Package ‘hdcate’

December 14, 2022

Type Package
Title Estimation of Conditional Average Treatment Effects with High-Dimensional Data
Version 0.1.0
Imports KernSmooth, R6, hdm, locpol, caret
Description A two-step double-robust method to estimate the conditional average treatment effects (CATE) with potentially high-dimensional covariate(s). In the first stage, the nuisance functions necessary for identifying CATE are estimated by machine learning methods, allowing the number of covariates to be comparable to or larger than the sample size. The second stage consists of a low-dimensional local linear regression, reducing CATE to a function of the covariate(s) of interest. The CATE estimator implemented in this package not only allows for high-dimensional data, but also has the “double robustness” property: either the model for the propensity score or the models for the conditional means of the potential outcomes are allowed to be misspecified (but not both). This package is based on the paper by Fan et al., “Estimation of Conditional Average Treatment Effects With High-Dimensional Data” (2022), Journal of Business & Economic Statistics <doi:10.1080/07350015.2020.1811102>.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
Suggests knitr, rmarkdown, xfun, randomForest, dplyr, ggplot2, ggthemes
VignetteBuilder knitr
NeedsCompilation no
Author Qingliang Fan [aut, cre], Hengzhao Hong [aut]
Maintainer Qingliang Fan <michaelqfan@cuhk.edu.hk>
Repository CRAN
Date/Publication 2022-12-14 11:50:02 UTC
R topics documented:

HDCATE ... 2
HDCATE.fit ... 3
HDCATE.get_sim_data ... 4
HDCATE.inference ... 5
HDCATE.plot .. 6
HDCATE.set_bw ... 7
HDCATE.set_condition_var ... 8
HDCATE.set_first_stage ... 9
HDCATE.unset_first_stage ... 11
HDCATE.use_cross_fitting ... 12
HDCATE.use_full_sample ... 13

Index 14

HDCATE High-Dimensional Conditional Average Treatment Effects (HDCATE) Estimator

Description

Use a two-step procedure to estimate the conditional average treatment effects (CATE) with potentially high-dimensional covariate(s). Run browseVignettes('hdcate') to browse the user manual of this package.

Usage

HDCATE(data, y_name, d_name, x_formula)

Arguments

data data frame of the observed data
y_name variable name of the observed outcomes
d_name variable name of the treatment indicators
x_formula formula of the covariates

Value

An initialized HDCATE model (object), ready for estimation.
Examples

```r
# get simulation data
n_obs <- 500  # Num of observations
n_var <- 100  # Num of observed variables
n_rel_var <- 4  # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)

# conditional expectation model is misspecified
x_formula <- paste(paste0('/VarX', c(2:n_var)), collapse = '/Var+Var')
# for example, and alternatively, the propensity score model is misspecified
# x_formula <- paste(paste0('/X', c(1:(n_var-1))), collapse = '+')

# Example 1: full-sample estimator
# create a new HDCATE model
model <- HDCATE(data=data, y_name='/Y', d_name='/D', x_formula=x_formula)

# estimate HDCATE function, inference, and plot
HDCATE.set_condition_var(model, 'X2', min=-1, max=1, step=0.01)
HDCATE.fit(model)
HDCATE.inference(model)
HDCATE.plot(model)

# Example 2: cross-fitting estimator
# change above estimator to cross-fitting mode, 5 folds, for example.
HDCATE.use_cross_fitting(model, k_fold=5)

# estimate HDCATE function, inference, and plot
HDCATE.set_condition_var(model, 'X2', min=-1, max=1, step=0.01)
HDCATE.fit(model)
HDCATE.inference(model)
HDCATE.plot(model)
```

HDCATE.fit

Fit the HDCATE function

Description

Fit the HDCATE function

Usage

```r
HDCATE.fit(HDCATE_model, verbose = TRUE)
```

Arguments

- `HDCATE_model` an object created via HDCATE
- `verbose` whether the verbose message is displayed, the default is TRUE
HDCATE.get_sim_data

Value

None. The HDCATE_model is fitted.

