Package ‘healthyR.ts’

November 15, 2023

Title The Time Series Modeling Companion to ‘healthyR’

Version 0.3.0

Description Hospital time series data analysis workflow tools, modeling, and automations.
This library provides many useful tools to review common administrative time series hospital data. Some of these include average length of stay, and readmission rates. The aim is to provide a simple and consistent verb framework that takes the guesswork out of everything.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

URL https://github.com/spsanderson/healthyR.ts

BugReports https://github.com/spsanderson/healthyR.ts/issues

Imports magrittr, rlang (>= 0.1.2), tibble, timetk, tidyr, dplyr, purrr, ggplot2, lubridate, plotly, recipes, modeltime, cowplot, graphics, forcats, stringi, parsnip, workflowsets, hardhat

Suggests knitr, rmarkdown, roxygen2, scales, rsample, healthyR.ai, stringr, forecast, tidymodels, glue, xts, zoo, TSA, tune, dials, workflows, tidyselect

VignetteBuilder knitr

Depends R (>= 3.3)

NeedsCompilation no

Author Steven Sanderson [aut, cre, cph]
 (<https://orcid.org/0009-0006-7661-8247>)

Maintainer Steven Sanderson <spsanderson@gmail.com>

Repository CRAN

Date/Publication 2023-11-15 06:00:05 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto_stationarize</td>
<td>4</td>
</tr>
<tr>
<td>calibrate_and_plot</td>
<td>5</td>
</tr>
<tr>
<td>ci_hi</td>
<td>7</td>
</tr>
<tr>
<td>ci_lo</td>
<td>8</td>
</tr>
<tr>
<td>color_blind</td>
<td>9</td>
</tr>
<tr>
<td>internal_ts_backward_event_tbl</td>
<td>9</td>
</tr>
<tr>
<td>internal_ts_both_event_tbl</td>
<td>10</td>
</tr>
<tr>
<td>internal_ts_forward_event_tbl</td>
<td>11</td>
</tr>
<tr>
<td>model_extraction_helper</td>
<td>12</td>
</tr>
<tr>
<td>step_ts_acceleration</td>
<td>13</td>
</tr>
<tr>
<td>step_ts_velocity</td>
<td>15</td>
</tr>
<tr>
<td>tidy_fft</td>
<td>17</td>
</tr>
<tr>
<td>ts_acceleration_augment</td>
<td>19</td>
</tr>
<tr>
<td>ts_acceleration_vec</td>
<td>20</td>
</tr>
<tr>
<td>ts_adf_test</td>
<td>21</td>
</tr>
<tr>
<td>ts_arima_simulator</td>
<td>22</td>
</tr>
<tr>
<td>ts_auto_arima</td>
<td>24</td>
</tr>
<tr>
<td>ts_auto_arima_xgboost</td>
<td>26</td>
</tr>
<tr>
<td>ts_auto_croston</td>
<td>28</td>
</tr>
<tr>
<td>ts_auto_exp_smoothing</td>
<td>31</td>
</tr>
<tr>
<td>ts_auto_glmnet</td>
<td>33</td>
</tr>
<tr>
<td>ts_auto_lm</td>
<td>35</td>
</tr>
<tr>
<td>ts_auto_mars</td>
<td>37</td>
</tr>
<tr>
<td>ts_auto_mnetar</td>
<td>39</td>
</tr>
<tr>
<td>ts_auto_prophet_boost</td>
<td>41</td>
</tr>
<tr>
<td>ts_auto_prophet_reg</td>
<td>44</td>
</tr>
<tr>
<td>ts_auto_recipe</td>
<td>46</td>
</tr>
<tr>
<td>ts_auto_smooth_es</td>
<td>48</td>
</tr>
<tr>
<td>ts_auto_svm_poly</td>
<td>50</td>
</tr>
<tr>
<td>ts_auto_svm_rbf</td>
<td>52</td>
</tr>
<tr>
<td>ts_auto_theta</td>
<td>54</td>
</tr>
<tr>
<td>ts_auto_xgboost</td>
<td>56</td>
</tr>
<tr>
<td>ts_brownian_motion</td>
<td>59</td>
</tr>
<tr>
<td>ts_brownian_motion_augment</td>
<td>60</td>
</tr>
<tr>
<td>ts_brownian_motion_plot</td>
<td>62</td>
</tr>
<tr>
<td>ts_calendar_heatmap_plot</td>
<td>63</td>
</tr>
<tr>
<td>ts_compare_data</td>
<td>64</td>
</tr>
<tr>
<td>ts_event_analysis_plot</td>
<td>66</td>
</tr>
<tr>
<td>ts_extract_auto_fitted_workflow</td>
<td>67</td>
</tr>
<tr>
<td>ts_feature_cluster</td>
<td>68</td>
</tr>
<tr>
<td>ts_feature_cluster_plot</td>
<td>70</td>
</tr>
<tr>
<td>ts_forecast_simulator</td>
<td>72</td>
</tr>
<tr>
<td>ts_geometric_brownian_motion</td>
<td>74</td>
</tr>
<tr>
<td>ts_geometric_brownian_motion_augment</td>
<td>76</td>
</tr>
<tr>
<td>ts_get_date_columns</td>
<td>77</td>
</tr>
<tr>
<td>ts_growth_rate_augment</td>
<td>78</td>
</tr>
</tbody>
</table>
R topics documented:

- ts_growth_rate_vec .. 79
- ts_info_tbl ... 81
- ts_is_date_class .. 82
- ts_lag_correlation .. 83
- ts_ma_plot .. 85
- ts_model_auto_tune 86
- ts_model_compare .. 90
- ts_model_rank_tbl ... 93
- ts_model_spec_tune_template 95
- ts_qc_run_chart .. 96
- ts_qq_plot .. 98
- ts_random_walk ... 100
- ts_random_walk_ggplot_layers 101
- ts_scale_color_colorblind 102
- ts_scale_fill_colorblind 103
- ts_scadacity_scatter_plot 103
- ts_sma_plot ... 105
- ts_splits_plot ... 107
- ts_time_event_analysis_tbl 108
- ts_to_tbl .. 110
- ts_velocity_augment 111
- ts_velocity_vec .. 112
- ts_vva_plot ... 113
- ts_wfs_arima_boost 114
- ts_wfs_auto_arima ... 116
- ts_wfs_ets_reg .. 118
- ts_wfs_lin_reg .. 120
- ts_wfs_mars ... 122
- ts_wfs_nnetar_reg .. 124
- ts_wfs_prophet_reg 126
- ts_wfs_svm_poly ... 129
- ts_wfs_svm_rbf .. 131
- ts_wfs_xgboost .. 133
- util_difflog_ts ... 135
- util_doubledifflog_ts 136
- util_doublediff_ts 137
- util_log_ts ... 139
- util_singlediff_ts 140
auto_stationarize

Automatically Stationarize Time Series Data

Description

This function attempts to make a non-stationary time series stationary. This function attempts to make a given time series stationary by applying transformations such as differencing or logarithmic transformation. If the time series is already stationary, it returns the original time series.

Usage

auto_stationarize(.time_series)

Arguments

.time_series A time series object to be made stationary.

Details

If the input time series is non-stationary (determined by the Augmented Dickey-Fuller test), this function will try to make it stationary by applying a series of transformations:

1. It checks if the time series is already stationary using the Augmented Dickey-Fuller test.
2. If not stationary, it attempts a logarithmic transformation.
3. If the logarithmic transformation doesn’t work, it applies differencing.

Value

If the time series is already stationary, it returns the original time series. If a transformation is applied to make it stationary, it returns a list with two elements:

- stationary_ts: The stationary time series.
- ndiffs: The order of differencing applied to make it stationary.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: calibrate_and_plot(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(), util_singlediff_ts()
Examples

Example 1: Using the AirPassengers dataset
auto_stationarize(AirPassengers)

Example 2: Using the BJsales dataset
auto_stationarize(BJsales)

calibrate_and_plot

Helper function - Calibrate and Plot

description

This function is a helper function. It will take in a set of workflows and then perform the `modeltime::modeltime_calibrate()` and `modeltime::plot_modeltime_forecast()`.

Usage

```r
calibrate_and_plot(
  ..., 
  .type = "testing", 
  .splits_obj, 
  .data, 
  .print_info = TRUE, 
  .interactive = FALSE 
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>The workflow(s) you want to add to the function.</td>
</tr>
<tr>
<td>.type</td>
<td>Either the training(splits) or testing(splits) data.</td>
</tr>
<tr>
<td>.splits_obj</td>
<td>The splits object.</td>
</tr>
<tr>
<td>.data</td>
<td>The full data set.</td>
</tr>
<tr>
<td>.print_info</td>
<td>The default is TRUE and will print out the calibration accuracy tibble and the resulting plotly plot.</td>
</tr>
<tr>
<td>.interactive</td>
<td>The defaults is FALSE. This controls if a forecast plot is interactive or not via plotly.</td>
</tr>
</tbody>
</table>

Details

This function expects to take in workflows fitted with training data.

Value

The original time series, the simulated values and a some plots
Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(), util_singlediff_ts()

Examples

```r
## Not run:
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(workflows))
data <- ts_to_tbl(AirPassengers) %>%
  select(-index)
splits <- timetk::time_series_split(
  data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)
rec_obj <- recipe(value ~ ., data = training(splits))
model_spec <- linear_reg(
  mode = "regression"
  , penalty = 0.1
  , mixture = 0.5
) %>%
  set_engine("lm")
wflw <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec) %>%
  fit(training(splits))
output <- calibrate_and_plot(
  wflw
  , .type = "training"
  , .splits_obj = splits
```
ci_hi

Confidence Interval Generic

Description
Gets the upper 97.5% quantile of a numeric vector.

Usage

ci_hi(.x, .na.rm = FALSE)

Arguments

.x A vector of numeric values
.na.rm A Boolean, defaults to FALSE. Passed to the quantile function.

Details
Gets the upper 97.5% quantile of a numeric vector.

Value
A numeric value.

Author(s)
Steven P. Sanderson II, MPH

See Also
Other Statistic: ci_lo(), ts_adf_test()

Examples

x <- mtcars$mpg
ci_hi(x)
ci_lo

Confidence Interval Generic

Description

Gets the lower 2.5% quantile of a numeric vector.

Usage

```r
ci_lo(.x, .na_rm = FALSE)
```

Arguments

- `.x` A vector of numeric values
- `.na_rm` A Boolean, defaults to FALSE. Passed to the quantile function.

Details

Gets the lower 2.5% quantile of a numeric vector.

Value

A numeric value.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Statistic: `ci_hi()`, `ts_adf_test()`

Examples

```r
x <- mtcars$mpg
ci_lo(x)
```
color_blind

Provide Colorblind Compliant Colors

Description

8 Hex RGB color definitions suitable for charts for colorblind people.

Usage

color_blind()

Details

This function is used in others in order to help render plots for those that are color blind.

Value

A vector of 8 Hex RGB definitions.

Author(s)

Steven P. Sanderson II, MPH

Examples

color_blind()

internal_ts_backward_event_tbl

Event Analysis

Description

This is a function that sits inside of the ts_time_event_analysis_tbl(). It is only meant to be used there. This is an internal function.

Usage

internal_ts_backward_event_tbl(.data, .horizon)

Arguments

<table>
<thead>
<tr>
<th>.data</th>
<th>The date.frame/tibble that holds the data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.horizon</td>
<td>How far do you want to look back or ahead.</td>
</tr>
</tbody>
</table>
Details

This is a helper function for ts_time_event_analysis_tbl() only.

Value

A tibble.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(), util_singlediff_ts()
internal_ts_forward_event_tbl

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(),
ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Description

This is a function that sits inside of the ts_time_event_analysis_tbl(). It is only meant to be
used there. This is an internal function.

Usage

internal_ts_forward_event_tbl(.data, .horizon)

Arguments

.data The date.frame/tibble that holds the data.
.horizon How far do you want to look back or ahead.

Details

This is a helper function for ts_time_event_analysis_tbl() only.

Value

A tibble.

Author(s)

Steven P. Sanderson II, MPH
See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(), model_extraction_helper(), ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(), util_singlediff_ts()
See Also

Other Utility: `auto_stationarize()`, `calibrate_and_plot()`, `internal_ts_backward_event_tbl()`, `internal_ts_both_event_tbl()`, `internal_ts_forward_event_tbl()`, `ts_get_date_columns()`, `ts_info_tbl()`, `ts_is_date_class()`, `ts_lag_correlation()`, `ts_model_auto_tune()`, `ts_model_compare()`, `ts_model_rank_tbl()`, `ts_model_spec_tune_template()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`, `ts_to_tbl()`, `util_difflog_ts()`, `util_doublediff_ts()`, `util_doubledifflog_ts()`, `util_log_ts()`, `util_singlediff_ts()`

Examples

```r
# NOT RUN
## Not run:
suppressPackageStartupMessages(library(forecast))

# Create a model
fit_arima <- auto.arima(AirPassengers)
model_extraction_helper(fit_arima)

## End(Not run)
```

step_ts_acceleration
Recipes Time Series Acceleration Generator

Description

`step_ts_acceleration` creates a specification of a recipe step that will convert numeric data into a time series into its acceleration.

Usage

```r
step_ts_acceleration(
  recipe, 
  ...,
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  skip = FALSE,
  id = rand_id("ts_acceleration")
)
```

Arguments

- `recipe`
 A recipe object. The step will be added to the sequence of operations for this recipe.

- `...`
 One or more selector functions to choose which variables that will be used to create the new variables. The selected variables should have class numeric
For model terms created by this step, what analysis role should they be assigned to? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.

A logical to indicate if the quantities for preprocessing have been estimated.

A character string of variables that will be used as inputs. This field is a placeholder and will be populated once `recipes::prep()` is used.

A logical. Should the step be skipped when the recipe is baked by `bake.recipe()`? While all operations are baked when `prep.recipe()` is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

A character string that is unique to this step to identify it.

Details

Numeric Variables Unlike other steps, `step_ts_acceleration` does not remove the original numeric variables. `recipes::step_rm()` can be used for this purpose.

Value

For `step_ts_acceleration`, an updated version of recipe with the new step added to the sequence of existing steps (if any).

Main Recipe Functions:

- `recipes::recipe()`
- `recipes::prep()`
- `recipes::bake()`

See Also

Other Recipes: `step_ts_velocity()`

Examples

```r
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
  date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
  a = rnorm(len_out),
  b = runif(len_out)
)

