check_column_names() returns a named list of two components, ok, and missing_names.

Validation

hardhat provides validation functions at two levels.

- check_*(): check a condition, and return a list. The list always contains at least one element, ok, a logical that specifies if the check passed. Each check also has check specific elements in the returned list that can be used to construct meaningful error messages.
- validate_*(): check a condition, and error if it does not pass. These functions call their corresponding check function, and then provide a default error message. If you, as a developer, want a different error message, then call the check_*() function yourself, and provide your own validation function.

See Also

Other validation functions: validate_no_formula_duplication(), validate_outcomes_are_binary(), validate_outcomes_are_factors(), validate_outcomes_are_numeric(), validate_outcomes_are_univariate(), validate_prediction_size(), validate_predictors_are_numeric()

Examples

original_names <- colnames(mtcars)
test <- mtcars
bad_test <- test[, -c(3, 4)]
All good
check_column_names(test, original_names)
Missing 2 columns
check_column_names(bad_test, original_names)
Will error
try(validate_column_names(bad_test, original_names))

Special error when `.outcome` is missing
train <- iris[1:100,]
validate_no_formula_duplication

Ensure no duplicate terms appear in formula

Description

validate - asserts the following:

- formula must not have duplicates terms on the left and right hand side of the formula.

check - returns the following:

- ok A logical. Does the check pass?
- duplicates A character vector. The duplicate terms.

Usage

validate_no_formula_duplication(formula, original = FALSE)

check_no_formula_duplication(formula, original = FALSE)

Arguments

formula A formula to check.
original A logical. Should the original names be checked, or should the names after processing be used? If FALSE, y ~ log(y) is allowed because the names are "y" and "log(y)"; if TRUE, y ~ log(y) is not allowed because the original names are both "y".
Value

validate_no_formula_duplication() returns formula invisibly.

check_no_formula_duplication() returns a named list of two components, `ok` and `duplicates`.

Validation

hardhat provides validation functions at two levels.

- check(*()): *check a condition, and return a list.* The list always contains at least one element, `ok`, a logical that specifies if the check passed. Each check also has check specific elements in the returned list that can be used to construct meaningful error messages.
- validate(*()): *check a condition, and error if it does not pass.* These functions call their corresponding check function, and then provide a default error message. If you, as a developer, want a different error message, then call the check(*()) function yourself, and provide your own validation function.

See Also

Other validation functions: validate_column_names(), validate_outcomes_are_binary(), validate_outcomes_are_factors(), validate_outcomes_are_numeric(), validate_outcomes_are_univariate(), validate_prediction_size(), validate_predictors_are_numeric()

Examples

```r
# All good
check_no_formula_duplication(y ~ x)

# Not good!
check_no_formula_duplication(y ~ y)

# This is generally okay
check_no_formula_duplication(y ~ log(y))

# But you can be more strict
check_no_formula_duplication(y ~ log(y), original = TRUE)

# This would throw an error
try(validate_no_formula_duplication(log(y) ~ log(y)))
```

validate_outcomes_are_binary

Ensure that the outcome has binary factors

Description

validate - asserts the following:

- outcomes must have binary factor columns.

check - returns the following:

- ok A logical. Does the check pass?
validate_outcomes_are_binary

- bad_cols A character vector. The names of the columns with problems.
- num_levels An integer vector. The actual number of levels of the columns with problems.

Usage

validate_outcomes_are_binary(outcomes)

check_outcomes_are_binary(outcomes)

Arguments

outcomes An object to check.

Details

The expected way to use this validation function is to supply it the $outcomes element of the result of a call to mold().

Value

validate_outcomes_are_binary() returns outcomes invisibly.

check_outcomes_are_binary() returns a named list of three components, ok, bad_cols, and num_levels.

Validation

hardhat provides validation functions at two levels.

- check.*(): check a condition, and return a list. The list always contains at least one element, ok, a logical that specifies if the check passed. Each check also has check specific elements in the returned list that can be used to construct meaningful error messages.
- validate.*(): check a condition, and error if it does not pass. These functions call their corresponding check function, and then provide a default error message. If you, as a developer, want a different error message, then call the check.*() function yourself, and provide your own validation function.