Examples

get simulation data
n_obs <- 500 # Num of observations
n_var <- 100 # Num of observed variables
n_rel_var <- 4 # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)
conditional expectation model is misspecified
x_formula <- paste(paste0('X', c(2:n_var)), collapse = '+')
propensity score model is misspecified
x_formula <- paste(paste0('X', c(1:(n_var-1))), collapse = '+')

create a new HDCATE model
model <- HDCATE(data=data, y_name='Y', d_name='D', x_formula=x_formula)
HDCATE.set_condition_var(model, 'X2', min=-1, max=1, step=0.01)
HDCATE.fit(model)

HDCATE.get_sim_data Get simulation data

Description

Get simulation data

Usage

HDCATE.get_sim_data(
 n_obs = 500,
 n_var = 100,
 n_rel_var = 4,
 sig_strength_propensity = 0.5,
 sig_strength_outcome = 1,
 intercept = 10
)

Arguments

n_obs Num of observations
n_var Num of covariates
n_rel_var Num of relevant variables, only the first n_rel_var covariates are actually present in the expectation function of potential outcome, and only the last n_rel_var covariates are present in the propensity score function.

sig_strength_propensity signal strength in propensity score functions

sig_strength_outcome signal strength in outcome functions

intercept value of intercept in outcome functions

Value

a data.frame, which is the simulated observed data.

Examples

HDCATE.get_sim_data()
HDCATE.get_sim_data(n_obs=50, n_var=4, n_rel_var=2)

HDCATE.inference

Construct uniform confidence bands

Description

Construct uniform confidence bands

Usage

HDCATE.inference(
 HDCATE_model,
 sig_level = 0.01,
 n_rep_boot = 1000,
 verbose = FALSE
)

Arguments

HDCATE_model an object created via HDCATE
sig_level a (vector of) significant level, such as 0.01, or c(0.01, 0.05, 0.10)
n_rep_boot repeat n times for bootstrap, the default is 1000
verbose whether the verbose message is displayed, the default is FALSE

Value

None. The HDCATE confidence bands are constructed.
Examples

```r
# get simulation data
n_obs <- 500  # Num of observations
n_var <- 100  # Num of observed variables
n_rel_var <- 4  # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)

# conditional expectation model is misspecified
x_formula <- paste(paste0("X", c(2:n_var)), collapse = "+")

# propensity score model is misspecified
# x_formula <- paste(paste0("X", c(1:(n_var-1))), collapse = "+")

# create a new HDCATE model
model <- HDCATE(data=data, y_name="Y", d_name="D", x_formula=x_formula)

HDCATE.set_condition_var(model, "X2", min=-1, max=1, step=0.01)

HDCATE.fit(model)
HDCATE.inference(model)
```

HDCATE.plot

Plot HDCATE function and the uniform confidence bands

Description

Plot HDCATE function and the uniform confidence bands

Usage

```r
HDCATE.plot(
  HDCATE_model,  # an object created via HDCATE
  output_pdf = FALSE,  # if TRUE, the plot will be saved as a PDF file, the default is FALSE
  pdf_name = "hdcate_plot.pdf",  # file name when output_pdf=TRUE
  include_band = TRUE,  # test_side = "both",
  y_axis_min = "auto",  # y_axis_max = "auto",
  display.hdcate = "HDCATEF",  # display.ate = "ATE",
  display.siglevel = "sig_level"
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDCATE_model</td>
<td>an object created via HDCATE</td>
</tr>
<tr>
<td>output_pdf</td>
<td>if TRUE, the plot will be saved as a PDF file, the default is FALSE</td>
</tr>
<tr>
<td>pdf_name</td>
<td>file name when output_pdf=TRUE</td>
</tr>
</tbody>
</table>
HDCATE.set_bw

include_band
 if TRUE, plot the uniform confidence bands (need: HDCATE.inference was called before)

test_side
 'both', 'left' or 'right', i.e. 2-side test or one-side test

y_axis_min
 minimum value of the Y axis to plot in the graph, the default is auto

y_axis_max
 maximum value of the Y axis to plot in the graph, the default is auto

display.hdcate
 the name of HDCATE function in the legend, the default is 'HDCATEF'
display.ate
 the name of average treatment effect in the legend, the default is 'ATE'
display.siglevel
 the name of the significant level for confidence bands in the legend, the default is 'sig_level'

Value

None. A plot will be shown or saved as PDF.

Examples

 # get simulation data
 n_obs <- 500 # Num of observations
 n_var <- 100 # Num of observed variables
 n_rel_var <- 4 # Num of relevant variables
 data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)
 # conditional expectation model is misspecified
 x_formula <- paste(paste0('X', c(2:n_var)), collapse = '+')
 # propensity score model is misspecified
 # x_formula <- paste(paste0('X', c(1:(n_var-1))), collapse = '+')

 # create a new HDCATE model
 model <- HDCATE(data=data, y_name='Y', d_name='D', x_formula=x_formula)

 HDCATE.set_condition_var(model, 'X2', min=-1, max=1, step=0.01)
 HDCATE.fit(model)
 HDCATE.inference(model)
 HDCATE.plot(model)

HDCATE.set_bw Set bandwidth

Description

Set user-defined bandwidth.

Usage

 HDCATE.set_bw(model, bandwidth = "default")
Arguments

- **model**: an object created via HDCATE
- **bandwidth**: the value of bandwidth

Value

None.

Examples