# Create a recipe object
rec_obj <- recipe(a ~ ., data = data_tbl) %>%
```
```r
step_ts_velocity(b)

# View the recipe object
rec_obj

# Prepare the recipe object
prep(rec_obj)

# Bake the recipe object - Adds the Time Series Signature
bake(prep(rec_obj), data_tbl)

rec_obj %>% prep() %>% juice()
```

Description

`step_ts_velocity` creates a specification of a recipe step that will convert numeric data into from a time series into its velocity.

Usage

```r
step_ts_velocity(
  recipe,
  ..., 
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  skip = FALSE,
  id = rand_id("ts_velocity")
)
```

Arguments

- `recipe` A recipe object. The step will be added to the sequence of operations for this recipe.
- `...` One or more selector functions to choose which variables that will be used to create the new variables. The selected variables should have class numeric
- `role` For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.
- `trained` A logical to indicate if the quantities for preprocessing have been estimated.
- `columns` A character string of variables that will be used as inputs. This field is a placeholder and will be populated once `recipes::prep()` is used.
skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Numeric Variables Unlike other steps, step_ts_velocity does **not** remove the original numeric variables. recipes::step_rm() can be used for this purpose.

Value

For step_ts_velocity, an updated version of recipe with the new step added to the sequence of existing steps (if any).

Main Recipe Functions:

- recipes::recipe()
- recipes::prep()
- recipes::bake()

See Also

Other Recipes: step_ts_acceleration()

Examples

```r
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
  date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
  a = rnorm(len_out),
  b = runif(len_out)
)

# Create a recipe object
rec_obj <- recipe(a ~ ., data = data_tbl) %>%
  step_ts_velocity(b)

# View the recipe object
rec_obj

# Prepare the recipe object
prep(rec_obj)
```
Bake the recipe object - Adds the Time Series Signature
bake(prep(rec_obj), data_tbl)

rec_obj %>% prep() %>% juice()

tidy_fft

Description

Perform an fft using \texttt{stats::fft()} and return a tidier style output list with plots.

Usage

```r
tidy_fft(
  .data,
  .date_col,
  .value_col,
  .frequency = 12L,
  .harmonics = 1L,
  .upsampling = 10L
)
```

Arguments

- \texttt{.data} The data.frame/tibble you will pass for analysis.
- \texttt{.date_col} The column that holds the date.
- \texttt{.value_col} The column that holds the data to be analyzed.
- \texttt{.frequency} The frequency of the data, 12 = monthly for example.
- \texttt{.harmonics} How many harmonic waves do you want to produce.
- \texttt{.upsampling} The up sampling of the time series.

Details

This function will perform a few different things, but primarily it will compute the Fast Discrete Fourier Transform (FFT) using \texttt{stats::fft()}. The formula is given as:

\[
y[h] = \sum_{k=1}^{n} z[k] \ast \exp(-2 \ast \pi \ast i \ast (k - 1) \ast (h - 1)/n)
\]

There are many items returned inside of a list invisibly. There are four primary categories of data returned in the list. Below are the primary categories and the items inside of them.

data:

1. data
2. error_data
3. input_vector
4. maximum_harmonic_tbl
5. differenced_value_tbl
6. dff_tbl
7. ts_obj

plots:
1. harmonic_plot
2. diff_plot
3. max_har_plot
4. harmonic_plotly
5. max_har_plotly

parameters:
1. harmonics
2. upsampling
3. start_date
4. end_date
5. freq

model:
1. m
2. harmonic_obj
3. harmonic_model
4. model_summary

Value
A list object returned invisibly.

Author(s)
Steven P. Sanderson II, MPH

See Also
Other Data Generator: ts_brownian_motion_augment(), ts_brownian_motion(), ts_geometric_brownian_motion_augment(), ts_geometric_brownian_motion(), ts_random_walk()
Examples

```r
suppressPackageStartupMessages(library(dplyr))

data_tbl <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

a <- tidy_fft(
  .data = data_tbl,
  .value_col = value,
  .date_col = date_col,
  .harmonics = 3,
  .frequency = 12
)

a$plots$max_har_plot
a$plots$harmonic_plot
```

ts_acceleration_augment

Augment Function Acceleration

Description

Takes a numeric vector and will return the acceleration of that vector.

Usage

```r
ts_acceleration_augment(.data, .value, .names = "auto")
```

Arguments

- `.data` The data being passed that will be augmented by the function.
- `.value` This is passed `rlang::enquo()` to capture the vectors you want to augment.
- `.names` The default is "auto"

Details

Takes a numeric vector and will return the acceleration of that vector. The acceleration of a time series is computed by taking the second difference, so

\[
(x_t - x_{t-1}) - (x_{t-1} - x_{t-2})
\]

This function is intended to be used on its own in order to add columns to a tibble.

Value

A augmented tibble
ts_acceleration_vec

Author(s)
Steven P. Sanderson II, MPH

See Also
Other Augment Function: `ts_growth_rate_augment()`, `ts_velocity_augment()`

Examples
```r
suppressPackageStartupMessages(library(dplyr))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
    date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
    a = rnorm(len_out),
    b = runif(len_out)
)

ts_acceleration_augment(data_tbl, b)
```

ts_acceleration_vec Vector Function Time Series Acceleration

Description
Takes a numeric vector and will return the acceleration of that vector.

Usage
```r
ts_acceleration_vec(.x)
```

Arguments

- `.x` A numeric vector

Details
Takes a numeric vector and will return the acceleration of that vector. The acceleration of a time series is computed by taking the second difference, so

\[
(x_t - x_{t-1}) - (x_t - x_{t-1})_{t-1}
\]

This function can be used on its own. It is also the basis for the function `ts_acceleration_augment()`.
ts_adf_test

Augmented Dickey-Fuller Test for Time Series Stationarity

Description
This function performs the Augmented Dickey-Fuller test to assess the stationarity of a time series. The Augmented Dickey-Fuller (ADF) test is used to determine if a given time series is stationary. This function takes a numeric vector as input, and you can optionally specify the lag order with the .k parameter. If .k is not provided, it is calculated based on the number of observations using a formula. The test statistic and p-value are returned.

Usage
```
  ts_adf_test(.x, .k = NULL)
```

Value
A numeric vector

Author(s)
Steven P. Sanderson II, MPH

See Also
Other Vector Function: *ts_growth_rate_vec()*, *ts_velocity_vec()*

Examples
```
suppressPackageStartupMessages(library(dplyr))

len_out = 25
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
  date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
  a = rnorm(len_out),
  b = runif(len_out)
)

vec_1 <- ts_acceleration_vec(data_tbl$b)

plot(data_tbl$b)
lines(data_tbl$b)
lines(vec_1, col = "blue")
```
ts_arima_simulator

Simulate ARIMA Model

Description

Returns a list output of any \(n \) simulations of a user specified ARIMA model. The function returns a list object with two sections:

- data
- plots

The data section of the output contains the following:

- simulation_time_series object (ts format)
- simulation_time_series_output (mts format)
- simulations_tbl (simulation_time_series_object in a tibble)
- simulations_median_value_tbl (contains the stats::median() value of the simulated data)

Arguments

- \(.x \): A numeric vector representing the time series to be tested for stationarity.
- \(.k \): An optional parameter specifying the number of lags to use in the ADF test (default is calculated).

Value

A list containing the results of the Augmented Dickey-Fuller test:

- test_stat: The test statistic from the ADF test.
- p_value: The p-value of the test.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Statistic: \texttt{ci_hi()}, \texttt{ci_lo()}

Examples

Example 1: Using the AirPassengers dataset
ts_adf_test(AirPassengers)

Example 2: Using a custom time series vector
custom_ts <- rnorm(100, 0, 1)
ts_adf_test(custom_ts)
The plots section of the output contains the following:

- static_plot The ggplot2 plot
- plotly_plot The plotly plot

Usage

ts_arima_simulator(
 .n = 100,
 .num_sims = 25,
 .order_p = 0,
 .order_d = 0,
 .order_q = 0,
 .ma = c(),
 .ar = c(),
 .sim_color = "steelblue",
 .alpha = 0.05,
 .size = 1,
 ...
)

Arguments

- .n The number of points to be simulated.
- .num_sims The number of different simulations to be run.
- .order_p The p value, the order of the AR term.
- .order_d The d value, the number of differencing to make the series stationary
- .order_q The q value, the order of the MA term.
- .ma You can list the MA terms respectively if desired.
- .ar You can list the AR terms respectively if desired.
- .sim_color The color of the lines for the simulated series.
- .alpha The alpha component of the ggplot2 and plotly lines.
- .size The size of the median line for the ggplot2
- ... Any other additional arguments for stats::arima.sim

Details

This function takes in a user specified arima model. The specification is passed to stats::arima.sim()

Value

A list object.

Author(s)

Steven P. Sanderson II, MPH
See Also

Other Simulator: ts_forecast_simulator()

Examples

output <- ts_arima_simulator()
output$plots$static_plot

ts_auto_arima

Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot

Usage

```r
ts_auto_arima(
  .data,
  .date_col,
  .value_col,
  .formula,
  .rsamp_obj,
  .prefix = "ts_arima",
  .tune = TRUE,
  .grid_size = 10,
  .num_cores = 1,
  .cv_assess = 12,
  .cv_skip = 3,
  .cv_slice_limit = 6,
  .best_metric = "rmse",
  .bootstrap_final = FALSE
)
```
Arguments

- `.data` The data being passed to the function. The time-series object.
- `.date_col` The column that holds the datetime.
- `.value_col` The column that has the value
- `.formula` The formula that is passed to the recipe like `value ~ .`
- `.rsamp_obj` The rsample splits object
- `.prefix` Default is `ts_arima`
- `.tune` Defaults to TRUE, this creates a tuning grid and tuned model.
- `.grid_size` If `.tune` is TRUE then the `.grid_size` is the size of the tuning grid.
- `.num_cores` How many cores do you want to use. Default is 1
- `.cv_assess` How many observations for assess. See `timetk::time_series_cv()`
- `.cv_skip` How many observations to skip. See `timetk::time_series_cv()`
- `.cv_slice_limit` How many slices to return. See `timetk::time_series_cv()`
- `.best_metric` Default is "rmse". See `modeltime::default_forecast_accuracy_metric_set()`
- `.bootstrap_final` Not yet implemented.

Details

This uses the `modeltime::arima_reg()` with the engine set to `arima`

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

Examples

```r
library(dplyr)
library(timetk)
library(modeltime)
```
data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data,
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

ts_aa <- ts_auto_arima(
 .data = data,
 .num_cores = 2,
 .date_col = date_col,
 .value_col = value,
 .rsamp_obj = splits,
 .formula = value ~ .,
 .grid_size = 5,
 .cv_slice_limit = 2,
 .tune = FALSE
)

ts_aa$recipe_info

ts_auto_arima_xgboost Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot

Usage

ts_auto_arima_xgboost(
 .data,
 .date_col,
 .value_col,
 .formula,
.rsamp_obj,
.prefix = "ts_arima_boost",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE
)

Arguments

.data The data being passed to the function. The time-series object.
.date_col The column that holds the datetime.
.value_col The column that has the value
.formula The formula that is passed to the recipe like value ~ .
.rsamp_obj The rsample splits object
.prefix Default is ts_arima_boost
.tune Defaults to TRUE, this creates a tuning grid and tuned model.
.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.
.num_cores How many cores do you want to use. Default is 1
.cv_assess How many observations for assess. See timetk::time_series_cv()
.cv_skip How many observations to skip. See timetk::time_series_cv()
.cv_slice_limit How many slices to return. See timetk::time_series_cv()
.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()
.bootstrap_final Not yet implemented.

Details

This uses the modeltime::arima_boost() with the engine set to xgboost

Value

A list

Author(s)

Steven P. Sanderson II, MPH
See Also

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data,
 date_col,
 assess = 12,
 skip = 3,
 cumulative = TRUE
)

ts_auto_arima_xgboost <- ts_auto_arima_xgboost(
 data = data,
 num_cores = 1,
 date_col = date_col,
 value_col = value,
 rsamp_obj = splits,
 formula = value ~ .,
 grid_size = 5,
 cv_slice_limit = 2,
 tune = FALSE
)

ts_auto_arima_xgboost$recipe_info

ts_auto_croston

Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

- recipe
• model specification
• workflow
• tuned model (grid ect)
• calibration tibble and plot

Usage

```r
ts_auto_croston(
  .data,
  .date_col,
  .value_col,
  .formula,
  .rsamp_obj,
  .prefix = "ts_croston",
  .tune = TRUE,
  .grid_size = 10,
  .num_cores = 1,
  .cv_assess = 12,
  .cv_skip = 3,
  .cv_slice_limit = 6,
  .best_metric = "rmse",
  .bootstrap_final = FALSE
)
```

Arguments

- `.data` The data being passed to the function. The time-series object.
- `.date_col` The column that holds the datetime.
- `.value_col` The column that has the value
- `.formula` The formula that is passed to the recipe like `value ~ .`
- `.rsamp_obj` The rsample splits object
- `.prefix` Default is `ts_exp_smooth`
- `.tune` Defaults to TRUE, this creates a tuning grid and tuned model.
- `.grid_size` If `.tune` is TRUE then the `.grid_size` is the size of the tuning grid.
- `.num_cores` How many cores do you want to use. Default is 1
- `.cv_assess` How many observations for assess. See `timetk::time_series_cv()`
- `.cv_skip` How many observations to skip. See `timetk::time_series_cv()`
- `.cv_slice_limit` How many slices to return. See `timetk::time_series_cv()`
- `.best_metric` Default is "rmse". See `modeltime::default_forecast_accuracy_metric_set()`
- `.bootstrap_final` Not yet implemented.
Details

This uses the forecast::croston() for the parsnip engine. This model does not use exoge-

nous regressors, so only a univariate model of: value ~ date will be used from the .date_col and .value_col that you provide.

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://business-science.github.io/modeltime/reference/exp_smoothing.html#engine-details

Other Boiler_Plate: ts_auto_arima_xgboost(), ts_auto_arima(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_mnetar(), ts_auto_prophet_boost(),
ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(),
ts_auto_theta(), ts_auto_xgboost()

Other exp_smoothing: ts_auto_exp_smoothing(), ts_auto_smooth_es(), ts_auto_theta()

Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

ts_exp <- ts_auto_croston(
 .data = data,
 .num_cores = 2,
 .date_col = date_col,
 .value_col = value,
 .rsamp_obj = splits,
 .formula = value ~ .,
 .grid_size = 5,
ts_auto_exp_smoothing

 .tune = FALSE
)

ts_exp$recipe_info

ts_auto_exp_smoothing *Boilerplate Workflow*

Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot

Usage

