Package ‘hdbinseg’

May 29, 2018

Type Package
Title Change-Point Analysis of High-Dimensional Time Series via Binary Segmentation
Version 1.0.1
Date 2018-05-18
Depends R (>= 3.4.0)
License GPL (>= 3)
LazyData TRUE
Suggests RcppArmadillo
Imports Rcpp (>= 0.12.10), foreach, iterators, doParallel
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.0.1
NeedsCompilation yes
Author Haeran Cho [aut, cre], Piotr Fryzlewicz [aut]
Maintainer Haeran Cho <haeran.cho@bristol.ac.uk>
Repository CRAN
Date/Publication 2018-05-29 08:59:41 UTC

R topics documented:

dcbs.alg ... 2
dcbs.thr ... 3
sbs.alg ... 4
sbs.thr ... 5

Index 7
Double CUSUM Binary Segmentation

Description

Perform the Double CUSUM Binary Segmentation algorithm detecting change-points in the mean or second-order structure of the data.

Usage

dcbsNalg(x, cp.type = c(1, 2)[1], phi = 0.5, thr = NULL, trim = NULL, height = NULL, temporal = TRUE, scales = NULL, diag = FALSE, B = 1000, q = 0.01, do.parallel = 4)

Arguments

x input data matrix, with each row representing the component time series

cp.type cp.type=1 specifies change-points in the mean, cp.type=2 specifies change-points in the second-order structure

phi choice of parameter for weights in Double CUSUM statistic; 0 <= phi <= 1 or phi = -1 allowed with the latter leading to the DC statistic combining phi = 0 and phi = 1/2, see Section 4.1 of Cho (2016) for further details

thr pre-defined threshold values; when thr = NULL, bootstrap procedure is employed for the threshold selection; when thr != NULL and cp.type = 1, length(thr) should be one, if cp.type = 2, length(thr) should match length(scales)

trim length of the intervals trimmed off around the change-point candidates; trim = NULL activates the default choice (trim = round(log(dim(x)[2])))

height maximum height of the binary tree; height = NULL activates the default choice (height = floor(log(dim(x)[2], 2))/2)

temporal used when cp.type = 1; if temporal = FALSE, rows of x are scaled by mad estimates, if temporal = TRUE, their long-run variance estimates are used

scales used when cp.type = 2; negative integers representing Haar wavelet scales to be used for computing nrow(x)*(nrow(x)+1)/2 dimensional wavelet transformation of x; a small negative integer represents a fine scale

diag used when cp.type = 2; if diag = TRUE, only changes in the diagonal elements of the autocovariance matrices are searched for

B used when is.null(thr); number of bootstrap samples for threshold selection

q used when is.null(thr); indicates the quantile of bootstrap test statistics to be used for threshold selection

do.parallel used when is.null(thr); number of copies of R running in parallel, if do.parallel = 0, %do% operator is used, see also foreach
Value

S3 bin.tree object, which contains the following fields:

tree
 a list object containing information about the nodes at which change-points are detected

mat
 matrix concatenation of the nodes of tree

ecp
 estimated change-points

thr
 threshold used to construct the tree

References

Examples

```r
x <- matrix(rnorm(10*100), nrow=10)
dcbs.alg(x, cp.type=1, phi=.5, temporal=FALSE, do.parallel=0)$ecp

x <- matrix(rnorm(100*300), nrow=100)
x[1:10, 151:300] <- x[1:10, 151:300] + 1
dcbs.alg(x, cp.type=1, phi=-1, temporal=FALSE, do.parallel=0)$ecp
```

dcbs.thr
Bootstrapping for threshold selection in DCBS algorithm

Description

Generate thresholds for DCBS algorithm via bootstrapping

Usage

```r
dcbs.thr(z, interval = c(1, dim(z)[2]), phi = 0.5, cp.type = 1, do.clean.cp = FALSE, temporal = TRUE, scales = NULL, diag = FALSE, sgn = NULL, B = 1000, q = 0.01, do.parallel = 4)
```

Arguments

- `z`
 input data matrix, with each row representing the component time series

- `interval`
 a vector of two containing the start and the end points of the interval from which the bootstrap test statistics are to be calculated

- `phi`, `cp.type`, `temporal`, `scales`, `diag`, `B`, `q`, `do.parallel`
 see `dcbs.alg`

- `do.clean.cp`
 if `do.clean.cp = TRUE` pre-change-point cleaning is performed

- `sgn`
 if `diag = FALSE`, wavelet transformations of the cross-covariances are computed with the matching signs
Value

a numeric value for the threshold

sbs.alg

Sparsified Binary Segmentation

Description

Perform the Sparsified Binary Segmentation algorithm detecting change-points in the mean or second-order structure of the data.

