Package ‘hdrcde’

October 13, 2022

Type Package
Title Highest Density Regions and Conditional Density Estimation
Version 3.4
BugReports https://github.com/robjhyndman/hdrcde/issues
Depends R (>= 2.15)
Imports locfit, ash, ks, KernSmooth, ggplot2, RColorBrewer
LazyData yes
LazyLoad yes
Description Computation of highest density regions in one and two dimensions, kernel estimation of univariate density functions conditional on one covariate, and multimodal regression.
License GPL-3
RoxygenNote 7.1.1
Encoding UTF-8
NeedsCompilation yes
Author Rob Hyndman [aut, cre, cph] (<https://orcid.org/0000-0002-2140-5352>), Jochen Einbeck [aut] (<https://orcid.org/0000-0002-9457-2020>), Matthew Wand [aut] (<https://orcid.org/0000-0003-2555-896X>), Simon Carrignon [ctb] (<https://orcid.org/0000-0002-4416-1389>), Fan Cheng [ctb] (<https://orcid.org/0000-0003-0009-3262>)
Maintainer Rob Hyndman <Rob.Hyndman@monash.edu>
Repository CRAN
Date/Publication 2021-01-18 06:20:02 UTC

R topics documented:

alpha ... 2
BoxCox ... 2
Description

A simple function to change the opacity of a color

Usage

```r
alpha(color, alpha)
```

Arguments

- `color` - the name or idea of a R color
- `alpha` - a value in [0,1] defining the opacity wanted.

BoxCox

Box Cox Transformation

Description

BoxCox() returns a transformation of the input variable using a Box-Cox transformation. InvBoxCox() reverses the transformation.

Usage

```r
BoxCox(x, lambda)
```
Arguments

x
lambda

Details

The Box-Cox transformation is given by

\[f_\lambda(x) = \frac{x^\lambda - 1}{\lambda} \]

if \(\lambda \neq 0 \). For \(\lambda = 0 \),

\[f_0(x) = \log(x). \]

Value

a numeric vector of the same length as x.

Author(s)

Rob J Hyndman

References

cde

Conditional Density Estimation

description

Calculates kernel conditional density estimate using local polynomial estimation.

Usage

cde(
x,
y,
deg = 0,
link = "identity",
a,
b,
mean = NULL,
x.margin,
y.margin,
x.name,
y.name,
use.locfit = FALSE,
fw = TRUE,
rescale = TRUE,
nxmargin = 15,
nymargin = 100,
a.nndefault = 0.3,
...
)

Arguments

x Numerical vector or matrix: the conditioning variable(s).

y Numerical vector: the response variable.

deg Degree of local polynomial used in estimation.

link Link function used in estimation. Default "identity". The other possibility is "log" which is recommended if degree > 0.

a Optional bandwidth in x direction.

b Optional bandwidth in y direction.

mean Estimated mean of \(y|x \). If present, it will adjust conditional density to have this mean.

x.margin Values in x-space on which conditional density is calculated. If not specified, an equi-spaced grid of \(nxmargin \) values over the range of \(x \) is used. If \(x \) is a matrix, \(x.margin \) should be a list of two numerical vectors.

y.margin Values in y-space on which conditional density is calculated. If not specified, an equi-spaced grid of \(nymargin \) values over the range of \(y \) is used.

x.name Optional name of \(x \) variable used in plots.

y.name Optional name of \(y \) variable used in plots.

use.locfit If TRUE, will use \texttt{locfit} for estimation. Otherwise \texttt{ksmooth} is used. \texttt{locfit} is used if \(\text{degree}>0 \) or \text{link} not the identity or the dimension of \(x \) is greater than 1 even if \text{use.locfit}=FALSE.

fw If TRUE (default), will use fixed window width estimation. Otherwise nearest neighbourhood estimation is used. If the dimension of \(x \) is greater than 1, nearest neighbourhood must be used.

rescale If TRUE (default), will rescale the conditional densities to integrate to one.

nxmargin Number of values used in \(x.margin \) by default.

nymargin Number of values used in \(y.margin \) by default.

a.nndefault Default nearest neighbour bandwidth (used only if \(fw=FALSE \) and \(a \) is missing.).

... Additional arguments are passed to \texttt{locfit}.