```r
ts_auto_exp_smoothing(
  .data,
  .date_col,
  .value_col,
  .formula,
  .rsamp_obj,
  .prefix = "ts_exp_smooth",
  .tune = TRUE,
  .grid_size = 20,
  .num_cores = 1,
  .cv_assess = 12,
  .cv_skip = 3,
  .cv_slice_limit = 6,
  .best_metric = "rmse",
  .bootstrap_final = FALSE
)
```

Arguments

- `.data` The data being passed to the function. The time-series object.
- `.date_col` The column that holds the datetime.
- `.value_col` The column that has the value
- `.formula` The formula that is passed to the recipe like `value ~ .`
.rsamp_obj The rsample splits object
.prefix Default is ts_exp_smooth
.tune Defaults to TRUE, this creates a tuning grid and tuned model.
.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.
.num_cores How many cores do you want to use. Default is 1
.cv_assess How many observations for assess. See timetk::time_series_cv()
.cv_skip How many observations to skip. See timetk::time_series_cv()
.cv_slice_limit How many slices to return. See timetk::time_series_cv()
.best_metric Default is "rmse". See modetime::default_forecast_accuracy_metric_set()
.bootstrap_final Not yet implemented.

Details
This uses modetime::exp_smoothing() under the hood with the engine set to ets

Value
A list

Author(s)
Steven P. Sanderson II, MPH

See Also
https://business-science.github.io/modetime/reference/exp_smoothing.html#engine-details

Other Boiler_Plate: ts_auto_arima_xgboost(), ts_auto_arima(), ts_auto_croston(), ts_auto_glmnet(),
ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Other exp_smoothing: ts_auto_croston(), ts_auto_smooth_es(), ts_auto_theta()

Examples

library(dplyr)
library(timetk)
library(modetime)

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
data
ts_auto_glmnet

Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot

Usage

```
ts_auto_glmnet(
  .data,
  .date_col,
  .value_col,
  .formula,
  .rsamp_obj,
  .prefix = "ts_glmnet",
  .tune = TRUE,
  .grid_size = 10,
  .num_cores = 1,
  .cv_assess = 12,
  .cv_skip = 3,
)
```
Arguments

- `.data` The data being passed to the function. The time-series object.
- `.date_col` The column that holds the datetime.
- `.value_col` The column that has the value
- `.formula` The formula that is passed to the recipe like `value ~ .`
- `.rsamp_obj` The rsample splits object
- `.prefix` Default is `ts_glmnet`
- `.tune` Defaults to TRUE, this creates a tuning grid and tuned model.
- `.grid_size` If `.tune` is TRUE then the `.grid_size` is the size of the tuning grid.
- `.num_cores` How many cores do you want to use. Default is 1
- `.cv_assess` How many observations for assess. See `timetk::time_series_cv()`
- `.cv_skip` How many observations to skip. See `timetk::time_series_cv()`
- `.cv_slice_limit` How many slices to return. See `timetk::time_series_cv()`
- `.best_metric` Default is "rmse". See `modeltime::default_forecast_accuracy_metric_set()`
- `.bootstrap_final` Not yet implemented.

Details

This uses `parsnip::linear_reg()` and sets the engine to `glmnet`

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

Examples

```r
library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)

ts_glmnet <- ts_auto_glmnet(
  .data = data,
  .num_cores = 2,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
  .grid_size = 5,
  .tune = FALSE
)

ts_glmnet$recipe_info
```

ts_auto_lm

Boilerplate Workflow

<table>
<thead>
<tr>
<th>ts_auto_lm</th>
<th>Boilerplate Workflow</th>
</tr>
</thead>
</table>

Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- calibration tibble and plot
Usage

ts_auto_lm(
 .data,
 .date_col,
 .value_col,
 .formula,
 .rsamp_obj,
 .prefix = "ts_lm",
 .bootstrap_final = FALSE
)

Arguments

.data The data being passed to the function. The time-series object.
.date_col The column that holds the datetime.
.value_col The column that has the value
.formula The formula that is passed to the recipe like value ~ .
.rsamp_obj The rsample splits object
.prefix Default is ts_lm
.bootstrap_final
 Not yet implemented.

Details

This uses parsnip::linear_reg() and sets the engine to lm

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://parsnip.tidymodels.org/reference/linear_reg.html

Other Boiler_Plate: ts_auto_arima_xgboost(), ts_auto_arima(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Examples

library(dplyr)
library(timetk)
library(modeltime)
```r
data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data,
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)

ls_lm <- ts_auto_lm(
  .data = data,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
)

ls_lm$recipe_info
```

ts_auto_mars **Boilerplate Workflow**

Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot

Usage

```r
ts_auto_mars(
  .data,
  .date_col,
  .value_col,
  .formula,
  .rsamp_obj,
  .prefix = "ts_mars",
  .tune = TRUE,
  .grid_size = 10,
)```
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE
)

Arguments

.data The data being passed to the function. The time-series object.
.date_col The column that holds the datetime.
.value_col The column that has the value
.formula The formula that is passed to the recipe like value ~ .
.rsamp_obj The rsample splits object
.prefix Default is ts_mars
.tune Defaults to TRUE, this creates a tuning grid and tuned model.
.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.
.num_cores How many cores do you want to use. Default is 1
.cv_assess How many observations for assess. See timetk::time_series_cv()
.cv_skip How many observations to skip. See timetk::time_series_cv()
.cv_slice_limit How many slices to return. See timetk::time_series_cv()
.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()
.bootstrap_final Not yet implemented.

Details

This uses the parsnip::mars() function with the engine set to earth.

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://parsnip.tidymodels.org/reference/mars.html

Other Boiler_Plate: ts_auto_arima_xgboost(), ts_auto_arima(), ts_auto_croston(), ts_auto_exp_smoothing(),
ts_auto_glmnet(), ts_auto_lm(), ts_auto_nnetar(), ts_auto_prophet_boost(), ts_auto_prophet_reg(),
ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()
Examples

library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data,
  date_col,
  assess = 12,
  skip = 3,
  cumulative = TRUE
)

ts_auto_mars <- ts_auto_mars(
  .data = data,
  .num_cores = 2,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
  .grid_size = 20,
  .tune = FALSE
)

is grid ect

ts_auto_mars$recipe_info

---

**ts_auto_nnetar**

*Boilerplate Workflow*

**Description**

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot
Usage

```r
ts_auto_nnetar(
 .data,
 .date_col,
 .value_col,
 .formula,
 .rsamp_obj,
 .prefix = "ts_nnetar",
 .tune = TRUE,
 .grid_size = 10,
 .num_cores = 1,
 .cv_assess = 12,
 .cv_skip = 3,
 .cv_slice_limit = 6,
 .best_metric = "rmse",
 .bootstrap_final = FALSE
)
```

Arguments

- `.data`: The data being passed to the function. The time-series object.
- `.date_col`: The column that holds the datetime.
- `.value_col`: The column that has the value.
- `.formula`: The formula that is passed to the recipe like `value ~ .`.
- `.rsamp_obj`: The rsample splits object.
- `.prefix`: Default is `ts_nnetar`.
- `.tune`: Defaults to `TRUE`, this creates a tuning grid and tuned model.
- `.grid_size`: If `.tune` is `TRUE` then the `.grid_size` is the size of the tuning grid.
- `.num_cores`: How many cores do you want to use. Default is 1.
- `.cv_assess`: How many observations for assess. See `timetk::time_series_cv()`.
- `.cv_skip`: How many observations to skip. See `timetk::time_series_cv()`.
- `.cv_slice_limit`: How many slices to return. See `timetk::time_series_cv()`.
- `.best_metric`: Default is "rmse". See `modeltime::default_forecast_accuracy_metric_set()`.
- `.bootstrap_final`: Not yet implemented.

Details

This uses the `modeltime::nnetar_reg()` function with the engine set to `nnetar`.

Value

A list
Author(s)
Steven P. Sanderson II, MPH

See Also

Other Boiler_Plate:
- ts_auto_arima_xgboost()
- ts_auto_arima()
- ts_auto_croston()
- ts_auto_exp_smoothing()
- ts_auto_glmnet()
- ts_auto_lm()
- ts_auto_mars()
- ts_auto_prophet_boost()
- ts_auto_prophet_reg()
- ts_auto_smooth_es()
- ts_auto_svm_poly()
- ts_auto_svm_rbf()
- ts_auto_theta()
- ts_auto_xgboost()

Examples

```r
library(dplyr)
library(timetk)
library(modetime)

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

ts_nnetar <- ts_auto_nnetar(
 .data = data,
 .num_cores = 2,
 .date_col = date_col,
 .value_col = value,
 .rsamp_obj = splits,
 .formula = value ~ .,
 .grid_size = 5,
 .tune = FALSE
)

ts_nnetar$recipe_info
```

---

**ts_auto_prophet_boost**  
*Boilerplate Workflow*
### Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot

### Usage

```r
ts_auto_prophet_boost(
 .data,
 .date_col,
 .value_col,
 .formula,
 .rsamp_obj,
 .prefix = "ts_prophet_boost",
 .tune = TRUE,
 .grid_size = 10,
 .num_cores = 1,
 .cv_assess = 12,
 .cv_skip = 3,
 .cv_slice_limit = 6,
 .best_metric = "rmse",
 .bootstrap_final = FALSE
)
```

### Arguments

- `.data` The data being passed to the function. The time-series object.
- `.date_col` The column that holds the datetime.
- `.value_col` The column that has the value
- `.formula` The formula that is passed to the recipe like `value ~ .`
- `.rsamp_obj` The rsample splits object
- `.prefix` Default is `ts_prophet_boost`
- `.tune` Defaults to TRUE, this creates a tuning grid and tuned model.
- `.grid_size` If `.tune` is TRUE then the `.grid_size` is the size of the tuning grid.
- `.num_cores` How many cores do you want to use. Default is 1
- `.cv_assess` How many observations for assess. See `timetk::time_series_cv()`
- `.cv_skip` How many observations to skip. See `timetk::time_series_cv()`
- `.cv_slice_limit` How many slices to return. See `timetk::time_series_cv()`
- `.best_metric` Default is "rmse". See `modeltime::default_forecast_accuracy_metric_set()`
- `.bootstrap_final` Not yet implemented.
Details

This uses the modeltime::prophet_boost() function with the engine set to prophet_xgboost.

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also


Other Boiler_Plate: ts_auto_arima_xgboost(), ts_auto_arima(), ts_auto_croston(), ts_auto_exp_smoothing(), ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_mnetar(), ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Other prophet: ts_auto_prophet_reg()

Examples

```r
library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data,
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

ts_prophet_boost <- ts_auto_prophet_boost(
 .data = data,
 .num_cores = 2,
 .date_col = date_col,
 .value_col = value,
 .rsamp_obj = splits,
 .formula = value ~ .,
 .grid_size = 5,
 .tune = FALSE
)

ts_prophet_boost$recipe_info
```
ts_auto_prophet_reg  Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot

Usage

```r
ts_auto_prophet_reg(
 .data,
 .date_col,
 .value_col,
 .formula,
 .rsamp_obj,
 .prefix = "ts_prophet_reg",
 .tune = TRUE,
 .grid_size = 10,
 .num_cores = 1,
 .cv_assess = 12,
 .cv_skip = 3,
 .cv_slice_limit = 6,
 .best_metric = "rmse",
 .bootstrap_final = FALSE
)
```

Arguments

- `.data`  The data being passed to the function. The time-series object.
- `.date_col`  The column that holds the datetime.
- `.value_col`  The column that has the value
- `.formula`  The formula that is passed to the recipe like `value ~ .`
- `.rsamp_obj`  The rsample splits object
- `.prefix`  Default is `ts_prophet`
- `.tune`  Defaults to `TRUE`, this creates a tuning grid and tuned model.
- `.grid_size`  If `.tune` is `TRUE` then the `.grid_size` is the size of the tuning grid.
.num_cores  How many cores do you want to use. Default is 1
.cv_assess   How many observations for assess. See `timetk::time_series_cv()`
.cv_skip     How many observations to skip. See `timetk::time_series_cv()`
.cv_slice_limit
             How many slices to return. See `timetk::time_series_cv()`
.best_metric Default is "rmse". See `modeltime::default_forecast_accuracy_metric_set()`
.bootstrap_final
             Not yet implemented.

Details
This uses the `modeltime::prophet_reg()` function with the engine set to prophet.

Value
A list

Author(s)
Steven P. Sanderson II, MPH

See Also
Other Boiler_Plate: `ts_auto_arima_xgboost()`, `ts_auto_arima()`, `ts_auto_croston()`, `ts_auto_exp_smoothing()`,
`ts_auto_glmnet()`, `ts_auto_lm()`, `ts_auto_mars()`, `ts_auto_nnetar()`, `ts_auto_prophet_boost()`,
`ts_auto_smooth_es()`, `ts_auto_svm_poly()`, `ts_auto_svm_rbf()`, `ts_auto_theta()`, `ts_auto_xgboost()`
Other prophet: `ts_auto_prophet_boost()`

Examples

```r
library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

ts_prophet_reg <- ts_auto_prophet_reg(
```
Description

Automatically builds generic time series recipe objects from a given tibble.

Usage

```r
ts_auto_recipe(
 .data,
 .date_col,
 .pred_col,
 .step_ts_sig = TRUE,
 .step_ts_rm_misc = TRUE,
 .step_ts_dummy = TRUE,
 .step_ts_fourier = TRUE,
 .step_ts_fourier_period = 365/12,
 .K = 1,
 .step_ts_yeo = TRUE,
 .step_ts_nzv = TRUE
)
```

Arguments

- `.data` The data that is going to be modeled. You must supply a tibble.
- `.date_col` The column that holds the date for the time series.
- `.pred_col` The column that is to be predicted.
- `.step_ts_sig` A Boolean indicating should the `timetk::step_timeseries_signature()` be added, default is TRUE.
- `.step_ts_rm_misc` A Boolean indicating should the following items be removed from the time series signature, default is TRUE.
ts_auto_recipe

• iso$
• xts$
• hour
• min
• sec
• am.pm

.step_ts_dummy A Boolean indicating if all_nominal_predictors() should be dummied and with one hot encoding.

.step_ts_fourier A Boolean indicating if timetk::step_fourier() should be added to the recipe.

.step_ts_fourier_period A number such as 365/12, 365/4 or 365 indicting the period of the fourier term. The numeric period for the oscillation frequency.

