Package ‘hdm’

January 23, 2018

Type Package

Title High-Dimensional Metrics

Version 0.2.3

Date 2018-01-22

Depends R (>= 3.0.0)

Description Implementation of selected high-dimensional statistical and econometric methods for estimation and inference. Efficient estimators and uniformly valid confidence intervals for various low-dimensional causal/structural parameters are provided which appear in high-dimensional approximately sparse models. Including functions for fitting heteroscedastic robust Lasso regressions with non-Gaussian errors and for instrumental variable (IV) and treatment effect estimation in a high-dimensional setting. Moreover, the methods enable valid post-selection inference and rely on a theoretically grounded, data-driven choice of the penalty. Chernozhukov, Hansen, Spindler (2016) <arXiv:1603.01700>.

License MIT + file LICENSE

LazyData TRUE

Imports MASS, glmnet, ggplot2, checkmate, Formula, methods

Suggests testthat, knitr, xtable

VignetteBuilder knitr

RoxygenNote 5.0.1

Author Martin Spindler [cre, aut], Victor Chernozhukov [aut], Christian Hansen [aut]

Maintainer Martin Spindler <martin.spindler@gmx.de>

Repository CRAN

Repository/R-Forge/Project hdm

Repository/R-Forge/Revision 132

Repository/R-Forge/DateTimeStamp 2018-01-23 18:27:16

Date/Publication 2018-01-23 21:50:45 UTC

NeedsCompilation no
Description

This package implements methods for estimation and inference in a high-dimensional setting.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>Type</th>
<th>Version</th>
<th>Date</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdm</td>
<td>Package</td>
<td>0.1</td>
<td>2015-05-25</td>
<td>GPL-3</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>hdm-package</th>
<th>hdm: High-Dimensional Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdm-package</td>
<td>2</td>
</tr>
<tr>
<td>AJR</td>
<td>3</td>
</tr>
<tr>
<td>BLP</td>
<td>4</td>
</tr>
<tr>
<td>cps2012</td>
<td>5</td>
</tr>
<tr>
<td>EminentDomain</td>
<td>6</td>
</tr>
<tr>
<td>Growth Data</td>
<td>7</td>
</tr>
<tr>
<td>lambdaCalculation</td>
<td>8</td>
</tr>
<tr>
<td>LassoShooting.fit</td>
<td>9</td>
</tr>
<tr>
<td>pension</td>
<td>10</td>
</tr>
<tr>
<td>predict.rlassologit</td>
<td>11</td>
</tr>
<tr>
<td>print.rlasso</td>
<td>12</td>
</tr>
<tr>
<td>print.rlassoEffects</td>
<td>13</td>
</tr>
<tr>
<td>print.rlassoIV</td>
<td>14</td>
</tr>
<tr>
<td>print.rlassoIVselectX</td>
<td>14</td>
</tr>
<tr>
<td>print.rlassoIVselectZ</td>
<td>15</td>
</tr>
<tr>
<td>print.rlassologitEffects</td>
<td>16</td>
</tr>
<tr>
<td>print.rlassoTE</td>
<td>17</td>
</tr>
<tr>
<td>print.tls</td>
<td>18</td>
</tr>
<tr>
<td>rlasso</td>
<td>18</td>
</tr>
<tr>
<td>rlassoATE</td>
<td>21</td>
</tr>
<tr>
<td>rlassoEffects</td>
<td>23</td>
</tr>
<tr>
<td>rlassoIV</td>
<td>25</td>
</tr>
<tr>
<td>rlassoIVselectX</td>
<td>26</td>
</tr>
<tr>
<td>rlassoIVselectZ</td>
<td>28</td>
</tr>
<tr>
<td>rlassologit</td>
<td>29</td>
</tr>
<tr>
<td>rlassologitEffects</td>
<td>31</td>
</tr>
<tr>
<td>summary.rlassoEffects</td>
<td>33</td>
</tr>
<tr>
<td>tsls</td>
<td>34</td>
</tr>
<tr>
<td>Index</td>
<td>36</td>
</tr>
</tbody>
</table>
This package provides efficient estimators and uniformly valid confidence intervals for various low-dimensional causal/structural parameters appearing in high-dimensional approximately sparse models. The package includes functions for fitting heteroskedastic robust Lasso regressions with non-Gaussian errors and for instrumental variable (IV) and treatment effect estimation in a high-dimensional setting. Moreover, the methods enable valid post-selection inference. Moreover, a theoretically grounded, data-driven choice of the penalty level is provided.

Author(s)

Victor Chernozhukov, Christian Hansen, Martin Spindler

Maintainer: Martin Spindler <spindler@mea.mpisoc.mpg.de>

References

AJR data set

Dataset on settler mortality.

Format

- **Mort** Settler mortality
- **logMort** logarithm of Mort
- **Latitude** Latitude
- **Latitude2** Latitude^2
- **Africa** Africa
- **Asia** Asia
- **Namer** North America
- **Samer** South America
- **Neo** Neo-Europes
- **GDP** GDP
- **Exprop** Average protection against expropriation risk
Details

Data set was analysed in Acemoglu et al. (2001). A detailed description of the data can be found at http://economics.mit.edu/faculty/acemoglu/data/ajr2001

References

Examples

data(AJR)

BLP

BLP data set

Description

Automobile data set from the US.

Format

model.name model name
model.id model id
firm.id firm id
cdid cdid
id id
price log price
mpg miles per gallon
mpd miles per dollar
hpwt horse power per weight
air air conditioning (binary variable)
space size of the car
share market share
outshr share s0
y outcome variable defined as log(share) - log(outshr)
trend time trend

Details

Data set was analysed in Berry, Levinsohn and Pakes (1995). The data stem from annual issues of the Automotive News Market Data Book. The data set inludes information on all models marketed during the the period beginning 1971 and ending in 1990 containing 2217 model/years from 997 distinct models. A detailed description is given in BLP (1995, 868–871). The internal function constructIV constructs instrumental variables along the lines described and used in BLP (1995).
References

Examples
data(BLP)

cps2012
cps2012 data set

Description

Census data from the US for the year 2012.