See Also

Other validation functions: validate_column_names(), validate_no_formula_duplication(), validate_outcomes_are_factors(), validate_outcomes_are_numeric(), validate_outcomes_are_univariate(), validate_prediction_size(), validate_predictors_are_numeric()

Examples

Not a binary factor. 0 levels
check_outcomes_are_binary(data.frame(x = 1))

Not a binary factor. 1 level
check_outcomes_are_binary(data.frame(x = factor("A")))

All good
check_outcomes_are_binary(data.frame(x = factor(c("A", "B"))));
validate_outcomes_are_factors

Ensure that the outcome has only factor columns

Description

validate - asserts the following:

- outcomes must have factor columns.

check - returns the following:

- ok A logical. Does the check pass?
- bad_classes A named list. The names are the names of problematic columns, and the values are the classes of the matching column.

Usage

validate_outcomes_are_factors(outcomes)

check_outcomes_are_factors(outcomes)

Arguments

outcomes An object to check.

Details

The expected way to use this validation function is to supply it the $outcomes element of the result of a call to mold().

Value

validate_outcomes_are_factors() returns outcomes invisibly.

check_outcomes_are_factors() returns a named list of two components, ok and bad_classes.

Validation

hardhat provides validation functions at two levels.

- check_*(): check a condition, and return a list. The list always contains at least one element, ok, a logical that specifies if the check passed. Each check also has check specific elements in the returned list that can be used to construct meaningful error messages.
- validate_*(): check a condition, and error if it does not pass. These functions call their corresponding check function, and then provide a default error message. If you, as a developer, want a different error message, then call the check_*() function yourself, and provide your own validation function.

See Also

Other validation functions: validate_column_names(), validate_no_formula_duplication(), validate_outcomes_are_binary(), validate_outcomes_are_numeric(), validate_outcomes_are_univariate(), validate_prediction_size(), validate_predictors_are_numeric()
validate_outcomes_are_numeric

Examples

Not a factor column.
check_outcomes_are_factors(data.frame(x = 1))

All good
check_outcomes_are_factors(data.frame(x = factor(c("A", "B"))))

validate_outcomes_are_numeric

Ensure outcomes are all numeric

Description

validate - asserts the following:

- **outcomes** must have numeric columns.

check - returns the following:

- **ok** A logical. Does the check pass?
- **bad_classes** A named list. The names are the names of problematic columns, and the values are the classes of the matching column.

Usage

validate_outcomes_are_numeric(outcomes)

check_outcomes_are_numeric(outcomes)

Arguments

outcomes An object to check.

Details

The expected way to use this validation function is to supply it the $outcomes element of the result of a call to mold().

Value

validate_outcomes_are_numeric() returns outcomes invisibly.

check_outcomes_are_numeric() returns a named list of two components, ok and bad_classes.

Validation

hardhat provides validation functions at two levels.

- **check**: *check a condition, and return a list*. The list always contains at least one element, ok, a logical that specifies if the check passed. Each check also has check specific elements in the returned list that can be used to construct meaningful error messages.
validate_outcomes_are_univariate

- **validate_*(): check a condition, and error if it does not pass.** These functions call their corresponding check function, and then provide a default error message. If you, as a developer, want a different error message, then call the check_*() function yourself, and provide your own validation function.

See Also

Other validation functions: `validate_column_names()`, `validate_no_formula_duplication()`, `validate_outcomes_are_binary()`, `validate_outcomes_are_factors()`, `validate_outcomes_are_univariate()`, `validate_prediction_size()`, `validate_predictors_are_numeric()`

Examples

```r
# All good
check_outcomes_are_numeric(mtcars)

# Species is not numeric
check_outcomes_are_numeric(iris)

# This gives an intelligent error message
try(validate_outcomes_are_numeric(iris))
```

validate_outcomes_are_univariate

Ensure that the outcome is univariate

Description

validate - asserts the following:

- **outcomes** must have 1 column. Atomic vectors are treated as 1 column matrices.

check - returns the following:

- **ok** A logical. Does the check pass?
- **n_cols** A single numeric. The actual number of columns.

Usage

```r
validate_outcomes_are_univariate(outcomes)

check_outcomes_are_univariate(outcomes)
```

Arguments

- **outcomes** An object to check.

Details

The expected way to use this validation function is to supply it the $outcomes element of the result of a call to `mold()`.
Value

validate_outcomes_are_univariate() returns outcomes invisibly.
check_outcomes_are_univariate() returns a named list of two components, ok and n_cols.