.K The number of orders to include for each sine/cosine fourier series. More orders increase the number of fourier terms and therefore the variance of the fitted model at the expense of bias. See details for examples of K specification.

.step_ts_yeo A Boolean indicating if the recipes::step_YeoJohnson() should be added to the recipe.

.step_ts_nzv A Boolean indicating if the recipes::step_nzv() should be run on all predictors.

Details
This will build out a couple of generic recipe objects and return those items in a list.

Author(s)
Steven P. Sanderson II, MPH

Examples
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data_tbl <- ts_to_tbl(AirPassengers) %>%
  select(-index)
splits <- initial_time_split(
data_tbl
  , prop = 0.8
)

ts_auto_recipe(
  .data = data_tbl
  , .date_col = date_col
  , .pred_col = value
)
ts_auto_recipe(
    .data = training(splits),
    .date_col = date_col,
    .pred_col = value
)

---

**ts_auto_smooth_es**  
*Boilerplate Workflow*

**Description**

This is a boilerplate function to automatically create the following:

- recipe
- model specification
- workflow
- tuned model (grid etc)
- calibration tibble and plot

**Usage**

```r
fs_auto_smooth_es(
 .data,
 .date_col,
 .value_col,
 .formula,
 .rsamp_obj,
 .prefix = "ts_smooth_es",
 .tune = TRUE,
 .grid_size = 10,
 .num_cores = 1,
 .cv_assess = 12,
 .cv_skip = 3,
 .cv_slice_limit = 6,
 .best_metric = "rmse",
 .bootstrap_final = FALSE
)
```

**Arguments**

- `.data`  The data being passed to the function. The time-series object.
- `.date_col`  The column that holds the datetime.
- `.value_col`  The column that has the value
- `.formula`  The formula that is passed to the recipe like `value ~ .`
### ts_auto_smooth_es

- `.rsamp_obj` The rsample splits object
- `.prefix` Default is `ts_smooth_es`
- `.tune` Defaults to TRUE, this creates a tuning grid and tuned model.
- `.grid_size` If `.tune` is TRUE then the `.grid_size` is the size of the tuning grid.
- `.num_cores` How many cores do you want to use. Default is 1
- `.cv_assess` How many observations for assess. See `timetk::time_series_cv()`
- `.cv_skip` How many observations to skip. See `timetk::time_series_cv()`
- `.cv_slice_limit` How many slices to return. See `timetk::time_series_cv()`
- `.best_metric` Default is "rmse". See `modeltime::default_forecast_accuracy_metric_set()`
- `.bootstrap_final` Not yet implemented.

#### Details

This uses `modeltime::exp_smoothing()` and sets the `parsnip::engine` to `smooth_es`.

#### Value

A list

#### Author(s)

Steven P. Sanderson II, MPH

#### See Also

- https://business-science.github.io/modeltime/reference/exp_smoothing.html#ref-examples
- https://github.com/config-i1/smooth


Other exp_smoothing: `ts_auto_croston()`, `ts_auto_exp_smoothing()`, `ts_auto_theta()`

#### Examples

```r
library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data
```
ts_auto_svm_poly

, date_col
, assess = 12
, skip = 3
, cumulative = TRUE
)

ts_smooth_es <- ts_auto_smooth_es(
  .data = data,
  .num_cores = 2,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
  .grid_size = 3,
  .tune = FALSE
)

ts_smooth_es$recipe_info

---

### ts_auto_svm_poly

**Boilerplate Workflow**

**Description**

This is a boilerplate function to automatically create the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot

**Usage**

```r
ts_auto_svm_poly(
 .data,
 .date_col,
 .value_col,
 .formula,
 .rsamp_obj,
 .prefix = "ts_svm_poly",
 .tune = TRUE,
 .grid_size = 10,
 .num_cores = 1,
 .cv_assess = 12,
 .cv_skip = 3,
)```
ts_auto_svm_poly

 .cv_slice_limit = 6,
 .best_metric = "rmse",
 .bootstrap_final = FALSE
)

Arguments

.data The data being passed to the function. The time-series object.
.date_col The column that holds the datetime.
.value_col The column that has the value
.formula The formula that is passed to the recipe like value ~ .
.rsamp_obj The rsample splits object
.prefix Default is ts_smooth_es
.tune Defaults to TRUE, this creates a tuning grid and tuned model.
.grid_size If .tune is TRUE then the .grid_size is the size of the tuning grid.
.num_cores How many cores do you want to use. Default is 1
.cv_assess How many observations for assess. See timetk::time_series_cv()
.cv_skip How many observations to skip. See timetk::time_series_cv()
.cv_slice_limit How many slices to return. See timetk::time_series_cv()
.best_metric Default is "rmse". See modeltime::default_forecast_accuracy_metric_set()
.bootstrap_final Not yet implemented.

Details

This uses parsnip::svm_poly() and sets the parsnip::engine to kernlab.

Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

https://parsnip.tidymodels.org/reference/svm_poly.html

Other Boiler_Plate: ts_auto_arima_xgboost(), ts_auto_arima(), ts_auto_croston(), ts_auto_exp_smoothing(),
 ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
 ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_rbf(), ts_auto_theta(), ts_auto_xgboost()

Other SVM: ts_auto_svm_rbf()
Examples

```r
library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data,
  date_col,
  assess = 12,
  skip = 3,
  cumulative = TRUE
)

ts_auto_poly <- ts_auto_svm_poly(
  .data = data,
  .num_cores = 2,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
  .grid_size = 3,
  .tune = FALSE
)

ts_auto_poly$recipe_info
```

ts_auto_svm_rbf

Boilerplate Workflow

Description

This is a boilerplate function to automatically create the following:

- recipe
- model specification
- workflow
- tuned model (grid ect)
- calibration tibble and plot
ts_auto_svm_rbf

Usage

```r
ts_auto_svm_rbf(
  .data,
  .date_col,
  .value_col,
  .formula,
  .rsamp_obj,
  .prefix = "ts_svm_rbf",
  .tune = TRUE,
  .grid_size = 10,
  .num_cores = 1,
  .cv_assess = 12,
  .cv_skip = 3,
  .cv_slice_limit = 6,
  .best_metric = "rmse",
  .bootstrap_final = FALSE
)
```

Arguments

- `.data` The data being passed to the function. The time-series object.
- `.date_col` The column that holds the datetime.
- `.value_col` The column that has the value.
- `.formula` The formula that is passed to the recipe like `value ~ .`.
- `.rsamp_obj` The rsample splits object.
- `.prefix` Default is `ts_smooth_es`.
- `.tune` Defaults to `TRUE`, this creates a tuning grid and tuned model.
- `.grid_size` If `.tune` is `TRUE` then the `.grid_size` is the size of the tuning grid.
- `.num_cores` How many cores do you want to use. Default is 1.
- `.cv_assess` How many observations for assess. See `timetk::time_series_cv()`.
- `.cv_skip` How many observations to skip. See `timetk::time_series_cv()`.
- `.cv_slice_limit` How many slices to return. See `timetk::time_series_cv()`.
- `.best_metric` Default is "rmse". See `modeltime::default_forecast_accuracy_metric_set()`.
- `.bootstrap_final` Not yet implemented.

Details

This uses `parsnip::svm_rbf()` and sets the `parsnip::engine` to `kernlab`.

Value

A list
Author(s)
Steven P. Sanderson II, MPH

See Also
https://parsnip.tidymodels.org/reference/svm_rbf.html

Other Boiler_Plate: ts_auto_arima_xgboost(), ts_auto_arima(), ts_auto_croston(), ts_auto_exp_smoothing(), ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_mnetar(), ts_auto_prophet_boost(), ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_theta(), ts_auto_xgboost()

Other SVM: ts_auto_svm_poly()

Examples

```r
library(dplyr)
library(timetk)
library(modeflow)

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data,
  date_col,
  assess = 12,
  skip = 3,
  cumulative = TRUE
)

ts_auto_rbf <- ts_auto_svm_rbf(
  .data = data,
  .num_cores = 2,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
  .grid_size = 3,
  .tune = FALSE
)

ts_auto_rbf$recipe_info
```
Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
- workflow
- calibration tibble and plot

Usage

```r
ts_auto_theta(
  .data,
  .date_col,
  .value_col,
  .rsamp_obj,
  .prefix = "ts_theta",
  .bootstrap_final = FALSE
)
```

Arguments

- `.data` The data being passed to the function. The time-series object.
- `.date_col` The column that holds the datetime.
- `.value_col` The column that has the value
- `.rsamp_obj` The splits object
- `.prefix` Default is `ts_theta`
- `.bootstrap_final` Not yet implemented.

Details

This uses the `forecast::thetaf()` for the `parsnip` engine. This model does not use exogenous regressors, so only a univariate model of: `value ~ date` will be used from the `.date_col` and `.value_col` that you provide.

Value

A list

Author(s)

Steven P. Sanderson II, MPH
ts_auto_xgboost

See Also

https://business-science.github.io/modeltime/reference/exp_smoothing.html#engine-details

Other Boiler_Plate: ts_auto_arima_xgboost(), ts_auto_arima(), ts_auto_croston(), ts_auto_exp_smoothing(),
 ts_auto_glmnet(), ts_auto_lm(), ts_auto_mars(), ts_auto_nnetar(), ts_auto_prophet_boost(),
 ts_auto_prophet_reg(), ts_auto_smooth_es(), ts_auto_svm_poly(), ts_auto_svm_rbf(),
 ts_auto_xgboost()

Other exp_smoothing: ts_auto_croston(), ts_auto_exp_smoothing(), ts_auto_smooth_es()

Examples

```r
library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data,
  date_col,
  assess = 12,
  skip = 3,
  cumulative = TRUE
)

ts_theta <- ts_auto_theta(
  .data = data,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits
)

ts_theta$recipe_info
```

ts_auto_xgboost

Boilerplate Workflow

Description

This is a boilerplate function to create automatically the following:

- recipe
- model specification
ts_auto_xgboost

- workflow
- tuned model (grid ect)
- calibration tibble and plot

Usage

```r
ts_auto_xgboost(
  .data,
  .date_col,
  .value_col,
  .formula,
  .rsamp_obj,
  .prefix = "ts_xgboost",
  .tune = TRUE,
  .grid_size = 10,
  .num_cores = 1,
  .cv_assess = 12,
  .cv_skip = 3,
  .cv_slice_limit = 6,
  .best_metric = "rmse",
  .bootstrap_final = FALSE
)
```

Arguments

- `.data` The data being passed to the function. The time-series object.
- `.date_col` The column that holds the datetime.
- `.value_col` The column that has the value.
- `.formula` The formula that is passed to the recipe like `value ~ .`.
- `.rsamp_obj` The rsample splits object.
- `.prefix` Default is `ts_xgboost`.
- `.tune` Defaults to TRUE, this creates a tuning grid and tuned model.
- `.grid_size` If `.tune` is TRUE then the `.grid_size` is the size of the tuning grid.
- `.num_cores` How many cores do you want to use. Default is 1.
- `.cv_assess` How many observations for assess. See `timetk::time_series_cv()`.
- `.cv_skip` How many observations to skip. See `timetk::time_series_cv()`.
- `.cv_slice_limit` How many slices to return. See `timetk::time_series_cv()`.
- `.best_metric` Default is "rmse". See `modeltime::default_forecast_accuracy_metric_set()`.
- `.bootstrap_final` Not yet implemented.

Details

This uses the `parsnip::boost_tree()` with the engine set to xgboost.
Value

A list

Author(s)

Steven P. Sanderson II, MPH

See Also

Examples

```r
library(dplyr)
library(timetk)
library(modeltime)

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)

ts_xgboost <- ts_auto_xgboost(
  .data = data,
  .num_cores = 2,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
  .grid_size = 5,
  .tune = FALSE
)

ts_xgboost$recipe_info
```
Brownian Motion

Description

Create a Brownian Motion Tibble

Usage

```r
ts_brownian_motion(
  .time = 100,
  .num_sims = 10,
  .delta_time = 1,
  .initial_value = 0,
  .return_tibble = TRUE
)
```

Arguments

- `.time` Total time of the simulation.
- `.num_sims` Total number of simulations.
- `.delta_time` Time step size.
- `.initial_value` Integer representing the initial value.
- `.return_tibble` The default is TRUE. If set to FALSE then an object of class matrix will be returned.

Details

Brownian Motion, also known as the Wiener process, is a continuous-time random process that describes the random movement of particles suspended in a fluid. It is named after the physicist Robert Brown, who first described the phenomenon in 1827.

The equation for Brownian Motion can be represented as:

\[W(t) = W(0) + \sqrt{t} \times Z \]

Where \(W(t) \) is the Brownian motion at time \(t \), \(W(0) \) is the initial value of the Brownian motion, \(\sqrt{t} \) is the square root of time, and \(Z \) is a standard normal random variable.

Brownian Motion has numerous applications, including modeling stock prices in financial markets, modeling particle movement in fluids, and modeling random walk processes in general. It is a useful tool in probability theory and statistical analysis.

Value

A tibble/matrix
Author(s)
Steven P. Sanderson II, MPH

See Also
Other Data Generator: tidy_fft(), ts_brownian_motion_augment(), ts_geometric_brownian_motion_augment(), ts_geometric_brownian_motion(), ts_random_walk()

Examples

```
```
Brownian Motion, also known as the Wiener process, is a continuous-time random process that describes the random movement of particles suspended in a fluid. It is named after the physicist Robert Brown, who first described the phenomenon in 1827.

The equation for Brownian Motion can be represented as:

\[W(t) = W(0) + \sqrt{t} \cdot Z \]

Where \(W(t) \) is the Brownian motion at time \(t \), \(W(0) \) is the initial value of the Brownian motion, \(\sqrt{t} \) is the square root of time, and \(Z \) is a standard normal random variable.

Brownian Motion has numerous applications, including modeling stock prices in financial markets, modeling particle movement in fluids, and modeling random walk processes in general. It is a useful tool in probability theory and statistical analysis.

A tibble/matrix

Steven P. Sanderson II, MPH

Other Data Generator: tidy_fft(), ts_brownian_motion(), ts_geometric_brownian_motion_augment(), ts_geometric_brownian_motion(), ts_random_walk()

```
rn <- rnorm(31)
df <- data.frame(
  date_col = seq.Date(from = as.Date("2022-01-01"),
                     to = as.Date("2022-01-31"),
                     by = "day"),
  value = rn
)