Format

- lnw: log of hourly wage (annual earnings / annual hours)
- female: female indicator
- married status: six indicators: widowed, divorced, separated, nevermarried, and married (omitted)
- education attainment: six indicators: hsd08, hsd911, hsg, cg, ad, and sc (omitted)
- region indicators: four indicators: mw, so, we, and ne (omitted)
- potential experience: (max(0, age - years of education - 7)): exp1, exp2 (divided by 100), exp3 (divided by 1000), exp4 (divided by 10000)
- weight: March Supplement sampling weight
- year: CPS year

Details

The CPS is a monthly U.S. household survey conducted jointly by the U.S. Census Bureau and the Bureau of Labor Statistics. The data comprise the year 2012. This data set was used in Mulligan and Rubinstein (2008). The sample comprises white non-hipanic, ages 25-54, working full time full year (35+ hours per week at least 50 weeks), exclude living in group quarters, self-employed, military, agricultural, and private household sector, allocated earning, inconsistent report on earnings and employment, missing data.

References

Examples
data(BLP)
EminentDomain data set

Description

Dataset on judicial eminent domain decisions.

Format

- y: economic outcome variable
- x: set of exogenous variables
- d: eminent domain decisions
- z: set of potential instruments

Details

Data set was analyzed in Belloni et al. (2012). They estimate the effect of judicial eminent domain decisions on economic outcomes with instrumental variables (IV) in a setting high a large set of potential IVs. A detailed description of the data can be found at https://www.econometricssociety.org/publications/econometrica/2012/11/01/sparse-models-and-methods-optimal-instruments-application.

The data set contains four "sub-data sets" which differ mainly in the dependent variables: repeat-sales FHFA/OFHEO house price index for metro (FHFA) and non-metro (NM) area, the Case-Shiller home price index (CS), and state-level GDP from the Bureau of Economic Analysis - all transformed with the logarithm. The structure of each subdata set is given above. In the data set the following variables and name conventions are used: "numpanselsk_xyz" is the number of panels with at least k members with the characteristic following the "_". The probability controls (names start with "F_prob_") follow a similar naming convention and give the probability of observing a panel with characteristic given following second "," given the characteristics of the pool of judges available to be assigned to the case.

Characteristics in the data for the control variables or instruments:

- **noreligion**: judge reports no religious affiliation
- **jd_public**: judge’s law degree is from a public university
- **dem**: judge reports being a democrat
- **female**: judge is female
- **nonwhite**: judge is nonwhite (and not black)
- **black**: judge is black
- **jewish**: judge is Jewish
- **catholic**: judge is Catholic
- **mainline**: baseline religion
- **protestant**: belongs to a protestant church
- **evangelical**: belongs to an evangelical church
- **instate_ba**: judge’s undergraduate degree was obtained within state
Growth Data

- **ba_public** judge’s undergraduate degree was obtained at a public university
- **elev** judge was elevated from a district court
- **year** year dummy (reference category is one year before the earliest year in the data set (excluded))
- **circuit** dummy for the circuit level (reference category excluded)
- **missing_cy_12** a dummy for whether there were no cases in that circuit-year
- **numcasecat_12** the number of takings appellate decisions

References

Examples

```r
data(EminentDomain)
```

Description

Data set of growth compiled by Barro Lee.

Format

Dataframe with the following variables:

- **outcome** dependent variable: national growth rates in GDP per capita for the periods 1965-1975 and 1975-1985
- **x** covariates which might influence growth

Details

The data set contains growth data of Barro-Lee. The Barro Lee data consists of a panel of 138 countries for the period 1960 to 1985. The dependent variable is national growth rates in GDP per capita for the periods 1965-1975 and 1975-1985. The growth rate in GDP over a period from t_1 to t_2 is commonly defined as $\log(GDP_{t_1}/GDP_{t_2})$. The number of covariates is $p=62$. The number of complete observations is 90.

Source

References

R.J. Barro, J.W. Lee (1994). Data set for a panel of 139 countries. NBER.

Examples

data(GrowthData)

lambdaCalculation Function for Calculation of the penalty parameter

Description

This function implements different methods for calculation of the penalization parameter λ. Further details can be found under rlasso.

Usage

lambdaCalculation(penalty = list(homoscedastic = FALSE, X.dependent.lambda = FALSE, lambda.start = NULL, c = 1.1, gamma = 0.1), y = NULL, x = NULL)

Arguments

penalty list with options for the calculation of the penalty.
 • c and gamma constants for the penalty with default $c=1.1$ and $\gamma=0.1$
 • homoscedastic logical, if homoscedastic errors are considered (default FALSE). Option none is described below.
 • X.dependent.lambda if independent or dependent design matrix X is assumed for calculation of the parameter λ
 • numsim number of simulations for the X-dependent methods
 • lambda.start initial penalization value, compulsory for method "none"

y residual which is used for calculation of the variance or the data-dependent loadings

x matrix of regressor variables

Value

The functions returns a list with the penalty λ which is the product of $\lambda\theta$ and $\Upsilon\theta$. $\Upsilon\theta$ denotes either the variance (independent case) or the data-dependent loadings for the regressors. method gives the selected method for the calculation.
LassoShooting.fit Shooting Lasso

Description

Implementation of the Shooting Lasso (Fu, 1998) with variable dependent penalization weights.

Usage

LassoShooting.fit(x, y, lambda, control = list(maxIter = 1000, optTol = 10^(-5), zeroThreshold = 10^(-6)), XX = NULL, Xy = NULL, beta.start = NULL)

Arguments

- x: matrix of regressor variables (n times p where n denotes the number of observations and p the number of regressors)
- y: dependent variable (vector or matrix)
- lambda: vector of length p of penalization parameters for each regressor
- control: list with control parameters: maxIter maximal number of iterations, optTol tolerance for parameter precision, zeroThreshold threshold applied to the estimated coefficients for numerical issues.
- XX: optional, precalculated matrix t(X) * X
- Xy: optional, precalculated matrix t(X) * y
- beta.start: start value for beta

Details

The function implements the Shooting Lasso (Fu, 1998) with variable dependent penalization. The arguments XX and Xy are optional and allow to use precalculated matrices which might improve performance.