Details

If bandwidths are omitted, they are computed using normal reference rules described in Bashtannyk and Hyndman (2001) and Hyndman and Yao (2002). Bias adjustment uses the method described in Hyndman, Bashtannyk and Grunwald (1996). If \(\text{deg}>1 \) then estimation is based on the local parametric estimator of Hyndman and Yao (2002).
Value

A list with the following components:

- **x**: grid in x direction on which density evaluated. Equal to x.margin if specified.
- **y**: grid in y direction on which density is evaluated. Equal to y.margin if specified.
- **z**: value of conditional density estimate returned as a matrix.
- **a**: window width in x direction.
- **b**: window width in y direction.
- **x.name**: Name of x variable to be used in plots.
- **y.name**: Name of y variable to be used in plots.

Author(s)

Rob J Hyndman

References

See Also

cde.bandwidths

Examples

```
# Old faithful data
faithful.cde <- cde(faithful$waiting, faithful$eruptions, x.name="Waiting time", y.name="Duration time")
plot(faithful.cde)
plot(faithful.cde, plot.fn="hdr")

# Melbourne maximum temperatures with bias adjustment
x <- maxtemp[1:3649]
y <- maxtemp[2:3650]
maxtemp.cde <- cde(x, y, x.name="Today's max temperature", y.name="Tomorrow's max temperature")

# Assume linear mean
fit <- lm(y~x)
fit.mean <- list(x=6:45,y=fit$coef[1]+fit$coef[2]*(6:45))
maxtemp.cde2 <- cde(x, y, mean=fit.mean, x.name="Today's max temperature", y.name="Tomorrow's max temperature")
plot(maxtemp.cde)
```
cde.bandwidths

Bandwidth calculation for conditional density estimation

Description

Calculates bandwidths for kernel conditional density estimates. Methods described in Bashtannyk and Hyndman (2001) and Hyndman and Yao (2002).

Usage

cde.bandwidths(
 x,
 y,
 deg = 0,
 link = "identity",
 method = 1,
 y.margin, # not used
 passes = 2,
 ngrid = 8,
 min.a = NULL,
 ny = 25,
 use.sample = FALSE,
 GCV = TRUE,
 b = NULL,
 ...
)

Arguments

- **x**: Numerical vector: the conditioning variable.
- **y**: Numerical vector: the response variable.
- **deg**: Degree of local polynomial used in estimation.
- **link**: Link function used in estimation. Default "identity". The other possibility is "log" which is recommended if degree > 0.
- **method**:
 - **method = 1**: Hyndman-Yao algorithm if deg>0; Bashtannyk-Hyndman algorithm if deg=0;
 - **method = 2**: Normal reference rules;
 - **method = 3**: Bashtannyk-Hyndman regression method if deg=0;
 - **method = 4**: Bashtannyk-Hyndman bootstrap method if deg=0.
- **y.margin**: Values in y-space on which conditional density is calculated. If not specified, an equi-spaced grid of 50 values over the range of y is used.
- **passes**: Number of passes through Bashtannyk-Hyndman algorithm.
- **ngrid**: Number of values of smoothing parameter in grid.
- **min.a**: Smallest value of a to consider if method=1.
- **...**: Further arguments passed to `smooth.bands`.

Notes

- The function uses different methods for different values of `deg`. For `deg=0`, it uses the Bashtannyk-Hyndman algorithm, while for `deg>0`, it uses the Hyndman-Yao algorithm.
- The link function can be specified as "identity" or "log".
- The `ngrid` parameter is used for the grid of smoothing parameters.

Examples

- To calculate bandwidths using the Bashtannyk-Hyndman algorithm with a degree of 1:
  ```r
  cde.bandwidths(x, y, deg = 1)
  ```
- To use the normal reference rules for bandwidth calculation:
  ```r
  cde.bandwidths(x, y, deg = 0, method = 2)
  ```
- For more specific customizations, consult the documentation for `cde` and `smooth.bands` functions.
Number of values to use for y margin if \texttt{y.margin} is missing.

\textbf{use.sample} Used when regression method (3) is chosen.

\textbf{GCV} Generalized cross-validation. Used only if method=1 and deg>0. If GCV=FALSE, method=1 and deg=0, then the AIC is used instead. The argument is ignored if deg=0 or method>1.