```r
# get simulation data
n_obs <- 500  # Num of observations
n_var <- 100  # Num of observed variables
n_rel_var <- 4  # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)

# conditional expectation model is misspecified
x_formula <- paste(paste0('/Var', c(2:n_var)), collapse = '+')

# propensity score model is misspecified
# x_formula <- paste(paste0('/Var', c(1:(n_var-1))), collapse = '+')

# create a new HDCATE model
model <- HDCATE(data=data, y_name='/VarY', d_name='/VarD', x_formula=x_formula)

# Set user-defined bandwidth, e.g., 0.15.
HDCATE.set_bw(model, 0.15)
```

HDCATE.set_condition_var

Set the conditional variable in CATE

Description

Set the conditional variable in CATE

Usage

```r
HDCATE.set_condition_var(
    HDCATE_model,  # HDCATE_model,
    name = NA,  # name = NA,
    min = NA,  # min = NA,
    max = NA,  # max = NA,
    step = NA  # step = NA
)
```
Arguments

HDCATE_model an object created via HDCATE
name name of the conditional variable
min minimum value of the conditional variable for evaluation
max maximum value of the conditional variable for evaluation
step minimum distance between two evaluation points

Value

None. The HDCATE_model is ready to fit.

Examples

get simulation data
n_obs <- 500 # Num of observations
n_var <- 100 # Num of observed variables
n_rel_var <- 4 # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)

conditional expectation model is misspecified
x_formula <- paste(paste0('X', c(2:n_var)), collapse ='+')

propensity score model is misspecified
x_formula <- paste(paste0('X', c(1:(n_var-1))), collapse ='+')

create a new HDCATE model
model <- HDCATE(data=data, y_name='Y', d_name='D', x_formula=x_formula)

HDCATE.set_condition_var(model, 'X2', min=-1, max=1, step=0.01)

HDCATE.set_first_stage

Set user-defined first-stage estimating methods

Description

Set user-defined ML methods (such as random forests, elastic-net, boosting) to run the first-stage estimation.

Usage

HDCATE.set_first_stage(
 model,
 fit.treated,
 fit.untreated,
 fit.propensity,
 predict.treated,
 predict.untreated,
 predict.propensity
)
Arguments

model
an object created via HDCATE

fit.treated
function that accepts a data.frame as the only argument, fits the treated expectation function, and returns a fitted object

fit.untreated
function that accepts a data.frame as the only argument, fits the untreated expectation function, and returns a fitted object

fit.propensity
function that accepts a data.frame as the only argument, fits the propensity function, and return a fitted object

predict.treated
function that accepts the returned object of fit.treated and a data.frame as arguments, and returns the predicted vector of that data.frame

predict.untreated
function that accepts the returned object of fit.untreated and a data.frame as arguments, and returns the predicted vector that data.frame

predict.propensity
function that accepts the returned object of fit.propensity and a data.frame as arguments, and returns the predicted vector that data.frame

Value

None.

Examples

get simulation data
n_obs <- 500 # Num of observations
n_var <- 100 # Num of observed variables
n_rel_var <- 4 # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)

conditional expectation model is misspecified
x_formula <- paste(paste0("Var", 2:n_var), collapse="+")

propensity score model is misspecified
x_formula <- paste(paste0("Var", 1:(n_var-1)), collapse="+")

create a new HDCATE model
model <- HDCATE(data=data, y_name="Y", d_name="D", x_formula=x_formula)

manually define a lasso method
my_lasso_fit_exp <- function(df) {
 hdm::rlasso(as.formula(paste0("Y", "~", x_formula)), df)
}

my_lasso_predict_exp <- function(fitted_model, df) {
 predict(fitted_model, df)
}

my_lasso_fit_ps <- function(df) {
 hdm::rlassologit(as.formula(paste0("D", "~", x_formula)), df)
}

my_lasso_predict_ps <- function(fitted_model, df, type="response") {
 predict(fitted_model, df, type=type)"
```r
HDCATE.unset_first_stage