Value

- coefficients: estimated coefficients by the Shooting Lasso Algorithm
- coef.list: matrix of coefficients from each iteration
- num.it: number of iterations run

References

Pension 401(k) data set

Description

Data set on financial wealth and 401(k) plan participation

Format

Dataframe with the following variables (amongst others):

- **p401** participation in 401(k)
- **e401** eligibility for 401(k)
- **a401** 401(k) assets
- **tw** total wealth (in US $)
- **tfa** financial assets (in US $)
- **net_tfa** net financial assets (in US $)
- **nifa** non-401k financial assets (in US $)
- **net_nifa** net non-401k financial assets
- **net_n401** net non-401(k) assets (in US $)
- **ira** individual retirement account (IRA)
- **inc** income (in US $)
- **age** age
- **fsize** family size
- **marr** married
- **pira** participation in IRA
- **db** defined benefit pension
- **hown** home owner
- **educ** education (in years)
- **male** male
- **twoearn** two earners
- **nohs, hs, smcol, col** dummies for education: no high-school, high-school, some college, college
- **hmort** home mortage (in US $)
- **hequity** home equity (in US $)
- **hval** home value (in US $)
Details
The sample is drawn from the 1991 Survey of Income and Program Participation (SIPP) and consists of 9,915 observations. The observational units are household reference persons aged 25-64 and spouse if present. Households are included in the sample if at least one person is employed and no one is self-employed. The data set was analysed in Chernozhukov and Hansen (2004) and Belloni et al. (2014) where further details can be found. They examine the effects of 401(k) plans on wealth using data from the Survey of Income and Program Participation using 401(k) eligibility as an instrument for 401(k) participation.

References

Examples
data(pension)

predict.rlassologit Methods for S3 object rlassologit

Description
Objects of class rlassologit are constructed by rlassologit. print.rlassologit prints and displays some information about fitted rlassologit objects. summary.rlassologit summarizes information of a fitted rlassologit object. predict.rlassologit predicts values based on a rlassologit object. model.matrix.rlassologit constructs the model matrix of a lasso object.

Usage
S3 method for class 'rlassologit'
predict(object, newdata = NULL, type = "response",
 ...)

S3 method for class 'rlassologit'
model.matrix(object, ...)

S3 method for class 'rlassologit'
print(x, all = TRUE, digits = max(3L,
 getOption("digits") - 3L), ...)

S3 method for class 'rlassologit'
summary(object, all = TRUE, digits = max(3L,
 getOption("digits") - 3L), ...)
Arguments

- **object**: an object of class `rlassologit`
- **newdata**: new data set for prediction
- **type**: type of prediction required. The default ('response') is on the scale of the response variable; the alternative 'link' is on the scale of the linear predictors.
- **...** arguments passed to the print function and other methods
- **x**: an object of class `rlassologit`
- **all**: logical, indicates if coefficients of all variables (TRUE) should be displayed or only the non-zero ones (FALSE)
- **digits**: significant digits in printout

print.rlasso
Methods for S3 object `rlasso`

Description

Objects of class `rlasso` are constructed by `rlasso`. `print.rlasso` prints and displays some information about fitted `rlasso` objects. `summary.rlasso` summarizes information of a fitted `rlasso` object. `predict.rlasso` predicts values based on a `rlasso` object. `model.matrix.rlasso` constructs the model matrix of a `rlasso` object.

Usage

```r
## S3 method for class 'rlasso'
print(x, all = TRUE, digits = max(3L,getOption("digits") - 3L), ...)

## S3 method for class 'rlasso'
summary(object, all = TRUE, digits = max(3L,getOption("digits") - 3L), ...)

## S3 method for class 'rlasso'
model.matrix(object, ...)

## S3 method for class 'rlasso'
predict(object, newdata = NULL, ...)
```

Arguments

- **x**: an object of class `rlasso`
- **all**: logical, indicates if coefficients of all variables (TRUE) should be displayed or only the non-zero ones (FALSE)
- **digits**: significant digits in printout
- **...**: arguments passed to the print function and other methods
print.rlassoEffects

S3 method for class 'rlassoEffects'
print(x, digits = max(3L,getOption("digits") - 3L),
 ...)

S3 method for class 'rlassoEffects'
confint(object, parm, level = 0.95, joint = FALSE,
 ...)

S3 method for class 'rlassoEffects'
plot(x, joint = FALSE, level = 0.95, main = ",
 xlab = "coef", ylab = "", xlim = NULL, ...)

Description

Objects of class rlassoEffects are constructed by rlassoEffects. print.rlassoEffects prints and displays some information about fitted rlassoEffect objects. summary.rlassoEffects summarizes information of a fitted rlassoEffect object and is described at summary.rlassoEffects. confint.rlassoEffects extracts the confidence intervals. plot.rlassoEffects plots the estimates with confidence intervals.

Usage

```r
## S3 method for class 'rlassoEffects'
print(x, digits = max(3L,getOption("digits") - 3L),
  ...)

## S3 method for class 'rlassoEffects'
confint(object, parm, level = 0.95, joint = FALSE,
  ...)

## S3 method for class 'rlassoEffects'
plot(x, joint = FALSE, level = 0.95, main = ",
  xlab = "coef", ylab = "", xlim = NULL, ...)
```

Arguments

- **x**: an object of class rlassoEffects.
- **digits**: significant digits in printout.
- **...**: arguments passed to the print function and other methods.
- **object**: an object of class rlassoEffects.
- **parm**: a specification of which parameters are to be given confidence intervals among the variables for which inference was done, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- **level**: confidence level required.
- **joint**: logical, if TRUE joint confidence intervals are calculated.
- **main**: an overall title for the plot.
- **xlab**: a title for the x axis.
- **ylab**: a title for the y axis.
- **xlim**: vector of length two giving lower and upper bound of x axis.
print.rlassoIV Methods for S3 object rlassoIV

Description

Objects of class rlassoIV are constructed by rlassoIV. print.rlassoIV prints and displays some information about fitted rlassoIV objects. summary.rlassoIV summarizes information of a fitted rlassoIV object. confint.rlassoIV extracts the confidence intervals.

Usage

```r
## S3 method for class 'rlassoIV'
print(x, digits = max(3L,getOption("digits") - 3L), ...)

## S3 method for class 'rlassoIV'
summary(object, digits = max(3L,getOption("digits") - 3L), ...)

## S3 method for class 'rlassoIV'
confint(object, parm, level = 0.95, ...)
```

Arguments

- `x`: an object of class rlassoIV
- `digits`: significant digits in printout
- `...`: arguments passed to the print function and other methods
- `object`: An object of class rlassoIV
- `parm`: a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- `level`: confidence level required.

print.rlassoIVselectX Methods for S3 object rlassoIVselectX

Description

Objects of class rlassoIVselectX are constructed by rlassoIVselectX. print.rlassoIVselectX prints and displays some information about fitted rlassoIVselectX objects. summary.rlassoIVselectX summarizes information of a fitted rlassoIVselectX object. confint.rlassoIVselectX extracts the confidence intervals.
Usage

```r
## S3 method for class 'rlassoIVselectX'
print(x, digits = max(3L,getOption("digits") - 3L),
   ...)
```

```r
## S3 method for class 'rlassoIVselectX'
summary(object, digits = max(3L,getOption("digits")
   - 3L), ...)
```

```r
## S3 method for class 'rlassoIVselectX'
confint(object, parm, level = 0.95, ...)
```

Arguments

- `x`: an object of class `rlassoIVselectX`
- `digits`: significant digits in printout
- `...`: arguments passed to the print function and other methods
- `object`: an object of class `rlassoIVselectX`
- `parm`: a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- `level`: the confidence level required.