\textbf{b} Value of \(b \) can be specified only if method=1 and deg>0. For deg=0 or method>1, this argument is ignored.

... Other arguments control details for individual methods.

\section*{Details}
Details of the various algorithms are in Bashtannyk and Hyndman (2001) and Hyndman and Yao (2002).

\section*{Value}

\begin{description}
\item \textbf{a} Window width in \(x \) direction.
\item \textbf{b} Window width in \(y \) direction.
\end{description}

\section*{Author(s)}
Rob J Hyndman

\section*{References}

\section*{See Also}
\texttt{cde}

\section*{Examples}

\begin{verbatim}
bands <- cde.bandwidths(faithful$waiting,faithful$eruptions,method=2) plot(cde(faithful$waiting,faithful$eruptions,a=bands$a,b=bands$b))
\end{verbatim}
hdr

Highest Density Regions

Description

Calculates highest density regions in one dimension

Usage

hdr(
 x = NULL,
 prob = c(50, 95, 99),
 den = NULL,
 h = hdrbw(BoxCox(x, lambda), mean(prob)),
 lambda = 1,
 nn = 5000,
 all.modes = FALSE
)

Arguments

x
 Numeric vector containing data. If x is missing then den must be provided, and
 the HDR is computed from the given density.

prob
 Probability coverage required for HDRs

den
 Density of data as list with components x and y. If omitted, the density is esti-
 mated from x using density.

h
 Optional bandwidth for calculation of density.

lambda
 Box-Cox transformation parameter where 0 <= lambda <= 1.

nn
 Number of random numbers used in computing f-alpha quantiles.

all.modes
 Return all local modes or just the global mode?

Details

Either x or den must be provided. When x is provided, the density is estimated using kernel density
estimation. A Box-Cox transformation is used if lambda != 1, as described in Wand, Marron and
Ruppert (1991). This allows the density estimate to be non-zero only on the positive real line. The
default kernel bandwidth h is selected using the algorithm of Samworth and Wand (2010).

Hyndman’s (1996) density quantile algorithm is used for calculation.

Value

A list of three components:

hdr
 The endpoints of each interval in each HDR

mode
 The estimated mode of the density.

falpha
 The value of the density at the boundaries of each HDR.
hdr.2d

Author(s)

Rob J Hyndman

References

See Also

hdr.den, hdr.boxplot

Examples

Old faithful eruption duration times
hdr(faithful$eruptions)

Bivariate Highest Density Regions

Description

Calculates and plots highest density regions in two dimensions, including the bivariate HDR box-plot.

Usage

```r
hdr.2d(
  x,
  y,
  prob = c(50, 95, 99),
  den = NULL,
  kde.package = c("ash", "ks"),
  h = NULL,
  xextend = 0.15,
  yextend = 0.15
)
```

```r
hdr.boxplot.2d(
  x,
  y,
  prob = c(50, 99),
  kde.package = c("ash", "ks"),
)```
h = NULL,
  xextend = 0.15,
yextend = 0.15,
xlab = "",
ylab = "",
shadecols = "darkgray",
pointcol = 1,
outside.points = TRUE,
...

## S3 method for class 'hdr2d'
plot(
  x,
  shaded = TRUE,
  show.points = FALSE,
  outside.points = FALSE,
pch = 20,
  shadecols = gray((length(x$alpha):1)/(length(x$alpha) + 1)),
  pointcol = 1,
  ...
)

Arguments

x Numeric vector
y Numeric vector of same length as x.
prob Probability coverage required for HDRs
den Bivariate density estimate (a list with elements x, y and z where x and y are grid values and z is a matrix of density values). If NULL, the density is estimated.
kde.package Package to be used in calculating the kernel density estimate when den=NULL.
h Pair of bandwidths passed to either ash2 or kde. If NULL, a reasonable default is used. Ignored if den is not NULL.
xextend Proportion of range of x. The density is estimated on a grid extended by xextend beyond the range of x.
yextend Proportion of range of y. The density is estimated on a grid extended by yextend beyond the range of y.
xlab Label for x-axis.
ylab Label for y-axis.
shadecols Colors for shaded regions
pointcol Color for outliers and mode
outside.points If TRUE, the observations lying outside the largest HDR are shown.
... Other arguments to be passed to plot.
shaded If TRUE, the HDR contours are shown as shaded regions.
show.points If TRUE, the observations are plotted over the top of the HDR contours.
pch The plotting character used for observations.
Details

The density is estimated using kernel density estimation. Either ash2 or kde is used to do the calculations. Then Hyndman’s (1996) density quantile algorithm is used to compute the HDRs.

hdr.2d returns an object of class hdr2d containing all the information needed to compute the HDR contours. This object can be plotted using plot.hdr2d.

hdr.boxplot.2d produces a bivariate HDR boxplot. This is a special case of applying plot.hdr2d to an object computed using hdr.2d.

Value

Some information about the HDRs is returned. See code for details.

Author(s)

Rob J Hyndman

References


See Also

hdr.boxplot

Examples

