Package ‘hawkes’

February 20, 2015

Version 0.0-4
Date 2014-01-08
Title Hawkes process simulation and calibration toolkit
Author Riadh Zaatour <zaatour_riadh@yahoo.fr>
Maintainer Riadh Zaatour <zaatour_riadh@yahoo.fr>
Description The package allows to simulate Hawkes process both in univariate and multivariate settings. It gives functions to compute different moments of the number of jumps of the process on a given interval, such as mean, variance or autocorrelation of process jumps on time intervals separated by a lag.
License GPL (>= 2)
Depends R (>= 3.0.2)
Imports Rcpp (>= 0.11.1)
LinkingTo Rcpp, RcppArmadillo (>= 0.4.100.2.1)
Repository CRAN
Repository/R-Forge/Project hawkes
Repository/R-Forge/Revision 61
Repository/R-Forge/DateTimeStamp 2014-05-19 11:27:02
Date/Publication 2014-05-19 16:33:15
NeedsCompilation yes

R topics documented:

jumpAutocorrelation .. 2
jumpMean ... 3
jumpVariance ... 4
likelihoodHawkes ... 5
simulateHawkes .. 6

Index 8
Jump autocorrelation

Autocorrelation of Hawkes process jumps on nonoverlapping time intervals with lag.

Description

The function returns the theoretical autocorrelation of the number of jumps of a Hawkes process on nonoverlapping time intervals with lag.

Usage

\texttt{jumpAutocorrelation(\lambda_0, \alpha, \beta, \tau, \text{lag})}

Arguments

- \texttt{\lambda_0} Vector of initial intensity, a scalar in the monovariate case.
- \texttt{\alpha} Matrix of excitation, a scalar in the monovariate case. Excitation values are all positive.
- \texttt{\beta} Vector of betas, a scalar in the monovariate case.
- \texttt{\tau} Time interval length.
- \texttt{\text{lag}} Time lag.

Details

Notice that in the scalar case, one must have \beta > \alpha for the process to be stable, and in the multivariate case, the matrix (\text{diag}(\beta) - \alpha) must have eigen values with strictly positive real parts for the process to be stable.

Value

Returns a matrix containing the autocorrelation of the number of jumps of process components.

References

Jose Da Fonseca and Riadh Zaatour Clustering and Mean Reversion in Hawkes Microstructure Models.
Examples

One dimensional Hawkes process
lambda0 <- 0.02
alpha <- 0.05
beta <- 0.06
tau <- 60 # one minute
tag <- 0 # adjacent non overlapping intervals
h <- jumpAutocorrelation(lambda0, alpha, beta, tau, tag)

Multivariate Hawkes process
lambda0 <- c(0.02, 0.02)
alpha <- matrix(c(0.05, 0, 0, 0.05), byrow=TRUE, nrow=2)
beta <- c(0.06, 0.06)
tau <- 60 # one minute
tag <- 0 # adjacent non overlapping intervals
h <- jumpAutocorrelation(lambda0, alpha, beta, tau, tag)

jumpMean

Mean of Hawkes process jumps.

Description

The function returns the theoretical mean of the number of jumps of a Hawkes process on a time interval of length tau.

Usage

jumpMean(lambda0, alpha, beta, tau)

Arguments

lambda0 Vector of initial intensity, a scalar in the monovariate case.
alpha Matrix of excitation, a scalar in the monovariate case. Excitation values are all positive.
beta Vector of betas, a scalar in the monovariate case.
tau Time interval length.

Details

Notice that in the scalar case, one must have beta>alpha for the process to be stable, and in the multivariate case, the matrix (diag(beta)-alpha) must have eigen values with strictly positive real parts for the process to be stable.

Value

Returns a vector containing the mean number of jumps of every process component.
References

Jose Da Fonseca and Riadh Zaatour Clustering and Mean Reversion in Hawkes Microstructure Models.

Examples

One dimensional Hawkes process
lambda0 <- 0.02
alpha <- 0.05
beta <- 0.06
tau <- 60 # one minute
h <- jumpMean(lambda0, alpha, beta, tau)

Multivariate Hawkes process
lambda0 <- c(0.02, 0.02)
alpha <- matrix(c(0.05, 0, 0, 0.05), byrow = TRUE, nrow = 2)
beta <- c(0.06, 0.06)
tau <- 60 # one minute
h <- jumpMean(lambda0, alpha, beta, tau)

jumpVariance

| jumpVariance | Variance of Hawkes process jumps. |

Description

The function returns the theoretical variance matrix of the number of jumps of a Hawkes process on a time interval of length tau.