Description

Objects of class `rlassoIVselectZ` are constructed by `rlassoIVselectZ`. `print.rlassoIVselectZ` prints and displays some information about fitted `rlassoIVselectZ` objects. `summary.rlassoIVselectZ` summarizes information of a fitted `rlassoIVselectZ` object. `confint.rlassoIVselectZ` extracts the confidence intervals.

Usage

```r
## S3 method for class 'rlassoIVselectZ'
print(x, digits = max(3L,getOption("digits") - 3L),
   ...)
```

```r
## S3 method for class 'rlassoIVselectZ'
summary(object, digits = max(3L,getOption("digits")
   - 3L), ...)
```

```r
## S3 method for class 'rlassoIVselectZ'
confint(object, parm, level = 0.95, ...)
```
print.rlassologiteffects

Methods for S3 object rlassologiteffects

Description

Objects of class rlassologiteffects are constructed by rlassologiteffects or rlassologiteffect.

print.rlassologiteffects prints and displays some information about fitted rlassologiteffect objects.

summary.rlassologiteffects summarizes information of a fitted rlassologiteffects object.

cconfint.rlassologiteffects extracts the confidence intervals.

Usage

```r
## S3 method for class 'rlassologiteffects'
print(x, digits = max(3L,getOption("digits") - 3L), ...)

## S3 method for class 'rlassologiteffects'
summary(object, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'rlassologiteffects'
confint(object, parm, level = 0.95, joint = FALSE, ...)
```

Arguments

- `x` an object of class rlassologiteffects
- `digits` number of significant digits in printout
- `...` arguments passed to the print function and other methods
- `object` an object of class rlassologiteffects
- `parm` a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- `level` confidence level required.
Description

Objects of class \texttt{rlassoTE} are constructed by \texttt{rlassoATE}, \texttt{rlassoATET}, \texttt{rlassoLATE}, \texttt{rlassoLATET}. \texttt{print.rlassoTE} prints and displays some information about fitted \texttt{rlassoTE} objects. \texttt{summary.rlassoTE} summarizes information of a fitted \texttt{rlassoTE} object. \texttt{confint.rlassoTE} extracts the confidence intervals.

Usage

```r
## S3 method for class 'rlassoTE'
print(x, digits = max(3L,getOption("digits") - 3L), ...)

## S3 method for class 'rlassoTE'
summary(object, digits = max(3L,getOption("digits") - 3L),
        ...)

## S3 method for class 'rlassoTE'
confint(object, parm, level = 0.95, ...)
```

Arguments

- \texttt{x} an object of class \texttt{rlassoTE}
- \texttt{digits} number of significant digits in printout
- \texttt{...} arguments passed to the print function and other methods
- \texttt{object} an object of class \texttt{rlassoTE}
- \texttt{parm} a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- \texttt{level} confidence level required.
print.tls

Methods for S3 object tls

Description

Objects of class tls are constructed by tls. print.tls prints and displays some information about fitted tls objects. summary.tls summarizes information of a fitted tls object.

Usage

```r
## S3 method for class 'tls'
print(x, digits = max(3L,getOption("digits") - 3L), ...)

## S3 method for class 'tls'
summary(object, digits = max(3L,getOption("digits") - 3L), ...)
```

Arguments

- `x`: an object of class tls
- `digits`: significant digits in printout
- `...`: arguments passed to the print function and other methods
- `object`: an object of class tls

rlasso

rlasso: Function for Lasso estimation under homoscedastic and heteroscedastic non-Gaussian disturbances

Description

The function estimates the coefficients of a Lasso regression with data-driven penalty under homoscedasticity and heteroscedasticity with non-Gaussian noise and X-dependent or X-independent design. The method of the data-driven penalty can be chosen. The object which is returned is of the S3 class rlasso.

Usage

```r
rlasso(x, ...)

## S3 method for class 'formula'
rlasso(formula, data = NULL, post = TRUE,
       intercept = TRUE, model = TRUE, penalty = list(homoscedastic = FALSE,
       X.dependent.lambda = FALSE, lambda.start = NULL, c = 1.1, gamma = 0.1/log(n)),
       control = list(numIter = 15, tol = 10^-5, threshold = NULL, ...))
```
Arguments

- **x**
 - regressors (vector, matrix or object can be coerced to matrix)
 - further arguments (only for consistent definition of methods)

- **formula**
 - an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted in the form \(y \sim x \)

- **data**
 - an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlasso is called.

- **post**
 - logical. If TRUE, post-Lasso estimation is conducted.

- **intercept**
 - logical. If TRUE, intercept is included which is not penalized.

- **model**
 - logical. If TRUE (default), model matrix is returned.

- **penalty**
 - list with options for the calculation of the penalty.
 - **c** and **gamma** constants for the penalty with default \(c=1.1 \) and \(\gamma=0.1 \)
 - **homoscedastic** logical, if homoscedastic errors are considered (default FALSE). Option none is described below.
 - **X.dependent.lambda** logical, TRUE, if the penalization parameter depends on the the design of the matrix \(x \). FALSE, if independent of the design matrix (default).
 - **numSim** number of simulations for the dependent methods, default=5000
 - **lambda.start** initial penalization value, compulsory for method "none"

- **control**
 - list with control values. **numIter** number of iterations for the algorithm for the estimation of the variance and data-driven penalty, ie. loadings, tol tolerance for improvement of the estimated variances. threshold is applied to the final estimated lasso coefficients. Absolute values below the threshold are set to zero.