```r
x <- c(rnorm(200,0,1),rnorm(200,4,1))
y <- c(rnorm(200,0,1),rnorm(200,4,1))

hdr.boxplot.2d(x,y)

hdrinfo <- hdr.2d(x,y)
plot(hdrinfo, pointcol="red", show.points=TRUE, pch=3)
```

### hdr.boxplot

**Highest Density Region Boxplots**

Description

Calculates and plots a univariate highest density regions boxplot.
Usage

hdr.boxplot(
  x,
  prob = c(99, 50),
  h = hdrbw(BoxCox(x, lambda), mean(prob)),
  lambda = 1,
  boxlabels = "",
  col = gray((9:1)/10),
  main = "",
  xlab = "",
  ylab = "",
  pch = 1,
  border = 1,
  outline = TRUE,
  space = 0.25,
  ...
)

Arguments

x Numeric vector containing data or a list containing several vectors.
prob Probability coverage required for HDRs density.
h Optional bandwidth for calculation of density.
lambda Box-Cox transformation parameter where 0 <= lambda <= 1.
boxlabels Label for each box plotted.
col Colours for regions of each box.
main Overall title for the plot.
xlab Label for x-axis.
ylab Label for y-axis.
pch Plotting character.
border Width of border of box.
outline If not <code>TRUE</code>, the outliers are not drawn.
space The space between each box, between 0 and 0.5.

Details

The density is estimated using kernel density estimation. A Box-Cox transformation is used if lambda!=1, as described in Wand, Marron and Ruppert (1991). This allows the density estimate to be non-zero only on the positive real line. The default kernel bandwidth h is selected using the algorithm of Samworth and Wand (2010).

Hyndman’s (1996) density quantile algorithm is used for calculation.
Calculate highest density regions continuously over some conditioned variable.

Description

Calculates and plots highest density regions for a conditional density estimate. Uses output from cde.

Value

nothing.

Author(s)

Rob J Hyndman

References


See Also

hdr.boxplot.2d, hdr, hdr.den

Examples

# Old faithful eruption duration times
hdr.boxplot(faithful$eruptions)

# Simple bimodal example
x <- c(rnorm(100,0,1), rnorm(100,5,1))
par(mfrow=c(1,2))
boxplot(x)
hdr.boxplot(x)

# Highly skewed example
x <- exp(rnorm(100,0,1))
par(mfrow=c(1,2))
boxplot(x)
hdr.boxplot(x, lambda=0)
**Usage**

```r
dhdr.cde(
 den,
 prob = c(50, 95, 99),
 plot = TRUE,
 plot.modes = TRUE,
 mden = rep(1, length(den$x)),
 threshold = 0.05,
 nn = 1000,
 xlim,
 ylim,
 xlab,
 ylab,
 border = TRUE,
 font = 1,
 cex = 1,
 ...
)
```

**Arguments**

- `den`: Conditional density in the same format as the output from `cde`.
- `prob`: Probability coverage level for HDRs.
- `plot`: Should HDRs be plotted? If FALSE, results are returned.
- `plot.modes`: Should modes be plotted as well as HDRs?
- `mden`: Marginal density in the x direction. When small, the HDRs won’t be plotted. Default is uniform so all HDRs are plotted.
- `threshold`: Threshold for margin density. HDRs are not plotted if the margin density `mden` is lower than this value.
- `nn`: Number of points to be sampled from each density when estimating the HDRs.
- `xlim`: Limits for x-axis.
- `ylim`: Limits for y-axis.
- `xlab`: Label for x-axis.
- `ylab`: Label for y-axis.
- `border`: Show border of polygons.
- `font`: Font to be used in plot.
- `cex`: Size of characters.
- `...`: Other arguments passed to plotting functions.

**Value**

- `hdr`: array (a,b,c) where where a specifies conditioning value, b gives the HDR endpoints and c gives the probability coverage.
- `modes`: estimated mode of each conditional density.
Author(s)

Rob J Hyndman

References


See Also

cde, hdr

Examples