Usage

\texttt{sbs.alg(x, cp.type = c(1, 2)[1], thr = NULL, trim = NULL, height = NULL, temporal = TRUE, scales = NULL, diag = FALSE, B = 1000, q = 0.01, do.parallel = 4)}

Arguments

- \texttt{x}: input data matrix, with each row representing the component time series
- \texttt{cp.type}: \texttt{cp.type}=1 specifies change-points in the mean, \texttt{cp.type}=2 specifies change-points in the second-order structure
- \texttt{thr}: pre-defined threshold values; when \texttt{thr} = \texttt{NULL}, bootstrap procedure is employed for the threshold selection; when \texttt{thr} != \texttt{NULL} and \texttt{cp.type} = 1, \texttt{length(thr)} should match \texttt{nrow(x)}, if \texttt{cp.type} = 2, \texttt{length(thr)} should match \texttt{nrow(x)*(nrow(x)+1)/2*length(scales)}
- \texttt{trim}: length of the intervals trimmed off around the change-point candidates; \texttt{trim} = \texttt{NULL} activates the default choice (\texttt{trim = round(log(dim(x)[2]))})
- \texttt{height}: maximum height of the binary tree; \texttt{height} = \texttt{NULL} activates the default choice (\texttt{height = floor(log(dim(x)[2]), 2)/2})
- \texttt{temporal}: used when \texttt{cp.type} = 1; if \texttt{temporal} = \texttt{FALSE}, rows of \texttt{x} are scaled by \texttt{mad} estimates, if \texttt{temporal} = \texttt{TRUE}, their long-run variance estimates are used
- \texttt{scales}: used when \texttt{cp.type} = 2; negative integers representing Haar wavelet scales to be used for computing \texttt{nrow(x)*(nrow(x)+1)/2} dimensional wavelet transformation of \texttt{x}; a small negative integer represents a fine scale
- \texttt{diag}: used when \texttt{cp.type} = 2; if \texttt{diag} = \texttt{TRUE}, only changes in the diagonal elements of the autocovariance matrices are searched for
- \texttt{B}: used when \texttt{is.null(thr)}; number of bootstrap samples for threshold selection
- \texttt{q}: used when \texttt{is.null(thr)}; quantile of bootstrap test statistics to be used for threshold selection
- \texttt{do.parallel}: used when \texttt{is.null(thr)}; number of copies of \texttt{R} running in parallel, if \texttt{do.parallel} = \texttt{0}, \texttt{%do%} operator is used, see also \texttt{foreach}
Value

S3 bin.tree object, which contains the following fields:

- **tree**: a list object containing information about the nodes at which change-points are detected
- **mat**: matrix concatenation of the nodes of **tree**
- **ecp**: estimated change-points
- **thr**: threshold used to construct the tree

References

Examples

```r
x <- matrix(rnorm(20*300), nrow=20)
sbs.alg(x, cp.type=2, scales=-1, diag=TRUE, do.parallel=0)$ecp

x <- matrix(rnorm(100*300), nrow=100)
x[1:10, 151:300] <- x[1:10, 151:300]*sqrt(2)
sbs.alg(x, cp.type=2, scales=-1, diag=TRUE, do.parallel=0)$ecp
```

sbs.thr

Bootstrapping for threshold selection in SBS algorithm

Description

Generate thresholds for SBS algorithm via bootstrapping

Usage

```r
sbs.thr(z, interval = c(1, dim(z)[2]), cp.type = 1, do.clean.cp = TRUE,
scales = NULL, diag = FALSE, sgn = NULL, B = 1000, q = 0.01,
do.parallel = 4)
```

Arguments

- **z**: input data matrix, with each row representing the component time series
- **interval**: a vector of two containing the start and the end points of the interval from which the bootstrap test statistics are to be calculated
- **cp.type, scales, diag, B, q, do.parallel**: see `sbs.alg`
- **do.clean.cp**: if `do.clean.cp = TRUE` pre-change-point cleaning is performed
- **sgn**: if `diag = FALSE`, wavelet transformations of the cross-covariances are computed with the matching signs
Value

if cp.type = 1, a vector of length nrow(z), each containing the threshold applied to the CUSUM statistics from the corresponding coordinate of z if cp.type = 2, a vector of length length(scales)*nrow(z) (when diag = TRUE) or length(scales)*nrow(z)*(nrow(z)+1)/2 (when diag = FALSE), each containing the threshold applied to the CUSUM statistics of the corresponding wavelet transformation of z
Index

dcbs.alg, 2, 3

dcbs.thr, 3

foreach, 2, 4

list, 3, 5

mad, 2, 4

sbs.alg, 4, 5

sbs.thr, 5