- **y**
 - dependent variable (vector, matrix or object can be coerced to matrix)

Details

The function estimates the coefficients of a Lasso regression with data-driven penalty under homoscedasticity / heteroscedasticity and non-Gaussian noise. The options homoscedastic is a logical with FALSE by default. Moreover, for the calculation of the penalty parameter it can be chosen, if the penalization parameter depends on the design matrix (\(X\.dependent\.lambda=TRUE \) or...
independent (default, \texttt{X.dependent.lambda}=FALSE). The default value of the constant \(c\) is 1.1 in
the post-Lasso case and 0.5 in the Lasso case. A special option is to set \texttt{homoscedastic} to
\texttt{none} and to supply a values \texttt{lambda.start}. Then this value is used as penalty parameter with
independent design and heteroscedastic errors to weight the regressors. For details of the imple-
mentation of the Algorithm for estimation of the data-driven penalty, in particular the regressor-
independent loadings, we refer to Appendix A in Belloni et al. (2012). When the option "none" is
chosen for \texttt{homoscedastic} (together with \texttt{lambda.start}), \texttt{lambda} is set to \texttt{lambda.start} and
the regressor-independent loadings und heteroscedasticity are used. The options "\texttt{X-dependent}" and
"\texttt{X-independent}" under \texttt{homoscedastic} are described in Belloni et al. (2013).

The option \texttt{post=TRUE} conducts post-lasso estimation, i.e. a refit of the model with the selected
variables.

\textbf{Value}

\texttt{rlasso} returns an object of class \texttt{rlasso}. An object of class \texttt{"rlasso"} is a list containing at least the
following components:

- \texttt{coefficients} parameter estimates
- \texttt{beta} parameter estimates (named vector of coefficients without intercept)
- \texttt{intercept} value of the intercept
- \texttt{index} index of selected variables (logical vector)
- \texttt{lambda} data-driven penalty term for each variable, product of \texttt{lambda0} (the penalization
 parameter) and the loadings
- \texttt{lambda0} penalty term
- \texttt{loadings} loading for each regressor
- \texttt{residuals} residuals, response minus fitted values
- \texttt{sigma} root of the variance of the residuals
- \texttt{iter} number of iterations
- \texttt{call} function call
- \texttt{options} options
- \texttt{model} model matrix (if \texttt{model = TRUE} in function call)

\textbf{References}

optimal instruments with an application to eminent domain. \textit{Econometrica} 80 (6), 2369-2429.

A. Belloni, V. Chernozhukov and C. Hansen (2013). Inference for high-dimensional sparse econo-
metric models. In Advances in Economics and Econometrics: 10th World Congress, Vol. 3: Econo-

\textbf{Examples}

\begin{verbatim}
set.seed(1)
n = 100 #sample size
p = 100 # number of variables
\end{verbatim}
s = 3 # number of variables with non-zero coefficients
X = Xnames = matrix(rnorm(n+p), ncol=p)
colnames(Xnames) <- paste("x", 1:p, sep="")
beta = c(rep(s, rep(0, p-s)))
Y = X%*%beta + rnorm(n)
reg.lasso <- rlasso(Y~xnames)

Xnew = matrix(rnorm(n+p), ncol=p) # new X
colnames(Xnew) <- paste("x", 1:p, sep="")
Ynew = Xnew%*%beta + rnorm(n) # new Y
yhat = predict(reg.lasso, newdata = Xnew)

rlassoATE

Functions for estimation of treatment effects

Description

This class of functions estimates the average treatment effect (ATE), the ATE of the treated (ATET), the local average treatment effects (LATE) and the LATE of the treated (LATET). The estimation methods rely on immunized / orthogonal moment conditions which guarantee valid post-selection inference in a high-dimensional setting. Further details can be found in Belloni et al. (2014).

Usage

```r
rlassoATE(x, ...)
```

Default S3 method:
```r
rlassoATE(x, d, y, bootstrap = "none", nRep = 500, ...)
```

S3 method for class 'formula'
```r
rlassoATE(formula, data, bootstrap = "none", nRep = 500, ...)
```

```r
rlassoATET(x, ...)
```

Default S3 method:
```r
rlassoATET(x, d, y, bootstrap = "none", nRep = 500, ...)
```

S3 method for class 'formula'
```r
rlassoATET(formula, data, bootstrap = "none", nRep = 500, ...)
```

```r
rlassoLATE(x, ...)
```

Default S3 method:
```r
rlassoLATE(x, d, y, z, bootstrap = "none", nRep = 500,
  post = TRUE, intercept = TRUE, ...)
```  
S3 method for class 'formula'
rlassoATE(formula, data, bootstrap = "none", nRep = 500,
 post = TRUE, intercept = TRUE, ...)

rlassoLATET(x, ...)

Default S3 method:

rlassoLATET(x, d, y, z, bootstrap = "none", nRep = 500,
 post = TRUE, intercept = TRUE, ...)

S3 method for class 'formula'

rlassoLATET(formula, data, bootstrap = "none", nRep = 500,
 post = TRUE, intercept = TRUE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>exogenous variables</td>
</tr>
<tr>
<td>...</td>
<td>arguments passed, e.g. intercept and post</td>
</tr>
<tr>
<td>d</td>
<td>treatment variable (binary)</td>
</tr>
<tr>
<td>y</td>
<td>outcome variable / dependent variable</td>
</tr>
<tr>
<td>bootstrap</td>
<td>bootstrap method which should be employed: 'none', 'Bayes', 'normal', 'wild'</td>
</tr>
<tr>
<td>nRep</td>
<td>number of replications for the bootstrap</td>
</tr>
<tr>
<td>formula</td>
<td>An object of class Formula of the form " y ~ x + d</td>
</tr>
<tr>
<td>data</td>
<td>An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassoATE is called.</td>
</tr>
<tr>
<td>z</td>
<td>instrumental variables (binary)</td>
</tr>
<tr>
<td>post</td>
<td>logical. If TRUE, post-lasso estimation is conducted.</td>
</tr>
<tr>
<td>intercept</td>
<td>logical. If TRUE, intercept is included which is not penalized.</td>
</tr>
</tbody>
</table>

Details

Details can be found in Belloni et al. (2014).

Value

Functions return an object of class rlassoTE with estimated effects, standard errors and individual effects in the form of a list.

References

rlassoEffects

Description

Estimation and inference of (low-dimensional) target coefficients in a high-dimensional linear model.