```r
faithful.cde <- cde(faithful$waiting, faithful$eruptions)
plot(faithful.cde, xlab="Waiting time", ylab="Duration time", plot.fn="hdr")
```

---

**hdr.den**

*Density plot with Highest Density Regions*

**Description**

Plots univariate density with highest density regions displayed

**Usage**

```r
hdr.den(
 x,
 prob = c(50, 95, 99),
 den,
 h = hdrbw(BoxCox(x, lambda), mean(prob)),
 lambda = 1,
 xlab = NULL,
 ylab = "Density",
 ylim = NULL,
 plot.lines = TRUE,
 col = 2:8,
 bgcol = "gray",
 legend = FALSE,
 ...
)
```
Arguments

- **x**: Numeric vector containing data. If x is missing then den must be provided, and the HDR is computed from the given density.
- **prob**: Probability coverage required for HDRs.
- **den**: Density of data as list with components x and y. If omitted, the density is estimated from x using `density`.
- **h**: Optional bandwidth for calculation of density.
- **lambda**: Box-Cox transformation parameter where 0 <= lambda <= 1.
- **xlab**: Label for x-axis.
- **ylab**: Label for y-axis.
- **ylim**: Limits for y-axis.
- **plot.lines**: If TRUE, will show how the HDRs are determined using lines.
- **col**: Colours for regions.
- **bgcol**: Colours for the background behind the boxes. Default "gray", if NULL no box is drawn.
- **legend**: If TRUE add a legend on the right of the boxes.
- **...**: Other arguments passed to plot.

Details

Either x or den must be provided. When x is provided, the density is estimated using kernel density estimation. A Box-Cox transformation is used if lambda!=1, as described in Wand, Marron and Ruppert (1991). This allows the density estimate to be non-zero only on the positive real line. The default kernel bandwidth h is selected using the algorithm of Samworth and Wand (2010).

Hyndman’s (1996) density quantile algorithm is used for calculation.

Value

a list of three components:

- **hdr**: The endpoints of each interval in each HDR
- **mode**: The estimated mode of the density.
- **falpha**: The value of the density at the boundaries of each HDR.

Author(s)

Rob J Hyndman

References


See Also

hdr, hdr.boxplot

Examples

# Old faithful eruption duration times
hdr.den(faithful$eruptions)

# Simple bimodal example
x <- c(rnorm(100,0,1), rnorm(100,5,1))
hdr.den(x)

Description

Estimates the optimal bandwidth for 1-dimensional highest density regions

Usage

hdrbw(x, HDRlevel, gridsize = 801, nMChdr = 1e+06, graphProgress = FALSE)

Arguments

x  Numerical vector containing data.

HDRlevel  HDR-level as defined in Hyndman (1996). Setting ‘HDRlevel’ equal to p (0<p<1) corresponds to a probability of 1-p of inclusion in the highest density region.

gridsize  the number of equally spaced points used for binned kernel density estimation.

nMChdr  the size of the Monte Carlo sample used for density quantile approximation of the highest density region, as described in Hyndman (1996).

graphProgress  logical flag: if ‘TRUE’ then plots showing the progress of the bandwidth selection algorithm are produced.

Details

This is a plug-in rule for bandwidth selection tailored to highest density region estimation

Value

A numerical vector of length 1.

Author(s)

Matt Wand
References


Examples