# Create a tibble of data
.

# Augment with Brownian motion
.
```
ts_brownian_motion_plot

Auto-Plot a Geometric/Brownian Motion Augment

Description

Plot an augmented Geometric/Brownian Motion.

Usage

```r
ts_brownian_motion_plot(.data, .date_col, .value_col, .interactive = FALSE)
```

Arguments

- `.data` The data you are going to pass to the function to augment.
- `.date_col` The column that holds the date
- `.value_col` The column that holds the value
- `.interactive` The default is FALSE, TRUE will produce an interactive plotly plot.

Details

This function will take output from either the `ts_brownian_motion_augment()` or the `ts_geometric_brownian_motion_augment()` function and plot them. The legend is set to "none" if the simulation count is higher than 9.

Value

A ggplot2 object or an interactive plotly plot

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Plot: `ts_event_analysis_plot()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`

Examples

```r
library(dplyr)

df <- ts_to_tbl(AirPassengers) %>% select(-index)

augmented_data <- df %>%
  ts_brownian_motion_augment(
    .date_col = date_col,
    .value_col = value,
    .time = 144
  )
```
augmented_data %>%
 ts_brownian_motion_plot(.date_col = date_col, .value_col = value)

ts_calendar_heatmap_plot

Time Series Calendar Heatmap

Description

Takes in data that has been aggregated to the day level and makes a calendar heatmap.

Usage

```
  ts_calendar_heatmap_plot(
    .data,
    .date_col, 
    .value_col, 
    .low = "red",
    .high = "green",
    .plt_title = "",
    .interactive = TRUE
  )
```

Arguments

. data The time-series data with a date column and value column.
. date_col The column that has the datetime values
. value_col The column that has the values
. low The color for the low value, must be quoted like "red". The default is "red"
. high The color for the high value, must be quoted like "green". The default is "green"
. plt_title The title of the plot
. interactive Default is TRUE to get an interactive plot using `plotly::ggplotly()`. It can be set to FALSE to get a ggplot plot.

Details

The data provided must have been aggregated to the day level, if not funky output could result and it is possible nothing will be output but errors. There must be a date column and a value column, those are the only items required for this function to work.

This function is intentionally inflexible, it complains more and does less in order to force the user to supply a clean data-set.
Value
A ggplot2 plot or if interactive a plotly plot

Author(s)
Steven P. Sanderson II, MPH

Examples

data_tbl <- data.frame(
 date_col = seq.Date(
 from = as.Date("2020-01-01"),
 to = as.Date("2022-06-01"),
 length.out = 365*2 + 180
),
 value = rnorm(365*2+180, mean = 100)
)

ts_calendar_heatmap_plot(
 .data = data_tbl
, .date_col = date_col
, .value_col = value
, .interactive = FALSE
)

ts_compare_data
Compare data over time periods

Description
Given a tibble/data.frame, you can get date from two different but comparative date ranges. Lets say you want to compare visits in one year to visits from 2 years before without also seeing the previous 1 year. You can do that with this function.

Usage

ts_compare_data(.data, .date_col, .start_date, .end_date, .periods_back)

Arguments

- **.data** The data.frame/tibble that holds the data
- **.date_col** The column with the date value
- **.start_date** The start of the period you want to analyze
- **.end_date** The end of the period you want to analyze
- **.periods_back** How long ago do you want to compare data too. Time units are collapsed using lubridate::floor_date(). The value can be:
ts_compare_data

- second
- minute
- hour
- day
- week
- month
- bimonth
- quarter
- season
- halfyear
- year

Arbitrary unique English abbreviations as in the lubridate::period() constructor are allowed.

Details

- Uses the timetk::filter_by_time() function in order to filter the date column.
- Uses the timetk::subtract_time() function to subtract time from the start date.

Value

A tibble.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Time Filtering: ts_time_event_analysis_tbl()

Examples

```r
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))

data_tbl <- ts_to_tbl(AirPassengers) %>%
  select(-index)

ts_compare_data(
  .data = data_tbl,
  .date_col = date_col,
  .start_date = "1955-01-01",
  .end_date = "1955-12-31",
  .periods_back = "2 years"
) %>%
  summarise_by_time(
    .date_var = date_col,
    .by = "year"
)
Description

Plot out the data from the `ts_time_event_analysis_tbl()` function.

Usage

```r
ts_event_analysis_plot(
 .data,
 .plot_type = "mean",
 .plot_ci = TRUE,
 .interactive = FALSE
)
```

Arguments

- `.data` The data that comes from the `ts_time_event_analysis_tbl()`
- `.plot_type` The default is "mean" which will show the mean event change of the output from the analysis tibble. The possible values for this are: mean, median, and individual.
- `.plot_ci` The default is TRUE. This will only work if you choose one of the aggregate plots of either "mean" or "median"
- `.interactive` The default is FALSE. TRUE will return a plotly plot.

Details

This function will take in data strictly from the `ts_time_event_analysis_tbl()` and plot out the data. You can choose what type of plot you want in the parameter of `.plot_type`. This will give you a choice of "mean", "median", and "individual".

You can also plot the upper and lower confidence intervals if you choose one of the aggregate plots ("mean"/"median").

Value

A ggplot2 object

Author(s)

Steven P. Sanderson II, MPH
See Also

Other Plot: `ts_brownian_motion_plot()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`

Examples

```r
library(dplyr)
df <- ts_to_tbl(AirPassengers) %>% select(-index)

ts_time_event_analysis_tbl(
 .data = df,
 .horizon = 6,
 .date_col = date_col,
 .value_col = value,
 .direction = "both"
) %>%
 ts_event_analysis_plot()

ts_time_event_analysis_tbl(
 .data = df,
 .horizon = 6,
 .date_col = date_col,
 .value_col = value,
 .direction = "both"
) %>%
 ts_event_analysis_plot(.plot_type = "individual")
```

---

**ts_extract_auto_fitted_workflow**

*Extract Boilerplate Items*

**Description**

Extract the fitted workflow from a `ts_auto_` function.

**Usage**

```r
ts_extract_auto_fitted_workflow(.input)
```

**Arguments**

- `.input` This is the output list object of a `ts_auto_` function.

**Details**

Extract the fitted workflow from a `ts_auto_` function. This will only work on those functions that are designated as *Boilerplate*.
**Value**

A fitted workflow object.

**Author(s)**

Steven P. Sanderson II, MPH

**Examples**

```r
Not run:
library(dplyr)

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data,
 date_col,
 assess = 12,
 skip = 3,
 cumulative = TRUE
)

ts_lm <- ts_auto_lm(
 .data = data,
 .date_col = date_col,
 .value_col = value,
 .rsamp_obj = splits,
 .formula = value ~ .,
)

ts_extract_auto_fitted_workflow(ts_lm)
End(Not run)
```

---

**Description**

This function returns an output list of data and plots that come from using the K-Means clustering algorithm on a time series data.
Usage

\texttt{ts\_feature\_cluster(}
  \texttt{\_data,}
  \texttt{\_date\_col,}
  \texttt{\_value\_col,}
  \texttt{...},
  \texttt{\_features = c("frequency", "entropy", "acf\_features"),}
  \texttt{\_scale = TRUE,}
  \texttt{\_prefix = "ts\_",}
  \texttt{\_centers = 3}
\texttt{)}

Arguments

- **\_data** The data passed must be a data.frame/tibble only.
- **\_date\_col** The date column.
- **\_value\_col** The column that holds the value of the time series where you want the features and clustering performed on.
- **...** This is where you can place grouping variables that are passed off to dplyr::group_by()
- **\_features** This is a quoted string vector using c() of features that you would like to pass. You can pass any feature you make or those from the tsfeatures package.
- **\_scale** If TRUE, time series are scaled to mean 0 and sd 1 before features are computed
- **\_prefix** A prefix to prefix the feature columns. Default: "ts_"
- **\_centers** An integer of how many different centers you would like to generate. The default is 3.

Details

This function will return a list object output. The function itself requires that a time series tibble/data.frame get passed to it, along with the \_date\_col, the \_value\_col and a period of data. It uses the underlying function timetk::tk\_tsfeatures() and takes the output of that and performs a clustering analysis using the K-Means algorithm.

The function has a parameter of \_features which can take any of the features listed in the tsfeatures package by Rob Hyndman. You can also create custom functions in the .GlobalEnvironment and it will take them as quoted arguments.

So you can make a function as follows

\texttt{my\_mean <- function(x)\{return(mean(x, na.rm = TRUE))\}}

You can then call this by using \_features = c("my\_mean").

The output of this function includes the following:

Data Section

- \_ts\_feature\_tbl
- \_user\_item\_matrix\_tbl
- \_mapped\_tbl
ts_feature_cluster_plot

This function returns an output list of data and plots that come from using the K-Means clustering algorithm on a time series data.

### Description

This function returns an output list of data and plots that come from using the K-Means clustering algorithm on a time series data.

### Value

A list output

### Author(s)

Steven P. Sanderson II, MPH

### See Also

https://pkg.robjhyndman.com/tsfeatures/index.html

Other Clustering: `ts_feature_cluster_plot()`

### Examples

```r
library(dplyr)

data_tbl <- ts_to_tbl(AirPassengers) %>%
 mutate(group_id = rep(1:12, 12))

ts_feature_cluster(
 .data = data_tbl,
 .date_col = date_col,
 .value_col = value,
 group_id,
 .features = c("acf_features","entropy"),
 .scale = TRUE,
 .prefix = "ts_",
 .centers = 3
)
```

---

ts_feature_cluster_plot

*Time Series Feature Clustering*

---

### Description

This function returns an output list of data and plots that come from using the K-Means clustering algorithm on a time series data.
ts_feature_cluster_plot

Usage

`ts_feature_cluster_plot(`
  `.data,`
  `.date_col,`
  `.value_col,`
  `...`,`
  `.center = 3,`
  `.facet_ncol = 3,`
  `.smooth = FALSE`
`)

Arguments

- `.data` The data passed must be the output of the `ts_feature_cluster()` function.
- `.date_col` The date column.
- `.value_col` The column that holds the value of the time series that the features were built from.
- `...` This is where you can place grouping variables that are passed off to `dplyr::group_by()`
- `.center` An integer of the chosen amount of centers from the `ts_feature_cluster()` function.
- `.facet_ncol` This is passed to the `timetk::plot_time_series()` function.
- `.smooth` This is passed to the `timetk::plot_time_series()` function and is set to a default of FALSE.

Details

This function will return a list object output. The function itself requires that the `ts_feature_cluster()` be passed to it as it will look for a specific attribute internally.

The output of this function includes the following:

Data Section

- original_data
- kmm_data_tbl
- user_item_tbl
- cluster_tbl

Plots

- static_plot
- plotly_plot

K-Means Object

- k-means object
**ts_forecast_simulator**

**Value**

A list output

**Author(s)**

Steven P. Sanderson II, MPH

**See Also**

Other Clustering: `ts_feature_cluster()`

**Examples**

```r
library(dplyr)

data_tbl <- ts_to_tbl(AirPassengers) %>%
 mutate(group_id = rep(1:12, 12))

output <- ts_feature_cluster(
 .data = data_tbl,
 .date_col = date_col,
 .value_col = value,
 group_id,
 .features = c("acf_features","entropy"),
 .scale = TRUE,
 .prefix = "ts_",
 .centers = 3
)

ts_feature_cluster_plot(
 .data = output,
 .date_col = date_col,
 .value_col = value,
 .center = 2,
 group_id
)
```

**Description**

Creating different forecast paths for forecast objects (when applicable), by utilizing the underlying model distribution with the `simulate` function.
ts_forecast_simulator

Usage

```r
ts_forecast_simulator(
 .model,
 .data,
 .ext_reg = NULL,
 .frequency = NULL,
 .bootstrap = TRUE,
 .horizon = 4,
 .iterations = 25,
 .sim_color = "steelblue",
 .alpha = 0.05
)
```

Arguments

- `.model` A forecasting model of one of the following from the `forecast` package:
  - `Arima`
  - `auto.arima`
  - `ets`
  - `nnetar`
  - `Arima()` with xreg
- `.data` The data that is used for the `.model` parameter. This is used with `timetk::tk_index()`
- `.ext_reg` A tibble or matrix of future xregs that should be the same length as the horizon you want to forecast.
- `.frequency` This is for the conversion of an internal table and should match the time frequency of the data.
- `.bootstrap` A boolean value of TRUE/FALSE. From `forecast::simulate.Arima()` Do simulation using resampled errors rather than normally distributed errors.
- `.horizon` An integer defining the forecast horizon.
- `.iterations` An integer, set the number of iterations of the simulation.
- `.sim_color` Set the color of the simulation paths lines.
- `.alpha` Set the opacity level of the simulation path lines.

Details

This function expects to take in a model of either `Arima`, `auto.arima`, `ets` or `nnetar` from the `forecast` package. You can supply a forecasting horizon, iterations and a few other items. You may also specify an `Arima()` model using xregs.

Value

The original time series, the simulated values and a some plots

Author(s)

Steven P. Sanderson II, MPH
ts_geometric_brownian_motion

Geometric Brownian Motion

Description
Create a Geometric Brownian Motion.

Usage

```r
ts_geometric_brownian_motion(
 .num_sims = 100,
 .time = 25,
 .mean = 0,
 .sigma = 0.1,
 .initial_value = 100,
 .delta_time = 1/365,
 .return_tibble = TRUE
)
```

Arguments

- `.num_sims`: Total number of simulations.
- `.time`: Total time of the simulation.
- `.mean`: Expected return.

See Also

Other Simulator: `ts_arima_simulator()`

Examples

```r
suppressPackageStartupMessages(library(forecast))
suppressPackageStartupMessages(library(dplyr))

Create a model
fit <- auto.arima(AirPassengers)
data_tbl <- ts_to_tbl(AirPassengers)

Simulate 50 possible forecast paths, with .horizon of 12 months
output <- ts_forecast_simulator(
 .model = fit,
 .horizon = 12,
 .iterations = 50,
 .data = data_tbl
)

output$ggplot
```
Geometric Brownian Motion (GBM) is a statistical method for modeling the evolution of a given financial asset over time. It is a type of stochastic process, which means that it is a system that undergoes random changes over time.

GBM is widely used in the field of finance to model the behavior of stock prices, foreign exchange rates, and other financial assets. It is based on the assumption that the asset’s price follows a random walk, meaning that it is influenced by a number of unpredictable factors such as market trends, news events, and investor sentiment.

