Package ‘harmony’

October 1, 2023

Title Fast, Sensitive, and Accurate Integration of Single Cell Data

Version 1.0.3

Description Implementation of the Harmony algorithm for single cell integration, described in Korsunsky et al <doi:10.1038/s41592-019-0619-0>. Package includes a standalone Harmony function and interfaces to external frameworks.

URL software.broadinstitute.org/harmony

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Depends R(>= 3.5.0), Rcpp

LazyData true

LazyDataCompression gzip

LinkingTo Rcpp, RcppArmadillo, RcppProgress

Imports dplyr, cowplot, ggplot2, Matrix, methods, tibble, rlang, RhpcBLASctl

Suggests SingleCellExperiment, Seurat (>= 4.1.1), testthat, knitr, rmarkdown, ggrepel, patchwork, tidyverse, tidyr, data.table

VignetteBuilder knitr

NeedsCompilation yes

Author Ilya Korsunsky [cre, aut] (<https://orcid.org/0000-0003-4848-3948>), Martin Hemberg [aut] (<https://orcid.org/0000-0001-8895-5239>), Nikolaos Patikas [aut, ctb] (<https://orcid.org/0000-0002-3978-0134>), Hongcheng Yao [aut, ctb] (<https://orcid.org/0000-0002-0743-4835>), Nghia Millard [aut] (<https://orcid.org/0000-0002-0518-7674>), Jean Fan [aut, ctb] (<https://orcid.org/0000-0002-0212-5451>), Kamil Slowikowski [aut, ctb] (<https://orcid.org/0000-0002-2843-6370>), Miles Smith [ctb], Soumya Raychaudhuri [aut] (<https://orcid.org/0000-0002-1901-8265>)

Maintainer Ilya Korsunsky <ilya.korsunsky@gmail.com>

Repository CRAN

Date/Publication 2023-09-30 23:00:02 UTC
cell_lines_small

Description

Same as `cell_lines` but smaller (300 cells).

Usage

`cell_lines_small`

Format

An object of class `list` of length 2.

cell_lines

Description

List of metadata table and scaled PCs matrix

Usage

`cell_lines`

Format

: `meta_data`: data.table of 9478 rows with defining dataset and `cell_type`
 : `scaled_pcs`: data.table of 9478 rows (cells) and 20 columns (PCs)

Source

https://www.10xgenomics.com
harmony

Source

https://www.10xgenomics.com

Description

Algorithm for single cell integration.

Usage

?RunHarmony to run Harmony on cell embeddings matrix, Seurat or SingleCellExperiment objects.

Useful links

2. Read the manuscript doi:10.1038/s4159201906190

harmony_options

Set advanced options for RunHarmony

Description

Set advanced options for RunHarmony

Usage

harmony_options(
 lambda_range = c(0.1, 10),
 tau = 0,
 block.size = 0.05,
 max.iter.cluster = 20,
 epsilon.cluster = 1e-05,
 epsilon.harmony = 1e-04
)
Arguments

lambda_range
Default lambda_range = c(0.1, 10). Lambda is ridge regression penalty parameter and smaller values result in more aggressive correction. During harmony iterations, the appropriate value of lambda is dynamically estimated. And parameter ‘lambda_range’ set the allowed range for lambda estimation. e.g. ‘lambda_range’ = c(0.1, 10) means that lambda can only vary between 0.1 and 10 when being dynamically estimated. Note that when setting the upper and lower bound of lambda_range to the same value would result in using a fixed lambda throughout harmony iterations. e.g. ‘lambda_range’ = c(1,1) would make harmony using a fixed lambda = 1.

tau
Protection against overclustering small datasets with large ones. ‘tau’ is the expected number of cells per cluster.

block.size
What proportion of cells to update during clustering. Between 0 to 1, default 0.05. Larger values may be faster but less accurate.

max.iter.cluster
Maximum number of rounds to run clustering at each round of Harmony.

epsilon.cluster
Convergence tolerance for clustering round of Harmony. Set to -Inf to never stop early.

epsilon.harmony
Convergence tolerance for Harmony. Set to -Inf to never stop early. When ‘epsilon.harmony’ is set to not NULL, then user-supplied values of ‘early_stop’ is ignored.