```
HDRlevelVal <- 0.55
x <- faithful$eruptions
hHDR <- hdrbw(x,HDRlevelVal)
HDRhat <- hdr.den(x,prob=100*(1-HDRlevelVal),h=hHDR)
```

---

**hdrconf**

`hdrconf(x, den, prob = 95, conf = 95)`

**Description**

Calculates Highest Density Regions with confidence intervals.

**Arguments**

- `x`: Numeric vector containing data.
- `den`: Density of data as list with components `x` and `y`.
- `prob`: Probability coverage for for HDRs.
- `conf`: Confidence for limits on HDR.

**Value**

`hdrconf` returns list containing the following components:

- `hdr`: Highest density regions
- `hdr.lo`: Highest density regions corresponding to lower confidence limit.
- `hdr.hi`: Highest density regions corresponding to upper confidence limit.
- `alpha`: Values of \( f_\alpha \) corresponding to HDRs.
- `alpha.ci`: Values of \( f_\alpha \) corresponding to lower and upper limits.

**Author(s)**

Rob J Hyndman
References


See Also

hdr, plot.hdrconf

Examples

```r
x <- c(rnorm(100,0,1),rnorm(100,4,1))
den <- density(x,bw=hdrbw(x,50))
trueden <- den
trueden$y <- 0.5*(exp(-0.5*(den$x*den$x)) + exp(-0.5*(den$x-4)^2))/sqrt(2*pi)
sortx <- sort(x)

par(mfcol=c(2,2))
for(conf in c(50,95)) {
 m <- hdrconf(sortx,trueden,conf=conf)
 plot(m,trueden,main=paste(conf,'% HDR from true density'))
 m <- hdrconf(sortx,den,conf=conf)
 plot(m,den,main=paste(conf,'% HDR from empirical density\n(n=200)'))
}
```

---

hdrscatterplot  Scatterplot showing bivariate highest density regions

Description

Produces a scatterplot where the points are coloured according to the bivariate HDRs in which they fall.

Usage

```r
hdrscatterplot(
 x, y,
 levels = c(1, 50, 99),
 kde.package = c("ash", "ks"),
 noutliers = NULL,
 label = NULL
)
```
Arguments

- **x**: Numeric vector or matrix with 2 columns.
- **y**: Numeric vector of same length as **x**.
- **levels**: Percentage coverage for HDRs.
- **kde.package**: Package to be used in calculating the kernel density estimate when den=NULL.
- **noutliers**: Number of outliers to be labelled. By default, all points outside the largest HDR are labelled.
- **label**: Label of outliers of same length as **x** and **y**. By default, all outliers are labelled as the row index of the point (x, y).

Details

The bivariate density is estimated using kernel density estimation. Either ash2 or kde is used to do the calculations. Then Hyndman’s (1996) density quantile algorithm is used to compute the HDRs. The scatterplot of (x,y) is created where the points are coloured according to which HDR they fall. A ggplot object is returned.

Author(s)

Rob J Hyndman

See Also

-(hdr.boxplot.2d)

Examples

```r
x <- c(rnorm(200, 0, 1), rnorm(200, 4, 1))
y <- c(rnorm(200, 0, 1), rnorm(200, 4, 1))
hdrscatterplot(x, y)
hdrscatterplot(x, y, label = paste0("p", 1:length(x)))
```

---

**Description**

These are two data sets collected in 1993 on two individual lanes (lane 2 and lane 3) of the 4-lane Californian freeway I-880. The data were collected by loop detectors, and the time units are 30 seconds per observation (see Petty et al., 1996, for details).

**Usage**

lane2; lane3
maxtemp

Format

Two data frames (lane2 and lane3) each with 1318 observations on the following two variables:

- **flow** a numeric vector giving the traffic flow in vehicles per lane per hour.
- **speed** a numeric vector giving the speed in miles per hour.

Details

The data is examined in Einbeck and Tutz (2006), using a nonparametric approach to multi-valued regression based on conditional mean shift.

Source


The data is provided by courtesy of CALIFORNIA PATH, Institute of Transportation Studies, University of California, Berkeley.

References


Examples

```r
plot(lane2)
plot(lane3)
```

maxtemp

*Daily maximum temperatures in Melbourne, Australia*

Description

Daily maximum temperatures in Melbourne, Australia, from 1981-1990. Leap days have been omitted.

Usage

```r
maxtemp
```

Format

Time series of frequency 365.
modalreg

Source

Examples