The equation for GBM is:

\[ \frac{dS}{S} = md\,dt + sd\,dW \]

where S is the price of the asset, t is time, m is the expected return on the asset, s is the volatility of the asset, and dW is a small random change in the asset’s price.

GBM can be used to estimate the likelihood of different outcomes for a given asset, and it is often used in conjunction with other statistical methods to make more accurate predictions about the future performance of an asset.

This function provides the ability of simulating and estimating the parameters of a GBM process. It can be used to analyze the behavior of financial assets and to make informed investment decisions.

Value

A tibble/matrix

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Data Generator: tidy_fft(), ts_brownian_motion_augment(), ts_brownian_motion(), ts_geometric_brownian_motion_augment(), ts_random_walk()

Examples

`ts_geometric_brownian_motion()`
ts_geometric_brownian_motion_augment

*Geometric Brownian Motion*

**Description**

Create a Geometric Brownian Motion.

**Usage**

```r
ts_geometric_brownian_motion_augment(
 .data,
 .date_col,
 .value_col,
 .num_sims = 10,
 .time = 25,
 .mean = 0,
 .sigma = 0.1,
 .delta_time = 1/365
)
```

**Arguments**

- `.data`: The data you are going to pass to the function to augment.
- `.date_col`: The column that holds the date
- `.value_col`: The column that holds the value
- `.num_sims`: Total number of simulations.
- `.time`: Total time of the simulation.
- `.mean`: Expected return
- `.sigma`: Volatility
- `.delta_time`: Time step size.

**Details**

Geometric Brownian Motion (GBM) is a statistical method for modeling the evolution of a given financial asset over time. It is a type of stochastic process, which means that it is a system that undergoes random changes over time.

GBM is widely used in the field of finance to model the behavior of stock prices, foreign exchange rates, and other financial assets. It is based on the assumption that the asset’s price follows a random walk, meaning that it is influenced by a number of unpredictable factors such as market trends, news events, and investor sentiment.

The equation for GBM is:

\[ \frac{dS}{S} = \mu dt + \sigma dW \]
where $S$ is the price of the asset, $t$ is time, $m$ is the expected return on the asset, $s$ is the volatility of the asset, and $dW$ is a small random change in the asset’s price.

GBM can be used to estimate the likelihood of different outcomes for a given asset, and it is often used in conjunction with other statistical methods to make more accurate predictions about the future performance of an asset.

This function provides the ability of simulating and estimating the parameters of a GBM process. It can be used to analyze the behavior of financial assets and to make informed investment decisions.

**Value**

A tibble/matrix

**Author(s)**

Steven P. Sanderson II, MPH

**See Also**

Other Data Generator: tidy_fft(), ts_brownian_motion_augment(), ts_brownian_motion(), ts_geometric_brownian_motion(), ts_random_walk()

**Examples**

```r
rn <- rnorm(31)
df <- data.frame(
 date_col = seq.Date(from = as.Date("2022-01-01"),
 to = as.Date("2022-01-31"),
 by = "day"),
 value = rn)

 ts_geometric_brownian_motion_augment(
 .data = df,
 .date_col = date_col,
 .value_col = value
)
```

**ts_get_date_columns**

Get date or datetime variables (column names)

**Description**

Get date or datetime variables (column names)

**Usage**

`ts_get_date_columns(.data)`
Arguments

- `.data` An object of class `data.frame`

Details

`ts_get_date_columns` returns the column names of date or datetime variables in a data frame.

Value

A vector containing the column names that are of date/date-like classes.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: `auto_stationarize()`, `calibrate_and_plot()`, `internal_ts_backward_event_tbl()`,
`internal_ts_both_event_tbl()`, `internal_ts_forward_event_tbl()`, `model_extraction_helper()`,
`ts_info_tbl()`, `ts_is_date_class()`, `ts_lag_correlation()`, `ts_model_auto_tune()`, `ts_model_compare()`,
`ts_model_rank_tbl()`, `ts_model_spec_tune_template()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`,
`ts_to_tbl()`, `util_difflog_ts()`, `util_doublediff_ts()`, `util_doubledifflog_ts()`, `util_log_ts()`,
`util_singlediff_ts()`

Examples

```r
 ts_to_tbl(AirPassengers) %>%
 ts_get_date_columns()
```

---

**ts_growth_rate_augment**

*Augment Data with Time Series Growth Rates*

Description

This function is used to augment a data frame or tibble with time series growth rates of selected
columns. You can provide a data frame or tibble as the first argument, the column(s) for which you want to calculate the growth rates using the `.value` parameter, and optionally specify custom names for the new columns using the `.names` parameter.

Usage

```r
 ts_growth_rate_augment(.data, .value, .names = "auto")
```
Arguments

.data A data frame or tibble containing the data to be augmented.
.value A quosure specifying the column(s) for which you want to calculate growth rates.
.names Optional. A character vector specifying the names of the new columns to be created. Use "auto" for automatic naming.

Value

A tibble that includes the original data and additional columns representing the growth rates of the selected columns. The column names are either automatically generated or as specified in the .names parameter.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Augment Function: ts_acceleration_augment(), ts_velocity_augment()

Examples

data <- data.frame(
  Year = 1:5,
  Income = c(100, 120, 150, 180, 200),
  Expenses = c(50, 60, 75, 90, 100)
)
ts_growth_rate_augment(data, .value = c(Income, Expenses))

ts_growth_rate_vec

Vector Function Time Series Growth Rate

Description

This function computes the growth rate of a numeric vector, typically representing a time series, with optional transformations like scaling, power, and lag differences.

Usage

ts_growth_rate_vec(.x, .scale = 100, .power = 1, .log_diff = FALSE, .lags = 1)
ts_growth_rate_vec

Arguments

- `.x` A numeric vector
- `.scale` A numeric value that is used to scale the output
- `.power` A numeric value that is used to raise the output to a power
- `.log_diff` A logical value that determines whether the output is a log difference
- `.lags` An integer that determines the number of lags to use

Details

The function calculates growth rates for a time series, allowing for scaling, exponentiation, and lag differences. It can be useful for financial data analysis, among other applications.

The growth rate is computed as follows:

- If `.lags` is positive and `.log_diff` is FALSE: \[ \text{growth\_rate} = (((x / \text{lag}(x, \text{lags}))^{\text{power}}) - 1) * \text{scale} \]
- If `.lags` is positive and `.log_diff` is TRUE: \[ \text{growth\_rate} = \log(x / \text{lag}(x, \text{lags})) * \text{scale} \]
- If `.lags` is negative and `.log_diff` is FALSE: \[ \text{growth\_rate} = (((x / \text{lead}(x, -\text{lags}))^{\text{power}}) - 1) * \text{scale} \]
- If `.lags` is negative and `.log_diff` is TRUE: \[ \text{growth\_rate} = \log(x / \text{lead}(x, -\text{lags})) * \text{scale} \]

Value

A list object of workflows.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Vector Function: `ts_acceleration_vec()`, `ts_velocity_vec()`

Examples

```r
Calculate the growth rate of a time series without any transformations.
ts_growth_rate_vec(c(100, 110, 120, 130))

Calculate the growth rate with scaling and a power transformation.
ts_growth_rate_vec(c(100, 110, 120, 130), .scale = 10, .power = 2)

Calculate the log differences of a time series with lags.
(ts_growth_rate_vec(c(100, 110, 120, 130), .log_diff = TRUE, .lags = -1))

Plot
plot.ts(AirPassengers)
plot.ts(ts_growth_rate_vec(AirPassengers))
```
Description

This function will take in a data set and return to you a tibble of useful information.

Usage

ts_info_tbl(.data, .date_col)

Arguments

.data The data you are passing to the function
.date_col This is only needed if you are passing a tibble.

Details

This function can accept objects of the following classes:

• ts
• xts
• mts
• zoo
• tibble/data.frame

The function will return the following pieces of information in a tibble:

• name
• class
• frequency
• start
• end
• var
• length

Value

A tibble

Author(s)

Steven P. Sanderson II, MPH
See Also

Other Utility: `auto_stationarize()`, `calibrate_and_plot()`, `internal_ts_backward_event_tbl()`, `internal_ts_both_event_tbl()`, `internal_ts_forward_event_tbl()`, `model_extraction_helper()`,
`ts_get_date_columns()`, `ts_is_date_class()`, `ts_lag_correlation()`, `ts_model_auto_tune()`,
`ts_model_compare()`, `ts_model_rank_tbl()`, `ts_model_spec_tune_template()`, `ts_qq_plot()`,
`ts_scedacity_scatter_plot()`, `ts_to_tbl()`, `util_difflog_ts()`, `util_doublediff_ts()`,
`util_doubledifflog_ts()`, `util_log_ts()`, `util_singlediff_ts()`

Examples

```r
 ts_info_tbl(AirPassengers)
 ts_info_tbl(BJsales)
```

---

**ts_is_date_class**  
*Check if an object is a date class*

---

Description

Check if an object is a date class

Usage

```r
 ts_is_date_class(.x)
```

Arguments

- **.x**  
  A vector to check

Value

Logical (TRUE/FALSE)

See Also

Other Utility: `auto_stationarize()`, `calibrate_and_plot()`, `internal_ts_backward_event_tbl()`,
`internal_ts_both_event_tbl()`, `internal_ts_forward_event_tbl()`, `model_extraction_helper()`,
`ts_get_date_columns()`, `ts_is_date_class()`, `ts_lag_correlation()`, `ts_model_auto_tune()`,
`ts_model_compare()`, `ts_model_rank_tbl()`, `ts_model_spec_tune_template()`, `ts_qq_plot()`,
`ts_scedacity_scatter_plot()`, `ts_to_tbl()`, `util_difflog_ts()`, `util_doublediff_ts()`,
`util_doubledifflog_ts()`, `util_log_ts()`, `util_singlediff_ts()`
Examples

```r
seq.Date(from = as.Date("2022-01-01"), by = "day", length.out = 10) %>%
ts_is_date_class()

letters %>% ts_is_date_class()
```

---

**ts_lag_correlation**

**Time Series Lag Correlation Analysis**

**Description**

This function outputs a list object of both data and plots.

The data output are the following:

- `lag_list`
- `lag_tbl`
- `correlation_lag_matrix`
- `correlation_lag_tbl`

The plots output are the following:

- `lag_plot`
- `plotly_lag_plot`
- `correlation_heatmap`
- `plotly_heatmap`

**Usage**

```r
ts_lag_correlation(
 .data,
 .date_col,
 .value_col,
 .lags = 1,
 .heatmap_color_low = "white",
 .heatmap_color_hi = "steelblue"
)
```

**Arguments**

- `.data` A tibble of time series data
- `.date_col` A date column
- `.value_col` The value column being analyzed
- `.lags` This is a vector of integer lags, ie 1 or c(1,6,12)
.heatmap_color_low
  What color should the low values of the heatmap of the correlation matrix be, 
  the default is 'white'

.heatmap_color_hi
  What color should the low values of the heatmap of the correlation matrix be, 
  the default is 'steelblue'

Details

This function takes in a time series data in the form of a tibble and outputs a list object of data and 
plots. This function will take in an argument of `.lags` and get those lags in your data, outputting a 
correlation matrix, heatmap and lag plot among other things of the input data.

Value

A list object

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(), 
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_model_auto_tune(), ts_model_compare(), 
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(), 
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(), util_singlediff_ts()

Examples

library(dplyr)

df <- ts_to_tbl(AirPassengers) %>% select(-index)
lags <- c(1,3,6,12)

output <- ts_lag_correlation(
  .data = df, 
  .date_col = date_col, 
  .value_col = value, 
  .lags = lags 
)

output$data$correlation_lag_matrix
output$plots$lag_plot
Description

This function will produce two plots. Both of these are moving average plots. One of the plots is from `xts::plot.xts()` and the other a `ggplot2` plot. This is done so that the user can choose which type is best for them. The plots are stacked so each graph is on top of the other.

Usage

```r
ts_ma_plot(
 .data,
 .date_col,
 .value_col,
 .ts_frequency = "monthly",
 .main_title = NULL,
 .secondary_title = NULL,
 .tertiary_title = NULL
)
```

Arguments

- `.data` The data you want to visualize. This should be pre-processed and the aggregation should match the `.frequency` argument.
- `.date_col` The data column from the `.data` argument.
- `.value_col` The value column from the `.data` argument.
- `.ts_frequency` The frequency of the aggregation, quoted, i.e. "monthly", anything else will default to weekly, so it is very important that the data passed to this function be in either a weekly or monthly aggregation.
- `.main_title` The title of the main plot.
- `.secondary_title` The title of the second plot.
- `.tertiary_title` The title of the third plot.

Details

This function expects to take in a data.frame/tibble. It will return a list object so it is a good idea to save the output to a variable and extract from there.

Value

A few time series data sets and two plots.
Author(s)

Steven P. Sanderson II, MPH

Examples

```r
code
suppressPackageStartupMessages(library(dplyr))

data_tbl <- ts_to_tbl(AirPassengers) %>%
 select(-index)

output <- ts_ma_plot(
 .data = data_tbl,
 .date_col = date_col,
 .value_col = value
)

global_summary_tbl %>% head()

output <- ts_ma_plot(
 .data = data_tbl,
 .date_col = date_col,
 .value_col = value,
 .ts_frequency = "week"
)

global_summary_tbl %>% head()
```

Description

This function will create a tuned model. It uses the `ts_model_spec_tune_template()` under the hood to get the generic template that is used in the grid search.

Usage

```r
ts_model_auto_tune(
 .modeltime_model_id,
 .calibration_tbl,
 .splits_obj,
 .drop_training_na = TRUE,
 .date_col,
 .value_col,
```
.tscv_assess = "12 months",
.tsval_skip = "6 months",
.slice_limit = 6,
.facet_ncol = 2,
.grid_size = 30,
.num_cores = 1,
.best_metric = "rmse"
)

Arguments

.modeltime_model_id
  The .model_id from a calibrated modeltime table.
.calibration_tbl
  A calibrated modeltime table.
.splits_obj
  The time_series_split object.
drop_training_na
  A boolean that will drop NA values from the training(splits) data
.date_col
  The column that holds the date values.
.value_col
  The column that holds the time series values.
.tsval_assess
  A character expression like "12 months". This gets passed to timetk::time_series_cv()
.tsval_skip
  A character expression like "6 months". This gets passed to timetk::time_series_cv()
.slice_limit
  An integer that gets passed to timetk::time_series_cv()
.facet_ncol
  The number of faceted columns to be passed to plot_time_series_cv_plan
.grid_size
  An integer that gets passed to the dials::grid_latin_hypercube() function.
.num_cores
  The default is 1, you can set this to any integer value as long as it is equal to or less than the available cores on your machine.
.best_metric
  The default is "rmse" and this can be set to any default dials metric. This must be passed as a character.