Value

Return a list for ‘.options’ argument of ‘RunHarmony’

Examples

```r
## If want to set lambda to be fixed to 1, do
## Not run:
RunHarmony(data_meta, meta_data, vars_use,
    .options = harmony_options(lambda = c(1, 1)))
## End(Not run)
```

moe_ridge_get_betas

Get beta Utility

Description

Utility function to get ridge regression coefficients from trained Harmony object
Usage

moe_ridge_get_betas(harmonyObj)

Arguments

harmonyObj Trained harmony object. Get this by running RunHarmony function with return_object=TRUE.

Value

Returns nothing, modifies object in place.

pbmc.ctrl Gene expression data of control PBMC from Kang et al. 2017. This contains a sample of 1000 cells from that condition and is used for the Seurat Vignette.

Description

Gene expression data of control PBMC from Kang et al. 2017. This contains a sample of 1000 cells from that condition and is used for the Seurat Vignette.

Usage

pbmc.ctrl

Format

An object of class dgCMatrix with 9015 rows and 1000 columns.

Source

doi:10.1038/nbt.4042

pbmc.stim Gene expression data of stimulated PBMC from Kang et al. 2017. This contains a sample of 1000 cells from that condition and is used for the Seurat Vignette.

Description

Gene expression data of stimulated PBMC from Kang et al. 2017. This contains a sample of 1000 cells from that condition and is used for the Seurat Vignette.
RunHarmony

Usage

pbmc.stim

Format

An object of class dgCMatrix with 9015 rows and 1000 columns.

Source

doi:10.1038/nbt.4042

RunHarmony Run harmony algorithm generic function

Description

This is a generic that provides wrappers for Seurat and SingleCellExperiment objects. Also, it allows harmony standalone with a matrix and a metadata dataframe.

Usage

RunHarmony(...)

S3 method for class 'Seurat'
RunHarmony(
 object,
 group.by.vars,
 reduction.use = "pca",
 dims.use = NULL,
 verbose = TRUE,
 reduction.save = "harmony",
 project.dim = TRUE,
 ...
)

S3 method for class 'SingleCellExperiment'
RunHarmony(
 object,
 group.by.vars,
 dims.use = NULL,
 verbose = TRUE,
 reduction.save = "HARMONY",
 ...
)

HarmonyMatrix(...)

RunHarmony.default

Arguments

... harmony algorithm parameters to be passed on RunHarmony.default
object SingleCellExperiment with the PCA reducedDim cell embeddings populated
group.by.vars the name(s) of covariates that harmony will remove its effect on the data.
reduction.use Name of dimension reduction to use. Default is pca.
dims.use a vector of indices that allows only selected cell embeddings features to be used.
verbose enable verbosity
reduction.save the name of the new slot that is going to be created by harmony. By default, HARMONY.
project.dim Project dimension reduction loadings. Default TRUE.

Value

Seurat object. Harmony dimensions placed into a new slot in the Seurat object according to the reduction.save. For downstream Seurat analyses, use reduction="harmony".
SingleCellExperiment object. After running RunHarmony, the corrected cell embeddings can be accessed with reducedDim(object, "Harmony").

RunHarmony.default Main Harmony interface

Description

Use this to run the Harmony algorithm directly on cell embedding matrix.