# Apply the "my-lasso" approach to the first stage
HDCATE.set_first_stage(
  model,
  my_lasso_fit_exp,
  my_lasso_fit_exp,
  my_lasso_fit_ps,
  my_lasso_predict_exp,
  my_lasso_predict_exp,
  my_lasso_predict_ps
)

HDCATE.unset_first_stage

Clear the user-defined first-stage estimating methods

Description
Inverse operation of HDCATE.set_first_stage

Usage
HDCATE.unset_first_stage(model)

Arguments
model an object created via HDCATE

Value
None.

Examples
# get simulation data
n_obs <- 500 # Num of observations
n_var <- 100 # Num of observed variables
n_rel_var <- 4 # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)
# conditional expectation model is misspecified
x_formula <- paste(paste0('X', c(2:n_var)), collapse = '+')
# propensity score model is misspecified
# x_formula <- paste(paste0('X', c(1:(n_var-1))), collapse = '+')

# create a new HDCATE model
model <- HDCATE(data=data, y_name='Y', d_name='D', x_formula=x_formula)

# ... manually set user-defined first-stage estimating methods via `HDCATE.set_first_stage`
```
Clear those user-defined methods and use the built-in method
HDCATE.unset_first_stage(model)

Description

Use k-fold cross-fitting estimator

Usage

HDCATE.use_cross_fitting(model, k_fold = 5, folds = NULL)

Arguments

- **model**: an object created via HDCATE
- **k_fold**: number of folds
- **folds**: you can manually set the folds, should be a list of index vectors

Value

None.

Examples

get simulation data
n_obs <- 500 # Num of observations
n_var <- 100 # Num of observed variables
n_rel_var <- 4 # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)
conditional expectation model is misspecified
x_formula <- paste(paste0('X', c(2:n_var)), collapse = '+'
propensity score model is misspecified
x_formula <- paste(paste0('X', c(1:(n_var-1))), collapse = '+')

create a new HDCATE model
model <- HDCATE(data=data, y_name='Y', d_name='D', x_formula=x_formula)

for example, use 5-fold cross-fitting estimator
HDCATE.use_cross_fitting(model, k_fold=5)

alternatively, pass a list of index vector to the third argument to set the folds manually,
in this case, the second argument k fold is auto detected, you can pass any value to it.
HDCATE.use_cross_fitting(model, k_fold=2, folds=list(c(1:250), c(251:500)))
HDCATE.use_full_sample

Use full-sample estimator

Description
This is the default mode when creating a model via HDCATE

Usage
HDCATE.use_full_sample(model)

Arguments
model an object created via HDCATE

Value
None.

Examples
get simulation data
n_obs <- 500 # Num of observations
n_var <- 100 # Num of observed variables
n_rel_var <- 4 # Num of relevant variables
data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var)
conditional expectation model is misspecified
x_formula <- paste(paste0('X', c(2:n_var)), collapse = '+')
propensity score model is misspecified
x_formula <- paste(paste0('X', c(1:(n_var-1))), collapse = '+')

create a new HDCATE model
model <- HDCATE(data=data, y_name='Y', d_name='D', x_formula=x_formula)

HDCATE.use_full_sample(model)
Index

HDCATE, 2, 3, 5, 6, 8–13
HDCATE.fit, 3
HDCATE.get_sim_data, 4
HDCATE.inference, 5, 7
HDCATE.plot, 6
HDCATE.set_bw, 7
HDCATE.set_condition_var, 8
HDCATE.set_first_stage, 9, 11
HDCATE.unset_first_stage, 11
HDCATE.use_cross_fitting, 12
HDCATE.use_full_sample, 13