```r
plot(maxtemp)
```

---

**modalreg**

**Nonparametric Multimodal Regression**

Description
Nonparametric multi-valued regression based on the modes of conditional density estimates.

Usage

```r
modalreg(
 x,
 y,
 xfix = seq(min(x), max(x), l = 50),
 a,
 b,
 deg = 0,
 iter = 30,
 P = 2,
 start = "e",
 prun = TRUE,
 prun.const = 10,
 plot.type = c("p", 1),
 labels = c("", "x", "y"),
 pch = 20,
 ...
)
```

Arguments

- `x` Numerical vector: the conditioning variable.
- `xfix` Numerical vector corresponding to the input values of which the fitted values shall be calculated.
- `a` Optional bandwidth in x-direction.
- `b` Optional bandwidth in y-direction.
- `deg` Degree of local polynomial used in estimation (0 or 1).
- `iter` Positive integer giving the number of mean shift iterations per point and branch.
Maximal number of branches.

Character determining how the starting points are selected. "q": proportional to quantiles; "e": equidistant; "r": random. All, "q", "e", and "r", give starting points which are constant over x. As an alternative, the choice "v" gives variable starting points, which are equal to "q" for the smallest x, and equal to the previously fitted values for all subsequent x.

Boolean. If TRUE, parts of branches are dismissed (in the plotted output) where their associated kernel density value falls below the threshold $1/(\text{prun.const} \times (\max(x)-\min(x)) \times (\max(y)-\min(y)))$.

Numerical value giving the constant used above (the higher, the less pruning)

Vector with two elements. The first one is character-valued, with possible values "p", "l", and "n". If equal to "n", no plotted output is given at all. If equal to "p", fitted curves are symbolized as points in the graphical output, otherwise as lines. The second vector component is a numerical value either being 0 or 1. If 1, the position of the starting points is depicted in the plot, otherwise omitted.

Vector of three character strings. The first one is the "main" title of the graphical output, the second one is the label of the x axis, and the third one the label of the y axis.

Plotting character. The default corresponds to small bullets.

Other arguments passed to \texttt{cde.bandwidths}.

Computes multi-modal nonparametric regression curves based on the maxima of conditional density estimates. The tool for the estimation is the conditional mean shift as outlined in Einbeck and Tutz (2006). Estimates of the conditional modes might fluctuate highly if \texttt{deg}=1. Hence, \texttt{deg}=0 is recommended. For bandwidth selection, the hybrid rule introduced by Bashtannyk and Hyndman (2001) is employed if \texttt{deg}=0. This corresponds to the setting \texttt{method}=1 in function \texttt{cde.bandwidths}. For \texttt{deg}=1 automatic bandwidth selection is not supported.

A list with the following components:

- \texttt{xfix}: Grid of predictor values at which the fitted values are calculated.
- \texttt{fitted.values}: A $[P \times \text{length(xfix)}]$- matrix with fitted j-th branch in the j-th row ($1 \leq j \leq P$).
- \texttt{bandwidths}: A vector with bandwidths a and b.
- \texttt{density}: A $[P \times \text{length(xfix)}]$- matrix with estimated kernel densities. This will only be computed if \texttt{prun=TRUE}.
- \texttt{threshold}: The pruning threshold.

Jochen Einbeck (2007)
References


See Also

`cde.bandwidths`

Examples

```r
lane2.fit <- modalreg(lane2$flow, lane2$speed, xfix=(1:55)*40, a=100, b=4)
```

---

plot.cde  
*Plots conditional densities*

Description

Produces stacked density plots or highest density region plots for a univariate density conditional on one covariate.

Usage

```r
S3 method for class 'cde'
plot(
 x,
 firstvar = 1,
 mfrow = n2mfrow(dim(x$z)[firstvar]),
 plot.fn = "stacked",
 x.name,
 margin = NULL,
 ...
)
```

Arguments

- **x**: Output from `cde`.
- **firstvar**: If there is more than one conditioning variable, `firstvar` specifies which variable to fix first.
- **mfrow**: If there is more than one conditioning variable, `mfrow` is passed to `par` before plotting.
- **plot.fn**: Specifies which plotting function to use: "stacked" results in stacked conditional densities and "hdr" results in highest density regions.
- **x.name**: Name of x (conditioning) variable for use on x-axis.
Marginal density of conditioning variable. If present, only conditional densities corresponding to non-negligible marginal densities will be plotted.

Additional arguments to plot.

Value

If `plot.fn=="stacked"` and there is only one conditioning variable, the function returns the output from `persp`. If `plot.fn=="hdr"` and there is only one conditioning variable, the function returns the output from `hdr.cde`. When there is more than one conditioning variable, nothing is returned.

Author(s)

Rob J Hyndman

References


See Also

hdr.cde, cde, hdr

Examples