Validation

hardhat provides validation functions at two levels.

- check_*(): check a condition, and return a list. The list always contains at least one element, ok, a logical that specifies if the check passed. Each check also has check specific elements in the returned list that can be used to construct meaningful error messages.
- validate_*(): check a condition, and error if it does not pass. These functions call their corresponding check function, and then provide a default error message. If you, as a developer, want a different error message, then call the check_*() function yourself, and provide your own validation function.

See Also

Other validation functions: validate_column_names(), validate_no_formula_duplication(), validate_outcomes_are_binary(), validate_outcomes_are_factors(), validate_outcomes_are_numeric(), validate_prediction_size(), validate_predictors_are_numeric()

Examples

validate_outcomes_are_univariate(data.frame(x = 1))
try(validate_outcomes_are_univariate(mtcars))

validate_prediction_size

Ensure that predictions have the correct number of rows

Description

validate - asserts the following:

- The size of pred must be the same as the size of new_data.

check - returns the following:

- ok A logical. Does the check pass?
- size_new_data A single numeric. The size of new_data.
- size_pred A single numeric. The size of pred.

Usage

validate_prediction_size(pred, new_data)
check_prediction_size(pred, new_data)
Arguments

pred A tibble. The predictions to return from any prediction type. This is often created using one of the spruce functions, like `spruce_numeric()`.
new_data A data frame of new predictors and possibly outcomes.

Details

This validation function is one that is more developer focused rather than user focused. It is a final check to be used right before a value is returned from your specific `predict()` method, and is mainly a "good practice" sanity check to ensure that your prediction blueprint always returns the same number of rows as `new_data`, which is one of the modeling conventions this package tries to promote.

Value

`validate_prediction_size()` returns `pred` invisibly.

`check_prediction_size()` returns a named list of three components, `ok`, `size_new_data`, and `size_pred`.

Validation

hardhat provides validation functions at two levels.

- `check*(::): check a condition, and return a list`. The list always contains at least one element, `ok`, a logical that specifies if the check passed. Each check also has check specific elements in the returned list that can be used to construct meaningful error messages.
- `validate*(::): check a condition, and error if it does not pass`. These functions call their corresponding check function, and then provide a default error message. If you, as a developer, want a different error message, then call the check*(::) function yourself, and provide your own validation function.

See Also

Other validation functions: `validate_column_names()`, `validate_no_formula_duplication()`, `validate_outcomes_are_binary()`, `validate_outcomes_are_factors()`, `validate_outcomes_are_numeric()`, `validate_outcomes_are_univariate()`, `validate_predictors_are_numeric()`

Examples

Say new_data has 5 rows
new_data <- mtcars[1:5,]

And somehow you generate predictions
for those 5 rows
pred_vec <- 1:5

Then you use `spruce_numeric()` to clean
up these numeric predictions
pred <- spruce_numeric(pred_vec)

Use this check to ensure that
#validate

validate predictors are numeric

```r
# the number of rows or pred match new_data
check_prediction_size(pred, new_data)

# An informative error message is thrown
# if the rows are different
try(validate_prediction_size(spruce_numeric(1:4), new_data))
```

validate.predictors.are.numeric

Ensure predictors are all numeric

Description

validate - asserts the following:

- **predictors** must have numeric columns.

check - returns the following:

- **ok** A logical. Does the check pass?
- **bad_classes** A named list. The names are the names of problematic columns, and the values are the classes of the matching column.

Usage

```r
validate_predictors_are_numeric(predictors)
check_predictors_are_numeric(predictors)
```

Arguments

- **predictors** An object to check.

Details

The expected way to use this validation function is to supply it the `$predictors` element of the result of a call to `mold()`.

Value

- **validate.predictors.are.numeric()** returns `predictors` invisibly.
- **check.predictors.are.numeric()** returns a named list of two components, **ok**, and **bad_classes**.

Validation

hardhat provides validation functions at two levels.