Usage

```r
rlassoEffects(x, y, index = c(1:ncol(x)), 
              method = "partialling out", I3 = NULL, post = TRUE, ...)
```

```r
rlassoEffects(formula, data, I, method = "partialling out", 
              included = NULL, post = TRUE, ...)
```

```r
rlassoEffect(x, y, d, method = "double selection", I3 = NULL, post = TRUE, ...
```

Arguments

- **x**: matrix of regressor variables serving as controls and potential treatments. For `rlassoEffect` it contains only controls, for `rlassoEffects` both controls and potential treatments. For `rlassoEffects` it must have at least two columns.
- **y**: outcome variable (vector or matrix)
- **index**: vector of integers, logicals or variables names indicating the position (column) of variables (integer case), logical vector of length of the variables (TRUE or FALSE) or the variable names of `x` which should be used for inference / as treatment variables.
- **method**: method for inference, either 'partialling out' (default) or 'double selection'.
- **I3**: For the 'double selection'-method the logical vector `I3` has same length as the number of variables in `x`; indicates if variables (TRUE) should be included in any case to the model and they are exempt from selection. These variables should not be included in the `index`; hence the intersection with `index` must be the empty set. In the case of partialling out it is ignored.
- **post**: logical, if post Lasso is conducted with default `TRUE`.
- **formula**: An element of class `formula` specifying the linear model.
- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
- **I**: An one-sided formula specifying the variables for which inference is conducted.
The functions estimates (low-dimensional) target coefficients in a high-dimensional linear model. An application is e.g. estimation of a treatment effect α_0 in a setting of high-dimensional controls. The user can choose between the so-called post-double-selection method and partialling-out. The idea of the double selection method is to select variables by Lasso regression of the outcome variable on the control variables and the treatment variable on the control variables. The final estimation is done by a regression of the outcome on the treatment effect and the union of the selected variables in the first two steps. In partialling-out first the effect of the regressors on the outcome and the treatment variable is taken out by Lasso and then a regression of the residuals is conducted. The resulting estimator for α_0 is normal distributed which allows inference on the treatment effect. It presents a wrap function for rlassoEffect which does inference for a single variable.

Value

The function returns an object of class rlassoEffects with the following entries:

- coefficients: vector with estimated values of the coefficients for each selected variable
- se: standard error (vector)
- t: t-statistic
- pval: p-value
- samplesize: sample size of the data set
- index: index of the variables for which inference is performed

References

Examples

```R
library(hdm); library(ggplot2)
set.seed(1)
n = 100 # sample size
p = 100 # number of variables
s = 3 # number of non-zero variables
X = matrix(rnorm(n*p), ncol=p)
colnames(X) <- paste("X", 1:p, sep="")
beta = c(rep(3, s), rep(0, p-s))
y = 1 + X%*%beta + rnorm(n)
data = data.frame(cbind(y, X))
colnames(data)[1] <- "y"
fm = paste("y ~", paste(colnames(X), collapse="+"))
fmrlasso-effect(fm)
```
rlassoIV

Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments

Description

The function estimates a treatment effect in a setting with very many controls and very many instruments (even larger than the sample size).

Usage

rlassoIV(x, ...)

Default S3 method:
rlassoIV(x, d, y, z, select.Z = TRUE, select.X = TRUE,
 post = TRUE, ...)

S3 method for class 'formula'
rlassoIV(formula, data, select.Z = TRUE, select.X = TRUE,
 post = TRUE, ...)

rlassoIVmult(x, d, y, z, select.Z = TRUE, select.X = TRUE, ...)

Arguments

x matrix of exogenous variables
d endogenous variable
y outcome / dependent variable (vector or matrix)
z matrix of instrumental variables
select.Z logical, indicating selection on the instruments.
select.X logical, indicating selection on the exogenous variables.
post logical, whether post-Lasso should be conducted (default=TRUE)
formula An object of class Formula of the form " y ~ x + d | x + z" with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous variables.
data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassoIV is called.
... arguments passed to the function rlasso
Details

The implementation for selection on x and z follows the procedure described in Chernozhukov et al. (2015) and is built on 'triple selection' to achieve an orthogonal moment function. The function returns an object of S3 class rlassoIV. Moreover, it is wrap function for the case that selection should be done only with the instruments Z (rlassoIVselectZ) or with the control variables X (rlassoIVselectX) or without selection (tsls). Exogenous variables x are automatically used as instruments and added to the instrument set z.

Value

an object of class rlassoIV containing at least the following components:

- coefficients: estimated parameter value
- se: variance-covariance matrix

References

Examples

```r
## Not run:
data(EminentDomain)
z <- EminentDomain$logGDPz # instruments
x <- EminentDomain$logGDPx # exogenous variables
y <- EminentDomain$logGDPy # outcome variable
d <- EminentDomain$logGDPd # treatment / endogenous variable
lasso.IV.Z = rlassoIV(x=x, d=d, y=y, z=z, select.X=FALSE, select.Z=TRUE)
summary(lasso.IV.Z)
confint(lasso.IV.Z)

## End(Not run)
```

rlassoIVselectX Instrumental Variable Estimation with Selection on the exogenous Variables by Lasso

Description

This function estimates the coefficient of an endogenous variable by employing Instrument Variables in a setting where the exogenous variables are high-dimensional and hence selection on the exogenous variables is required. The function returns an element of class rlassoIVselectX.
Usage

```r
rlassoIVselectX(x, ...)  # Default S3 method:
rlassoIVselectX(x, d, y, z, post = TRUE, ...)  # S3 method for class 'formula'
rlassoIVselectX(formula, data, post = TRUE, ...)
```

Arguments

- `x`: exogenous variables in the structural equation (matrix)
- `d`: endogenous variables in the structural equation (vector or matrix)
- `y`: outcome or dependent variable in the structural equation (vector or matrix)
- `z`: set of potential instruments for the endogenous variables.
- `post`: logical. If `TRUE`, post-lasso estimation is conducted.
- `formula`: An object of class `formula` of the form `y ~ x + d | x + z` with `y` the outcome variable, `d` endogenous variable, `z` instrumental variables, and `x` exogenous variables.
- `data`: An optional data frame, list or environment (or object coercible by `as.data.frame`) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `rlassoIVselectX` is called.
- `...`: arguments passed to the function `rlasso`

Details

The implementation is a special case of of Chernozhukov et al. (2015). The option `post=TRUE` conducts post-lasso estimation for the Lasso estimations, i.e. a refit of the model with the selected variables. Exogenous variables `x` are automatically used as instruments and added to the instrument set `z`.