Details

This function can work with the following parsnip/modeltime engines:

- "auto_arima"
- "auto_arima_xgboost"
- "ets"
- "croston"
- "theta"
- "stlm_ets"
- "tbats"
- "stlm_arima"
- "nnetar"
• "prophet"
• "prophet_xgboost"
• "lm"
• "glmnet"
• "stan"
• "spark"
• "keras"
• "earth"
• "xgboost"
• "kernlab"

This function returns a list object with several items inside of it. There are three categories of items that are inside of the list.

• data
• model_info
• plots

The data section has the following items:

• calibration_tbl This is the calibration data passed into the function.
• calibration_tuned_tbl This is a calibration tibble that has used the tuned workflow.
• tscv_data_tbl This is the tibble of the time series cross validation.
• tuned_results This is a tuning results tibble with all slices from the time series cross validation.
• best_tuned_results_tbl This is a tibble of the parameters for the best test set with the chosen metric.
• tscv_obj This is the actual time series cross validation object returned from `timetk::time_series_cv()`

The model_info section has the following items:

• model_spec This is the original modeltime/parsnip model specification.
• model_spec_engine This is the engine used for the model specification.
• model_spec_tuner This is the tuning model template returned from `ts_model_spec_tune_template()`
• plucked_model This is the model that we have plucked from the calibration tibble for tuning.
• wflw_tune_spec This is a new workflow with the model_spec_tuner attached.
• grid_spec This is the grid search specification for the tuning process.
• tuned_tscv_wflw_spec This is the final tuned model where the workflow and model have been finalized. This would be the model that you would want to pull out if you are going to work with it further.

The plots section has the following items:

• tune_results_plt This is a static ggplot of the grid search.
• tscv_pl This is the time series cross validation plan plot.
Value

A list object with multiple items.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Model Tuning: `ts_model_spec_tune_template()`
Other Utility: `auto_stationarize()`, `calibrate_and_plot()`, `internal_ts_backward_event_tbl()`,
`internal_ts_both_event_tbl()`, `internal_ts_forward_event_tbl()`, `model_extraction_helper()`,
`ts_get_date_columns()`, `ts_info_tbl()`, `ts_is_date_class()`, `ts_lag_correlation()`, `ts_model_compare()`,
`ts_model_rank_tbl()`, `ts_model_spec_tune_template()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`,
`ts_to_tbl()`, `util_difflog_ts()`, `util_doublediff_ts()`, `util_doubledifflog_ts()`, `util_log_ts()`,
`util_singlediff_ts()`

Examples

```r
Not run:
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
data <- ts_to_tbl(AirPassengers) %>%
 select(-index)
splits <- time_series_split(
data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)
rec_objs <- ts_auto_recipe(
 .data = data
 , .date_col = date_col
 , .pred_col = value
)
wfssets <- ts_wfs_mars(
 .model_type = "earth"
 , .recipe_list = rec_objs
)
wf_fits <- wfsets %>%
 modetime_fit_workflowset(
 data = training(splits)
 , control = control_fit_workflowset(
 allow_par = TRUE
  ```
ts_model_compare

### Description

This function will expect to take in two models that will be used for comparison. It is useful to use this after appropriately following the modeltime workflow and getting two models to compare. This is an extension of the calibrate and plot, but it only takes two models and is most likely better suited to be used after running a model through the `ts_model_auto_tune()` function to see the difference in performance after a base model has been tuned.

### Usage

```r
ts_model_compare(
 .model_1,
 .model_2,
 .type = "testing",
 .splits_obj,
 .data,
 .print_info = TRUE,
 .metric = "rmse"
)
```
Arguments

.model_1  The model being compared to the base, this can also be a hyperparameter tuned model.
.model_2  The base model.
.type     The default is the testing tibble, can be set to training as well.
splits_obj The splits object
.data     The original data that was passed to splits
.print_info This is a boolean, the default is TRUE
.metric   This should be one of the following character strings:
           • "mae"
           • "mape"
           • "mase"
           • "smape"
           • "rmse"
           • "rsq"

Details

This function expects to take two models. You must tell it if it will be assessing the training or testing data, where the testing data is the default. You must therefore supply the splits object to this function along with the original dataset. You must also tell it which default modeltime accuracy metric should be printed on the graph itself. You can also tell this function to print information to the console or not. A static ggplot2 plot and an interactive plotly plot will be returned inside of the output list.

Value

The function outputs a list invisibly.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()
Examples

```r
Not run:
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(dplyr))

data_tbl <- ts_to_tbl(AirPassengers) %>%
 select(-index)
splits <- time_series_split(
 data = data_tbl,
 date_var = date_col,
 assess = "12 months",
 cumulative = TRUE
)

rec_obj <- ts_auto_recipe(
 .data = data_tbl,
 .date_col = date_col,
 .pred_col = value
)

wfs_mars <- ts_wfs_mars(.recipe_list = rec_obj)

wf_fits <- wfs_mars %>%
 modeltime_fit_workflowset(
 data = training(splits),
 control = control_fit_workflowset(
 allow_par = FALSE,
 verbose = TRUE
)
)

calibration_tbl <- wf_fits %>%
 modeltime_calibrate(new_data = testing(splits))

base_mars <- calibration_tbl %>% pluck_modeltime_model(1)
date_mars <- calibration_tbl %>% pluck_modeltime_model(2)

ts_model_compare(
 .model_1 = base_mars,
 .model_2 = date_mars,
 .type = "testing",
 .splits_obj = splits,
 .data = data_tbl,
 .print_info = TRUE,
 .metric = "rmse"
)$plots$static_plot

End(Not run)
```
## ts_model_rank_tbl

**Description**

This takes in a calibration tibble and computes the ranks of the models inside of it.

**Usage**

```r
ts_model_rank_tbl(.calibration_tbl)
```

**Arguments**

- `.calibration_tbl`
  
  A calibrated modeltime table.

**Details**

This takes in a calibration tibble and computes the ranks of the models inside of it. It computes for now only the default yardstick metrics from modeltime. These are the following using the `dplyr` `min_rank()` function with `desc` use on `rsq`:

- "rmse"
- "mae"
- "mape"
- "smape"
- "rsq"

**Value**

A tibble with models ranked by metric performance order

**Author(s)**

Steven P. Sanderson II, MPH

**See Also**

Other Utility: `auto_stationarize()`, `calibrate_and_plot()`, `internal_ts_backward_event_tbl()`, `internal_ts_both_event_tbl()`, `internal_ts_forward_event_tbl()`, `model_extraction_helper()`, `ts_get_date_columns()`, `ts_info_tbl()`, `ts_is_date_class()`, `ts_lag_correlation()`, `ts_model_auto_tune()`, `ts_model_compare()`, `ts_model_spec_tune_template()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`, `ts_to_tbl()`, `util_difflog_ts()`, `util_doublediff_ts()`, `util_doubledifflog_ts()`, `util_log_ts()`, `util_singlediff_ts()`
Examples

```r
NOT RUN
Not run:
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))

data_tbl <- ts_to_tbl(AirPassengers) %>%
 select(-index)

splits <- time_series_split(
 data_tbl,
 date_var = date_col,
 assess = "12 months",
 cumulative = TRUE)

rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
 set_engine(engine = "auto_arima")

model_spec_mars <- mars(mode = "regression") %>%
 set_engine("earth")

wflw_fit_arima <- workflow() %>%
 add_recipe(rec_obj) %>%
 add_model(model_spec_arima) %>%
 fit(training(splits))

wflw_fit_mars <- workflow() %>%
 add_recipe(rec_obj) %>%
 add_model(model_spec_mars) %>%
 fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)

calibration_tbl <- model_tbl %>%
 modeltime_calibrate(new_data = testing(splits))

ts_model_rank_tbl(calibration_tbl)

End(Not run)
```
Time Series Model Spec Template

Description
This function will create a generic tuneable model specification, this function can be used by itself and is called internally by `ts_model_auto_tune()`.

Usage
`ts_model_spec_tune_template(.parsnip_engine = NULL, .model_spec_class = NULL)`

Arguments
- `.parsnip_engine`
  The model engine that is used by `parsnip::set_engine()`.
- `.model_spec_class`
  The model spec class that is use by `parsnip`. For example the 'kernlab' engine can use both `svm_poly` and `svm_rbf`.

Details
This function takes in a single parameter and uses that to output a generic tuneable model specification. This function can work with the following parsnip/modeltime engines:

- "auto_arima"
- "auto_arima_xgboost"
- "ets"
- "croston"
- "theta"
- "smooth_es"
- "stlm_ets"
- "tbats"
- "stlm_arima"
- "nnetar"
- "prophet"
- "prophet_xgboost"
- "lm"
- "glmnet"
- "stan"
- "spark"
• "keras"
• "earth"
• "xgboost"
• "kernlab"

Value

A tuneable parsnip model specification.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Model Tuning: ts_model_auto_tune()

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_qq_plot(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doublediffflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

ts_model_spec_tune_template("ets")
ts_model_spec_tune_template("prophet")

---

**ts_qc_run_chart**  
*Quality Control Run Chart*

Description

A control chart is a specific type of graph that shows data points between upper and lower limits over a period of time. You can use it to understand if the process is in control or not. These charts commonly have three types of lines such as upper and lower specification limits, upper and lower limits and planned value. By the help of these lines, Control Charts show the process behavior over time.
Usage

```
ts_qc_run_chart(
 .data,
 .date_col,
 .value_col,
 .interactive = FALSE,
 .median = TRUE,
 .cl = TRUE,
 .mcl = TRUE,
 .ucl = TRUE,
 .lc = FALSE,
 .lmcl = FALSE,
 .llcl = FALSE
)
```

Arguments

- `.data` The data.frame/tibble to be passed.
- `.date_col` The column holding the timestamp.
- `.value_col` The column with the values to be analyzed.
- `.interactive` Default is FALSE, TRUE for an interactive plotly plot.
- `.median` Default is TRUE. This will show the median line of the data.
- `.cl` This is the first upper control line
- `.mcl` This is the second sigma control line positive
- `.ucl` This is the third sigma control line positive
- `.lc` This is the first negative control line
- `.lmcl` This is the second sigma negative control line
- `.llcl` This is the third sigma negative control line

Details

- Expects a time-series tibble/data.frame
- Expects a date column and a value column

Value

A static ggplot2 graph or if `.interactive` is set to TRUE a plotly plot

Author(s)

Steven P. Sanderson II, MPH
Examples

```r
library(dplyr)

data_tbl <- ts_to_tbl(AirPassengers) %>%
 select(-index)

data_tbl %>%
 ts_qc_run_chart(
 .date_col = date_col,
 .value_col = value,
 .llcl = TRUE
)
```

---

### ts_qq_plot

**Time Series Model QQ Plot**

**Description**

This takes in a calibration tibble and will produce a QQ plot.

**Usage**

```r
ts_qq_plot(.calibration_tbl, .model_id = NULL, .interactive = FALSE)
```

**Arguments**

- `.calibration_tbl` A calibrated modeltime table.
- `.model_id` The id of a particular model from a calibration tibble. If there are multiple models in the tibble and this remains `NULL` then the plot will be returned using `ggplot2::facet_grid(~.model_id)`
- `.interactive` A boolean with a default value of `FALSE`. `TRUE` will produce an interactive plotly plot.

**Details**

This takes in a calibration tibble and will create a QQ plot. You can also pass in a `.model_id` and a boolean for `.interactive` which will return a `plotly::ggplotly` interactive plot.

**Value**

A QQ plot.

**Author(s)**

Steven P. Sanderson II, MPH
See Also

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot

Other Plot: ts_brownian_motion_plot(), ts_event_analysis_plot(), ts_scedacity_scatter_plot()

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_scedacity_scatter_plot(),
ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(), util_log_ts(),
util_singlediff_ts()

Examples

# NOT RUN
## Not run:
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))

data_tbl <- ts_to_tbl(AirPassengers) %>%
  select(-index)

splits <- time_series_split(
data_tbl,
date_var = date_col,
assess = "12 months",
cumulative = TRUE
)

rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
  set_engine(engine = "auto_arima")

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_fit_arima <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec_arima) %>%
  fit(training(splits))

wflw_fit_mars <- workflow() %>%
  add_recipe(rec_obj) %>%
  add_model(model_spec_mars) %>%
  fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)
calibration_tbl <- model_tbl %>%
  modeltime_calibrate(new_data = testing(splits))

ts_qq_plot(calibration_tbl)

## End(Not run)

ts_random_walk

*Random Walk Function*

**Description**

This function takes in four arguments and returns a tibble of random walks.

**Usage**

```r
ts_random_walk(
 .mean = 0,
 .sd = 0.1,
 .num_walks = 100,
 .periods = 100,
 .initial_value = 1000
)
```

**Arguments**

- `.mean` The desired mean of the random walks
- `.sd` The standard deviation of the random walks
- `.num_walks` The number of random walks you want generated
- `.periods` The length of the random walk(s) you want generated
- `.initial_value` The initial value where the random walks should start

**Details**

Monte Carlo simulations were first formally designed in the 1940’s while developing nuclear weapons, and since have been heavily used in various fields to use randomness solve problems that are potentially deterministic in nature. In finance, Monte Carlo simulations can be a useful tool to give a sense of how assets with certain characteristics might behave in the future. While there are more complex and sophisticated financial forecasting methods such as ARIMA (Auto-Regressive Integrated Moving Average) and GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) which attempt to model not only the randomness but underlying macro factors such as seasonality and volatility clustering, Monte Carlo random walks work surprisingly well in illustrating market volatility as long as the results are not taken too seriously.
Description
Get layers to add to a ggplot graph from the ts_random_walk() function.

Usage
```
 ts_random_walk_ggplot_layers(.data)
```

Arguments
- `.data` The data passed to the function.

Details
- Set the intercept of the initial value from the random walk
- Set the max and min of the cumulative sum of the random walks

Value
A ggplot2 layers object
Author(s)
Steven P. Sanderson II, MPH

Examples

```r
library(ggplot2)

df <- ts_random_walk()

df %>%
 ggplot(
 mapping = aes(
 x = x,
 y = cum_y,
 color = factor(run),
 group = factor(run)
)
) +
 geom_line(alpha = 0.8) +
 ts_random_walk_ggplot_layers(df)
```

---

**ts_scale_color_colorblind**

*Provide Colorblind Compliant Colors*

Description

8 Hex RGB color definitions suitable for charts for colorblind people.

Usage

```r
ts_scale_color_colorblind(..., theme = "ts")
```

Arguments

- `...` Data passed in from a `ggplot` object
- `theme` Right now this is `ts` only. Anything else will render an error.