Usage

jumpVariance(lambda0, alpha, beta, tau)

Arguments

- lambda0: Vector of initial intensity, a scalar in the monovariate case.
- alpha: Matrix of excitation, a scalar in the monovariate case. Excitation values are all positive.
- beta: Vector of betas, a scalar in the monovariate case.
- tau: Time interval length.

Details

Notice that in the scalar case, one must have beta > alpha for the process to be stable, and in the multivariate case, the matrix (diag(beta) - alpha) must have eigen values with strictly positive real parts for the process to be stable.
Value

Returns a matrix containing the variance of the number of jumps of every process component.

References

Jose Da Fonseca and Riadh Zaatour Clustering and Mean Reversion in Hawkes Microstructure Models.

Examples

```r
# One dimensional Hawkes process
lambda0 <- 0.02
alpha <- 0.05
beta <- 0.06
tau <- 60 # one minute
h <- jumpVariance(lambda0, alpha, beta, tau)

# Multivariate Hawkes process
lambda0 <- c(0.02, 0.02)
alpha <- matrix(c(0.05, 0, 0, 0.05), byrow=TRUE, nrow=2)
beta <- c(0.06, 0.06)
tau <- 60 # one minute
h <- jumpVariance(lambda0, alpha, beta, tau)
```

likelihoodHawkes

Compute the likelihood function of a Hawkes process

Description

Compute the likelihood function of a Hawkes process for the given parameter and given the jump times vector (or list of vectors in the multivariate case), and until a time horizon.

Usage

`likelihoodHawkes(lambda0, alpha, beta, history)`

Arguments

- `lambda0`: Vector of initial intensity, a scalar in the monovariate case.
- `alpha`: Matrix of excitation, a scalar in the monovariate case. Excitation values are all positive.
- `beta`: Vector of betas, a scalar in the monovariate case.
- `history`: Jump times vector (or list of vectors in the multivariate case).
simulateHawkes

Value

Returns the opposite of the likelihood.

References

Examples

One dimensional Hawkes process
lambda0<-0.2
alpha<-0.5
beta<-0.7
history<-simulateHawkes(lambda0, alpha, beta, 3600)
l<-likelihoodHawkes(lambda0, alpha, beta, history[[1]])

Multivariate Hawkes process
lambda0<-c(0.2, 0.2)
alpha<-matrix(c(0.5, 0, 0, 0.5), byrow=TRUE, nrow=2)
beta<-c(0.7, 0.7)
history<-simulateHawkes(lambda0, alpha, beta, 3600)
l<-likelihoodHawkes(lambda0, alpha, beta, history)

simulateHawkes Hawkes process simulation Function

Description

The function simulates a Hawkes process for the given parameter, and until a time horizon.

Usage

simulateHawkes(lambda0, alpha, beta, horizon)

Arguments

lambda0 Vector of initial intensity, a scalar in the monovariate case.
alpha Matrix of excitation, a scalar in the monovariate case. Excitation values are all positive.
beta Vector of betas, a scalar in the monovariate case.
horizon Time horizon until which the simulation is to be conducted.

Details

Notice that in the scalar case, one must have beta>alpha for the process to be stable, and in the multivariate case, the matrix (diag(beta)-alpha) must have eigen values with strictly positive real parts for the process to be stable.
simulateHawkes

Value

Returns a vector of jump times in the monovariate case, and a list of such vectors for every component in the multivariate case.

References

Examples

```r
# One dimensional Hawkes process
lambda0 <- 0.2
alpha <- 0.5
beta <- 0.7
horizon <- 3600 # one hour
h <- simulateHawkes(lambda0, alpha, beta, horizon)

# Multivariate Hawkes process
lambda0 <- c(0.2, 0.2)
alpha <- matrix(c(0.5, 0.0, 0.5), byrow = TRUE, nrow = 2)
beta <- c(0.7, 0.7)
horizon <- 3600 # one hour
h <- simulateHawkes(lambda0, alpha, beta, horizon)
```
Index

jumpAutocorrelation, 2
jumpMean, 3
jumpVariance, 4
likelihoodHawkes, 5
simulateHawkes, 6