Value

An object of class `rlassoIVselectX` containing at least the following components:

- `coefficients`: estimated parameter vector
- `vcov`: variance-covariance matrix
- `residuals`: residuals
- `sampleSize`: sample size

References

Examples

```r
library(hdm)
data(AJR); y = AJR$GDP; d = AJR$Exprop; z = AJR$logMort
x = model.matrix(~ -1 + (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2, data=AJR)
dim(x)
#AJR.Xselect = rlassoIV(x=x, d=d, y=y, z=z, select.X=TRUE, select.Z=FALSE)
AJR.Xselect = rlassoIV(GDP ~ Exprop + (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2 | logMort + (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2, data=AJR, select.X=TRUE, select.Z=FALSE)
summary(AJR.Xselect)
confint(AJR.Xselect)
```

rlassoIVselectZ
Instrumental Variable Estimation with Lasso

Description

This function selects the instrumental variables in the first stage by Lasso. First stage predictions are then used in the second stage as optimal instruments to estimate the parameter vector. The function returns an element of class `rlassoIVselectZ`.

Usage

```r
rlassoIVselectZ(x, ...) 
```

```
## Default S3 method:
rlassoIVselectZ(x, d, y, z, post = TRUE, intercept = TRUE, ...)

## S3 method for class 'formula'
rlassoIVselectZ(formula, data, post = TRUE, intercept = TRUE, ...)
```

Arguments

- `x`: exogenous variables in the structural equation (matrix)
- `d`: endogenous variables in the structural equation (vector or matrix)
- `y`: outcome or dependent variable in the structural equation (vector or matrix)
- `z`: set of potential instruments for the endogenous variables. Exogenous variables serve as their own instruments.
- `post`: logical. If TRUE, post-lasso estimation is conducted.
- `intercept`: logical. If TRUE, intercept is included in the second stage equation.
- `formula`: An object of class `formula` of the form "y ~ x + d | x + z" with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous variables.
data: An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassoIVselectZ is called.

... arguments passed to the function rlasso.

Details

The implementation follows the procedure described in Belloni et al. (2012). Option post=TRUE conducts post-lasso estimation, i.e. a refit of the model with the selected variables, to estimate the optimal instruments. The parameter vector of the structural equation is then fitted by two-stage least square (tsls) estimation.

Value

An object of class rlassoIVselectZ containing at least the following components:

- coefficients: estimated parameter vector
- vcov: variance-covariance matrix
- residuals: residuals
- samplesize: sample size

References

intercept = TRUE, model = TRUE, penalty = list(lambda = NULL, c = 1.1, gamma = 0.1/log(n)), control = list(threshold = NULL), ...

Default S3 method:
rlassologit(x, y, post = TRUE, intercept = TRUE, model = TRUE, penalty = list(lambda = NULL, c = 1.1, gamma = 0.1/log(n)), control = list(threshold = NULL), ...)

Arguments

x regressors (matrix)
... further parameters passed to glmnet
formula an object of class ‘formula’ (or one that can be coerced to that class): a symbolic description of the model to be fitted in the form y~x.
data an optional data frame, list or environment.
post logical. If TRUE, post-lasso estimation is conducted.
intercept logical. If TRUE, intercept is included which is not penalized.
model logical. If TRUE (default), model matrix is returned.
penalty list with options for the calculation of the penalty. c and gamma constants for the penalty.
control list with control values. threshold is applied to the final estimated lasso coefficients. Absolute values below the threshold are set to zero.
y dependent variable (vector or matrix)

Details

The function estimates the coefficients of a Logistic Lasso regression with data-driven penalty. The option post=TRUE conducts post-lasso estimation, i.e. a refit of the model with the selected variables.

Value

rlassologit returns an object of class rlassologit. An object of class rlassologit is a list containing at least the following components:

coefficients parameter estimates
beta parameter estimates (without intercept)
intercept value of intercept
index index of selected variables (logicals)
lambda penalty term
residuals residuals
sigma root of the variance of the residuals
call function call
options options
rlassologitEffects

References

Examples

```r
## Not run:
library(hdm)
## DGP
set.seed(2)
n <- 250
p <- 100
px <- 10
X <- matrix(rnorm(n*p), ncol=p)
b <- c(rep(2, px), rep(0, p-px))
intercept <- 1
P <- exp(intercept + X %*% beta)/(1+exp(intercept + X %*% beta))
y <- rbinom(length(y), size=1, prob=P)
## fit rlassologit object
rlassologit.reg <- rlassologit(y~X)
## methods
summary(rlassologit.reg, all=F)
print(rlassologit.reg)
predict(rlassologit.reg, type='response')
X3 <- matrix(rnorm(n*p), ncol=p)
predict(rlassologit.reg, newdata=X3)

## End(Not run)
```

rlassologitEffects

rigorous Lasso for Logistic Models: Inference

Description

The function estimates (low-dimensional) target coefficients in a high-dimensional logistic model.

Usage

```r
rlassologitEffects(x, ...)
```

Default S3 method:
```r
rlassologitEffects(x, y, index = c(1:ncol(x)), I3 = NULL,
                   post = TRUE, ...)
```

S3 method for class 'formula'
```r
rlassologitEffects(formula, data, I, included = NULL,
                   post = TRUE, ...)
```

```r
rlassologitEffect(x, y, d, I3 = NULL, post = TRUE)
```
Arguments

- x: matrix of regressor variables serving as controls and potential treatments. For \texttt{rlassologitEffect} it contains only controls, for \texttt{rlassologitEffects} both controls and potential treatments. For \texttt{rlassologitEffects} it must have at least two columns.
- y: outcome variable
- index: vector of integers, logical or names indicating the position (column) or name of variables of x which should be used as treatment variables.
- I3: logical vector with same length as the number of controls; indicates if variables (TRUE) should be included in any case.
- post: logical. If TRUE, post-Lasso estimation is conducted.
- formula: An element of class \texttt{formula} specifying the linear model.
- data: an optional data frame, list or environment (or object coercible by \texttt{as.data.frame} to a data frame) containing the variables in the model. If not found in data, the variables are taken from \texttt{environment(formula)}, typically the environment from which the function is called.
- I: An one-sided formula specifying the variables for which inference is conducted.
- included: One-sided formula of variables which should be included in any case.
- d: variable for which inference is conducted (treatment variable)
- ...: additional parameters

Details

The functions estimates (low-dimensional) target coefficients in a high-dimensional logistic model. An application is e.g. estimation of a treatment effect α_0 in a setting of high-dimensional controls. The function is a wrap function for \texttt{rlassologitEffect} which does inference for only one variable (d).