```r
faithful.cde <- cde(faithful$waiting,faithful$eruptions,
 x.name="Waiting time", y.name="Duration time")
plot(faithful.cde)
plot(faithful.cde,plot.fn="hdr")
```

---

**plot.hdrconf**

*Plot HDRs with confidence intervals*

Description

Plots Highest Density Regions with confidence intervals.

Usage

```r
S3 method for class 'hdrconf'
plot(x, den, ...)
```

Arguments

- `x`: Output from `hdrconf`.
- `den`: Density of data as list with components `x` and `y`.
- `...`: Other arguments are passed to `plot`.
shades

Value

None

Author(s)

Rob J Hyndman

References


See Also

hdrconf

Examples

```r
x <- c(rnorm(100,0,1),rnorm(100,4,1))
den <- density(x,bw=bw.SJ(x))
trueden <- den
trueden$y <- 0.5*(exp(-0.5*(den$x*den$x)) + exp(-0.5*(den$x-4)^2))/sqrt(2*pi)
sortx <- sort(x)

par(mfcol=c(2,2))
for(conf in c(50,95))
{
m <- hdrconf(sortx,trueden,conf=conf)
plot(m,trueden,main=paste(conf,"% HDR from true density"))
m <- hdrconf(sortx,den,conf=conf)
plot(m,den,main=paste(conf,"% HDR from empirical density\n(n=200)"))
}
```

---

shades

Shades

Description

A simple function to generate shade of one color by changing its opacity

Usage

```r
shades(color, n)
```

Arguments

- `color`: the name or idea of a R color
- `n`: number or shades wanted
Index

* datasets
  lane2, 20
  maxtemp, 21

* distribution
  cde, 3
  cde.bandwidths, 6
  hdr, 8
  hdr.2d, 9
  hdr.boxplot, 11
  hdr.cde, 13
  hdr.den, 15
  hdrbw, 17
  hdrconf, 18
  hdrscatterplot, 19
  plot.cde, 24
  plot.hdrconf, 25

* hplot
  cde, 3
  hdr.2d, 9
  hdr.boxplot, 11
  hdr.cde, 13
  hdr.den, 15
  hdrscatterplot, 19
  plot.cde, 24
  plot.hdrconf, 25

* math
  BoxCox, 2

* nonparametric
  modalreg, 22

* regression
  modalreg, 22

* smooth
  cde, 3
  cde.bandwidths, 6
  hdr, 8
  hdr.2d, 9
  hdr.boxplot, 11
  hdr.cde, 13
  hdr.den, 15

  hdbw, 17
  hdrconf, 18
  hdrscatterplot, 19
  plot.cde, 24
  plot.hdrconf, 25

  alpha, 2
  ash2, 10, 11, 20

  BoxCox, 2

  cde, 3, 7, 13–15, 24, 25
  cde.bandwidths, 5, 6, 23, 24

  density, 8, 12, 16

  hdr, 8, 13, 15, 17, 19, 25
  hdr.2d, 9
  hdr.boxplot, 9, 11, 11, 17
  hdr.boxplot.2d, 13, 20
  hdr.boxplot.2d (hdr.2d), 9
  hdr.cde, 13, 25
  hdr.den, 9, 13, 15
  hdrbw, 17
  hdrconf, 18, 26
  hdrscatterplot, 19

  InvBoxCox (BoxCox), 2

  kde, 10, 11, 20
  ksmooth, 4

  lane2, 20
  lane3 (lane2), 20
  locfit, 4

  maxtemp, 21
  modalreg, 22

  par, 24
  persp, 25
plot.cde, 24
plot.hdr2d (hdr.2d), 9
plot.hdrconf, \textit{19, 25}

shades, 26