Usage

Default S3 method:
RunHarmony(
 data_mat,
 meta_data,
 vars_use,
 theta = NULL,
 sigma = 0.1,
 lambda = 1,
 nclust = NULL,
 max_iter = 10,
 early_stop = TRUE,
 ncores = 1,
 plot_convergence = FALSE,
 return_object = FALSE,
 verbose = TRUE,
 .options = harmony_options(),
 ...
)

...
Arguments

data_mat
Matrix of cell embeddings. Cells can be rows or columns and will be inferred by the rows of meta_data.

meta_data
Either (1) Dataframe with variables to integrate or (2) vector with labels.

vars_use
If meta_data is dataframe, this defined which variable(s) to remove (character vector).

theta
Diversity clustering penalty parameter. Specify for each variable in vars_use
Default theta=2. theta=0 does not encourage any diversity. Larger values of theta result in more diverse clusters.

sigma
Width of soft kmeans clusters. Default sigma=0.1. Sigma scales the distance from a cell to cluster centroids. Larger values of sigma result in cells assigned to more clusters. Smaller values of sigma make soft kmeans cluster approach hard clustering.

lambda
Ridge regression penalty. Default lambda=1. Bigger values protect against over correction. If several covariates are specified, then lambda can also be a vector which needs to be equal length with the number of variables to be corrected. In this scenario, each covariate level group will be assigned the scalars specified by the user. If set to NULL, harmony will determine lambdas automatically and try to minimize overcorrection (beta).

nclust
Number of clusters in model. nclust=1 equivalent to simple linear regression.

max_iter
Maximum number of rounds to run Harmony. One round of Harmony involves one clustering and one correction step.

early_stop
Enable early stopping for harmony. The harmonization process will stop when the change of objective function between corrections drops below 1e-4.

ncores
Number of processors to be used for math operations when optimized BLAS is available. If BLAS is not supporting multithreaded then this option has no effect. By default, ncore=1 which runs as a single-threaded process. Although Harmony supports multiple cores, it is not optimized for multithreading. Increase this number for large datasets if single-core performance is not adequate.

plot_convergence
Whether to print the convergence plot of the clustering objective function. TRUE to plot, FALSE to suppress. This can be useful for debugging.

return_object
(Advanced Usage) Whether to return the Harmony object or only the corrected PCA embeddings.

verbose
Whether to print progress messages. TRUE to print, FALSE to suppress.

.options
Advanced parameters of RunHarmony. This must be the result from a call to 'harmony_options'. See ?harmony_options for more details.

...
other parameters that are not part of the API

Value

By default, matrix with corrected PCA embeddings. If return_object is TRUE, returns the full Harmony object (R6 reference class type).
Examples

```r
## By default, Harmony inputs a cell embedding matrix
## Not run:
harmony_embeddings <- RunHarmony(cell_embeddings, meta_data, 'dataset')

## End(Not run)

## If PCA is the input, the PCs need to be scaled
data(cell_lines_small)
pca_matrix <- cell_lines_small$scaled_pcs
meta_data <- cell_lines_small$meta_data
harmony_embeddings <- RunHarmony(pca_matrix, meta_data, 'dataset')

## Output is a matrix of corrected PC embeddings
dim(harmony_embeddings)
harmony_embeddings[seq_len(5), seq_len(5)]

## Finally, we can return an object with all the underlying data structures
harmony_object <- RunHarmony(pca_matrix, meta_data, 'dataset', return_object=TRUE)
dim(harmony_object$Y) # cluster centroids
dim(harmony_object$R) # soft cluster assignment
dim(harmony_object$Z_corr) # corrected PCA embeddings
head(harmony_object$O) # batch by cluster co-occurrence matrix
```
Index

* datasets
 - cell_lines, 2
 - cell_lines_small, 2
 - pbmc.ctrl, 5
 - pbmc.stim, 5
 - cell_lines, 2
 - cell_lines_small, 2

- harmony, 3
- harmony_options, 3
- HarmonyMatrix (RunHarmony), 6

- moe_ridge_get_betas, 4

- pbmc.ctrl, 5
- pbmc.stim, 5

- RunHarmony, 6
- RunHarmony.default, 7