Value

The function returns an object of class \texttt{rlassologitEffects} with the following entries:

- coefficients: estimated value of the coefficients
- se: standard errors
- t: t-statistics
- pval: p-values
- samplesize: sample size of the data set
- I: index of variables of the union of the lasso regressions

References

A. Belloni, V. Chernozhukov, Y. Wei (2013). Honest confidence regions for a regression parameter in logistic regression with a large number of controls. cemmap working paper CWP67/13.
Examples

```r
## Not run:
library(hdm)
## DGP
set.seed(2)
n <- 250
p <- 100
px <- 10
X <- matrix(rnorm(n*p, ncol=p), colnames(X) = paste("V", 1:p, sep=""))
beta <- c(rep(px, rep(1, p)), rep(0, p-px))
intercept <- 1
P <- exp(intercept + X %*% beta)/(1+exp(intercept + X %*% beta))
y <- rbinom(length(y), size=1, prob=P)
xd <- X[,2:50]
d <- X[,1]
logit.eff <- rlassologitEffect(x=xd, d=d, y=y)
logit.effects <- rlassologitEffects(X,y, index=c(1,2,40))
logit.effects.f <- rlassologitEffects(y ~ X, I = ~ V1 + V2)
## End(Not run)
```

summary.rlassoEffects *Summarizing rlassoEffects fits*

Description
Summary method for class `rlassoEffects`

Usage
```
## S3 method for class 'rlassoEffects'
summary(object, ...)

## S3 method for class 'summary.rlassoEffects'
print(x, digits = max(3L,getOption("digits") - 3L), ...)
```

Arguments
- `object` an object of class `rlassoEffects`, usually a result of a call to `rlassoEffects`
- `...` further arguments passed to or from other methods.
- `x` an object of class `summary.rlassoEffects`, usually a result of a call or `summary.rlassoEffects`
- `digits` the number of significant digits to use when printing.

Details
Summary of objects of class `rlassoEffects`
The function does Two-Stage Least Squares Estimation (TSLS).

Usage

tsls(x, ...)

Default S3 method:
tsls(x, d, y, z, intercept = TRUE, homoscedastic = TRUE,
 ...)

S3 method for class 'formula'
tsls(formula, data, intercept = TRUE,
 homoscedastic = TRUE, ...)

Arguments

x exogenous variables
... further arguments (only for consistent definition of methods)
d endogenous variables
y outcome variable
z instruments
intercept logical, if intercept should be included
homoscedastic logical, if homoscedastic (TRUE, default) or heteroscedastic errors (FALSE) should be calculated.
formula An object of class Formula of the form " y ~ x + d | x + z" with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous variables.
data An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which tsls is called.

Details

The function computes tsls estimate (coefficients) and variance-covariance-matrix assuming homoskedasticity for outcome variable y where d are endogenous variables in structural equation, x are exogenous variables in structural equation and z are instruments. It returns an object of class tsls for which the methods print and summary are provided.
Value

The function returns a list with the following elements

- coefficients: coefficients
- vcov: variance-covariance matrix
- residuals: outcome minus predicted values
- call: function call
- samplesize: sample size
- se: standard error
Index

+Topic 401(k) pension, 10
+Topic GDP
 Growth Data, 7
+Topic Growth
 Growth Data, 7
+Topic datasets
 AJR, 3
 BLP, 4
cps2012, 5
 EminentDomain, 6
 Growth Data, 7
 pension, 10
+Topic lasso
 rlassologit, 29
+Topic logistic
 rlassologit, 29
+Topic pension
 pension, 10
+Topic regression
 rlassologit, 29

AJR, 3
ATE (rlassoATE), 21
ATE (rlassoATE), 21
ATET (rlassoATE), 21
atet (rlassoATE), 21

BLP, 4

confint.rlassoEffects
 (print.rlassoEffects), 13
confint.rlassoIV (print.rlassoIV), 14
confint.rlassoIVselectX
 (print.rlassoIVselectX), 14
confint.rlassoIVselectZ
 (print.rlassoIVselectZ), 15
confint.rlassologitEffects
 (print.rlassologitEffects), 16
confint.rlassoTE (print.rlassoTE), 17
cps2012, 5
data (pension), 10
EminentDomain, 6
Example (Growth Data), 7
GDP (Growth Data), 7
GDP (Growth Data), 7
Growth Data, 7
GrowthData (Growth Data), 7
hdm (hdm-package), 2
hdm-package, 2
lambdaCalculation, 8
LassoShooting.fit, 9
LATE (rlassoATE), 21
late (rlassoATE), 21
LATET (rlassoATE), 21
latet (rlassoATE), 21

methods.rlasso (print.rlasso), 12
methods.rlassoEffects
 (print.rlassoEffects), 13
methods.rlassoIV (print.rlassoIV), 14
methods.rlassoIVselectX
 (print.rlassoIVselectX), 14
methods.rlassoIVselectZ
 (print.rlassoIVselectZ), 15
methods.rlassologit
 (predict.rlassologit), 11
methods.rlassologitEffects
 (print.rlassologitEffects), 16
methods.rlassoTE (print.rlassoTE), 17
methods.tsls (print.tsls), 18
model.matrix.rlasso (print.rlasso), 12
model.matrix.rlassologit
 (predict.rlassologit), 11
pension, 10
INDEX

plans (pension), 10
plot.lassoEffects
 (print.lassoEffects), 13
predict.lasso (print.lasso), 12
predict.lassoLogit, 11
print.lasso, 12
print.lassoEffects, 13
print.lassoIV, 14
print.lassoIVselectX, 14
print.lassoIVselectZ, 15
print.lassoLogit
 (predict.lassoLogit), 11
print.lassoLogitEffects, 16
print.lassoTE, 17
print.summary.lassoEffects
 (summary.lassoEffects), 33
print tsls, 18

lasso, 8, 18
lassoATE, 21
lassoATE (lassoATE), 21
lassoEffect (lassoEffects), 23
lassoEffects, 23
lassoIV, 25
lassoIVmult (lassoIV), 25
lassoIVselectX, 26
lassoIVselectZ, 28
lassoLATE (lassoATE), 21
lassoLATE (lassoATE), 21
lassoLogit, 29
lassoLogitEffect (lassoLogitEffects), 31
lassoLogitEffects, 31

summary.lasso (print.lasso), 12
summary.lassoEffects, 13, 33
summary.lassoIV (print.lassoIV), 14
summary.lassoIVselectX
 (print.lassoIVselectX), 14
summary.lassoIVselectZ
 (print.lassoIVselectZ), 15
summary.lassoLogit
 (predict.lassoLogit), 11
summary.lassoLogitEffects
 (print.lassoLogitEffects), 16
summary.lassoTE (print.lassoTE), 17
summary tsls (print tsls), 18

tsls, 34

wealth (pension), 10