- **check.*()**: *check a condition, and return a list*. The list always contains at least one element, **ok**, a logical that specifies if the check passed. Each check also has check specific elements in the returned list that can be used to construct meaningful error messages.
- **validate.*()**: *check a condition, and error if it does not pass*. These functions call their corresponding check function, and then provide a default error message. If you, as a developer, want a different error message, then call the check.*() function yourself, and provide your own validation function.
validate_predictors_are_numeric

See Also

Other validation functions: validate_column_names(), validate_no_formula_duplication(), validate_outcomes_are_binary(), validate_outcomes_are_factors(), validate_outcomes_are_numeric(), validate_outcomes_are_univariate(), validate_prediction_size()

Examples

All good
check_predictors_are_numeric(mtcars)

Species is not numeric
check_predictors_are_numeric(iris)

This gives an intelligent error message
try(validate_predictors_are_numeric(iris))
Index

add_intercept_column, 3
check_column_names (validate_column_names), 36
check_no_formula_duplication (validate_no_formula_duplication), 38
check_outcomes_are_binary (validate_outcomes_are_binary), 39
check_outcomes_are_factors (validate_outcomes_are_factors), 41
check_outcomes_are_numeric (validate_outcomes_are_numeric), 42
check_outcomes_are_univariate (validate_outcomes_are_univariate), 43
check_prediction_size (validate_prediction_size), 44
check_predictors_are_numeric (validate_predictors_are_numeric), 46
create_modeling_package (modeling-package), 2
default_formula_blueprint, 4
default_formula_blueprint(), 5, 14, 22
default_recipe_blueprint, 9
default_recipe_blueprint(), 9, 14, 22
default_xy_blueprint, 11
default_xy_blueprint(), 12, 14, 22
delete_response, 13
forge, 14
forge(), 27, 31, 33, 37
get_data_classes, 15
get_levels, 16
get_outcome_levels (get_levels), 16
is_blueprint, 17
model_frame, 18
model_frame(), 19
model_matrix, 19
model_matrix(), 18
model_offset, 20
model_offset(), 5, 6
modeling-package, 2
mold, 22
mold(), 6, 12, 24, 26–28, 35, 37, 40–43, 46
mold.data.frame (default_xy_blueprint), 11
mold.formula (default_formula_blueprint), 4
mold.matrix (default_xy_blueprint), 11
mold.recipe (default_recipe_blueprint), 9
new-blueprint (new_formula_blueprint), 24
new-default-blueprint (new_default_formula_blueprint), 23
new_blueprint (new_formula_blueprint), 24
new_blueprint(), 27–25, 29
new_default_formula_blueprint, 23
new_default_recipe_blueprint
 (new_default_formula_blueprint), 23
new_default_xy_blueprint
 (new_default_formula_blueprint), 23
new_formula_blueprint, 24
new_formula_blueprint(), 29
new_model, 27
new_recipe_blueprint (new_formula_blueprint), 24
new_recipe_blueprint(), 29
new_xy_blueprint (new_formula_blueprint), 24
new_xy_blueprint(), 29
recipes::bake(), 10
recipes::juice(), 10
recipes::prep(), 10
recipes::recipe(), 6, 9
refresh_blueprint, 28
run_mold, 29
scream, 30
scream(), 4, 6, 9, 10, 12, 18, 24, 26, 33
shrink, 32
shrink(), 6, 10, 12, 31
spruce, 34
spruce_class (spruce), 34
spruce_numeric (spruce), 34
spruce_numeric(), 45
spruce_prob (spruce), 34
standardize, 34
standardize(), 12, 16
stats::.getXlevels(), 17
stats::.contrasts(), 19
stats::.lm(), 4
stats::.model.frame(), 5, 6, 18
stats::.model.matrix(), 5, 6, 18, 19, 21
stats::.model.offset(), 21
stats::.offset(), 5, 21
stats::.poly(), 6
update_blueprint, 35
update_blueprint(), 28
use_modeling_deps (modeling-package), 2
use_modeling_files (modeling-package), 2
validate_column_names, 36, 39-41, 43-45, 47
validate_no_formula_duplication, 37, 38, 40, 41, 43-45, 47
validate_outcomes_are_binary, 37, 39, 39, 41, 43-45, 47
validate_outcomes_are_factors, 37, 39, 40, 41, 43-45, 47
validate_outcomes_are_numeric, 37, 39-41, 42, 44, 45, 47
validate_outcomes_are_univariate, 37, 39-41, 43, 43, 45, 47
validate_prediction_size, 37, 39-41, 43, 44, 47
validate_predictors_are_numeric, 37, 39-41, 43-45, 46
vctrs::.vec_cast(), 30