Details

This function is used in others in order to help render plots for those that are color blind.

Value

A `ggplot` layer

Author(s)
Steven P. Sanderson II, MPH
ts_scale_fill_colorblind

Provide Colorblind Compliant Colors

Description
8 Hex RGB color definitions suitable for charts for colorblind people.

Usage
ts_scale_fill_colorblind(..., theme = "ts")

Arguments
... Data passed in from a ggplot object
theme Right now this is ts only. Anything else will render an error.

Details
This function is used in others in order to help render plots for those that are color blind.

Value
A ggplot layer

Author(s)
Steven P. Sanderson II, MPH

ts_scedacity_scatter_plot

Time Series Model Scedacity Plot

Description
This takes in a calibration tibble and will produce a scedacity plot.

Usage
ts_scedacity_scatter_plot(
  .calibration_tbl,
  .model_id = NULL,
  .interactive = FALSE
)
Arguments

- `.calibration_tbl` A calibrated modeltime table.
- `.model_id` The id of a particular model from a calibration tibble. If there are multiple models in the tibble and this remains `NULL` then the plot will be returned using `ggplot2::facet_grid(~ .model_id)`
- `.interactive` A boolean with a default value of FALSE. TRUE will produce an interactive plotly plot.

Details

This takes in a calibration tibble and will create a scedacity plot. You can also pass in a `model_id` and a boolean for `interactive` which will return a `plotly::ggplotly` interactive plot.

Value

A Scedacity plot.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://en.wikipedia.org/wiki/Homoscedasticity

Other Plot: `ts_brownian_motion_plot()`, `ts_event_analysis_plot()`, `ts_qq_plot()`

Other Utility: `auto_stationarize()`, `calibrate_and_plot()`, `internal_ts_backward_event_tbl()`, `internal_ts_both_event_tbl()`, `internal_ts_forward_event_tbl()`, `model_extraction_helper()`, `ts_get_date_columns()`, `ts_info_tbl()`, `ts_is_date_class()`, `ts_lag_correlation()`, `ts_model_auto_tune()`, `ts_model_compare()`, `ts_model_rank_tbl()`, `ts_model_spec_tune_template()`, `ts_qq_plot()`, `ts_to_tbl()`, `util_difflog_ts()`, `util_doublediff_ts()`, `util_doubledifflog_ts()`, `util_log_ts()`, `util_singlediff_ts()`

Examples

```r
NOT RUN
Not run:
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(workflows))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(recipes))

data_tbl <- ts_to_tbl(AirPassengers) %>%
 select(-index)

splits <- time_series_split(
```
ts_sma_plot

```r

data_tbl,
date_var = date_col,
assess = "12 months",
cumulative = TRUE
)

rec_obj <- recipe(value ~ ., training(splits))

model_spec_arima <- arima_reg() %>%
 set_engine(engine = "auto_arima")

model_spec_mars <- mars(mode = "regression") %>%
 set_engine("earth")

wflw_fit_arima <- workflow() %>%
 add_recipe(rec_obj) %>%
 add_model(model_spec_arima) %>%
 fit(training(splits))

wflw_fit_mars <- workflow() %>%
 add_recipe(rec_obj) %>%
 add_model(model_spec_mars) %>%
 fit(training(splits))

model_tbl <- modeltime_table(wflw_fit_arima, wflw_fit_mars)

calibration_tbl <- model_tbl %>%
 modeltime_calibrate(new_data = testing(splits))

ts_scedacity_scatter_plot(calibration_tbl)

End(Not run)
```

---

**ts_sma_plot**

*Simple Moving Average Plot*

**Description**

This function will take in a value column and return any number n moving averages.

**Usage**

```r
ts_sma_plot(
 .data,
 .date_col,
 .value_col,
 .sma_order = 2,
 .func = mean,
```
Arguments

- **.data**: The data that you are passing, must be a data.frame/tibble.
- **.date_col**: The column that holds the date.
- **.value_col**: The column that holds the value.
- **.sma_order**: This will default to 1. This can be a vector like c(2,4,6,12)
- **.func**: The unquoted function you want to pass, mean, median, etc
- **.align**: This can be either "left", "center", "right"
- **.partial**: This is a bool value of TRUE/FALSE, the default is TRUE

Details

This function will accept a time series object or a tibble/data.frame. This is a simple wrapper around \texttt{timetk::slidify_vec()}. It uses that function to do the underlying moving average work.

It can only handle a single moving average at a time and therefore if multiple are called for, it will loop through and append data to a tibble object.

Value

Will return a list object.

Author(s)

Steven P. Sanderson II, MPH

Examples

```r
df <- ts_to_tbl(AirPassengers)
out <- ts_sma_plot(df, date_col, value, .sma_order = c(3,6))

out$data

out$plots$static_plot```
Description

Sometimes we want to see the training and testing data in a plot. This is a simple wrapper around a couple of functions from the timetk package.

Usage

```r
ts_splits_plot(.splits_obj, .date_col, .value_col)
```

Arguments

- `.splits_obj` The predefined splits object.
- `.date_col` The date column for the time series.
- `.value_col` The value column of the time series.

Details

You should already have a splits object defined. This function takes in three parameters, the splits object, a date column and the value column.

Value

A time series cv plan plot

Author(s)

Steven P. Sanderson II, MPH

See Also

Examples

```r
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))

data <- ts_to_tbl(AirPassengers) %>%
    select(-index)

splits <- time_series_split(
    data
    , date_col
    , assess = 12
    , skip = 3
    , cumulative = TRUE
)

ts_splits_plot(
    .splits_obj = splits,
    .date_col = date_col,
    .value_col = value
)
```

ts_time_event_analysis_tbl

Event Analysis

Description

Given a tibble/data.frame, you can get information on what happens before, after, or in both directions of some given event, where the event is defined by some percentage increase/decrease in values from time t to t+1

Usage

```r
ts_time_event_analysis_tbl(
    .data,
    .date_col,
    .value_col,
    .percent_change = 0.05,
    .horizon = 12,
    .precision = 2,
    .direction = "forward",
    .filter_non_event_groups = TRUE
)
```
Arguments

- `.data` The date.frame/tibble that holds the data.
- `.date_col` The column with the date value.
- `.value_col` The column with the value you are measuring.
- `.percent_change` This defaults to 0.05 which is a 5% increase in the `.value_col`.
- `.horizon` How far do you want to look back or ahead.
- `.precision` The default is 2 which means it rounds the lagged 1 value percent change to 2 decimal points. You may want more for more finely tuned results, this will result in fewer groupings.
- `.direction` The default is `forward`. You can supply either `forward`, `backwards` or both.
- `.filter_non_event_groups` The default is `TRUE`, this drops groupings with no events on the rare occasion it does occur.

Details

This takes in a `data.frame/tibble` of a time series. It requires a date column, and a value column. You can convert a `ts/xts/zoo/mts` object into a `tibble` by using the `ts_to_tbl()` function.

You will provide the function with a percentage change in the form of `-1` to `1` inclusive. You then provide a time horizon in which you want to see. For example you may want to see what happens to `AirPassengers` after a 0.1 percent increase in volume.

The next most important thing to supply is the direction. Do you want to see what typically happens after such an event, what leads up to such an event, or both.

Value

A `tibble`.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Time Filtering: `ts_compare_data()`

Examples

```r
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(ggplot2))

df_tbl <- ts_to_tbl(AirPassengers) %>% select(-index)

tst <- ts_time_event_analysis_tbl(df_tbl, date_col, value, .direction = "both", .horizon = 6)
```
```r
glimpse(tst)

tst %>%
  ggplot(aes(x = x, y = mean_event_change)) +
  geom_line() +
  geom_line(aes(y = event_change_ci_high), color = "blue", linetype = "dashed") +
  geom_line(aes(y = event_change_ci_low), color = "blue", linetype = "dashed") +
  geom_vline(xintercept = 7, color = "red", linetype = "dashed") +
  theme_minimal() +
  labs(
    title = "AirPassengers' Event Analysis at 5% Increase",
    subtitle = "Vertical Red line is normalized event epoch - Direction: Both",
    x = "",
    y = "Mean Event Change"
  )
```

ts_to_tbl

Coerce a time-series object to a tibble

Description

This function takes in a time-series object and returns it in a tibble format.

Usage

```r
ts_to_tbl(.data)
```

Arguments

- `.data` The time-series object you want transformed into a tibble

Details

This function makes use of `timetk::tk_tbl()` under the hood to obtain the initial tibble object. After the initial object is obtained a new column called `date_col` is constructed from the index column using `lubridate` if an index column is returned.

Value

A tibble

Author(s)

Steven P. Sanderson II, MPH
ts_velocity_augment

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
internal_ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_scedacity_scatter_plot(), util_difflog_ts(), util_doublediff_ts(), util_doubledifflog_ts(),
util_log_ts(), util_singlediff_ts()

Examples

```r
  ts_to_tbl(BJsales)
  ts_to_tbl(AirPassengers)
```

ts_velocity_augment

Augment Function Velocity

Description

Takes a numeric vector and will return the velocity of that vector.

Usage

```r
  ts_velocity_augment(.data, .value, .names = "auto")
```

Arguments

- `.data`
 The data being passed that will be augmented by the function.

- `.value`
 This is passed `rlang::enquo()` to capture the vectors you want to augment.

- `.names`
 The default is "auto"

Details

Takes a numeric vector and will return the velocity of that vector. The velocity of a time series is computed by taking the first difference, so

\[x_t - x_{t-1} \]

This function is intended to be used on its own in order to add columns to a tibble.

Value

A augmented

Author(s)

Steven P. Sanderson II, MPH
See Also

Other Augment Function: `ts_acceleration_augment()`, `ts_growth_rate_augment()`

Examples

```r
suppressPackageStartupMessages(library(dplyr))

len_out = 10
by_unit = "month"
start_date = as.Date("2021-01-01")

data_tbl <- tibble(
  date_col = seq.Date(from = start_date, length.out = len_out, by = by_unit),
  a = rnorm(len_out),
  b = runif(len_out)
)

ts_velocity_augment(data_tbl, b)
```

ts_velocity_vec
Vector Function Time Series Acceleration

Description

Takes a numeric vector and will return the velocity of that vector.

Usage

```r
ts_velocity_vec(.x)
```

Arguments

- `.x` A numeric vector

Details

Takes a numeric vector and will return the velocity of that vector. The velocity of a time series is computed by taking the first difference, so

\[x_t - x_{t-1} \]

This function can be used on its own. It is also the basis for the function `ts_velocity_augment()`.

Value

A numeric vector
ts_vva_plot

Time Series Value, Velocity and Acceleration Plot

Description

This function will produce three plots faceted on a single graph. The three graphs are the following:

- Value Plot (Actual values)
- Value Velocity Plot
- Value Acceleration Plot

Usage

```r
ts_vva_plot(.data, .date_col, .value_col)
```

Arguments

- `.data` The data you want to visualize. This should be pre-processed and the aggregation should match the `.frequency` argument.
- `.date_col` The data column from the `.data` argument.
- `.value_col` The value column from the `.data` argument
ts_wfs_arima_boost

Details

This function expects to take in a data.frame/tibble. It will return a list object that contains the augmented data along with a static plot and an interactive plotly plot. It is important that the data be prepared and have at minimum a date column and the value column as they need to be supplied to the function. If your data is a ts, xts, zoo or mts then use `ts_to_tbl()` to convert it to a tibble.

Value

The original time series augmented with the differenced data, a static plot and a plotly plot of the ggplot object. The output is a list that gets returned invisibly.

Author(s)

Steven P. Sanderson II, MPH

Examples

```r
suppressPackageStartupMessages(library(dplyr))

data_tbl <- ts_to_tbl(AirPassengers) %>%
  select(-index)

ts_vva_plot(data_tbl, date_col, value)$plots$static_plot
```

```r

ts_wfs_arima_boost

**Auto Arima XGBoost Workflowset Function**

**Description**

This function is used to quickly create a workflowsets object.

**Usage**

```r

ts_wfs_arima_boost(
 .model_type = "all_engines",
 .recipe_list,
 .trees = 10,
 .min_node = 2,
 .tree_depth = 6,
 .learn_rate = 0.015,
 .stop_iter = NULL,
 .seasonal_period = 0,
 .non_seasonal_ar = 0,
 .non_seasonal_differences = 0,
 .non_seasonal_ma = 0,
 .seasonal_ar = 0,
 .seasonal_differences = 0,
)```
Arguments

- **.model_type** This is where you will set your engine. It uses `modeltimem::arima_boost()` under the hood and can take one of the following:
 - "arima_xgboost"
 - "auto_arima_xgboost"
 - "all_engines" - This will make a model spec for all available engines.

- **.recipe_list** You must supply a list of recipes. `list(rec_1, rec_2, ...)`

- **.trees** An integer for the number of trees contained in the ensemble.

- **.min_node** An integer for the minimum number of data points in a node that is required for the node to be split further.

- **.tree_depth** An integer for the maximum depth of the tree (i.e. number of splits) (specific engines only).

- **.learn_rate** A number for the rate at which the boosting algorithm adapts from iteration-to-iteration (specific engines only).

- **.stop_iter** The number of iterations without improvement before stopping (xgboost only).

- **.seasonal_period** Set to 0,

- **.non_seasonal_ar** Set to 0,

- **.non_seasonal_differences** Set to 0,

- **.non_seasonal_ma** Set to 0,

- **.seasonal_ar** Set to 0,

- **.seasonal_differences** Set to 0,

- **.seasonal_ma** Set to 0,

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This uses the option `set_engine("auto_arima_xgboost")` or `set_engine("arima_xgboost")`

`modeltimem::arima_boost()` is a way to generate a specification of a time series model that uses boosting to improve modeling errors (residuals) on Exogenous Regressors. It works with both "automated" ARIMA (auto.arima) and standard ARIMA (arima). The main algorithms are:

- Auto ARIMA + XGBoost Errors (engine = auto_arima_xgboost, default)
- ARIMA + XGBoost Errors (engine = arima_xgboost)
Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

Other Auto Workflowsets: ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(),
hs_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(), ts_wfs_xgboost()

Examples

```r
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
  data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
  .data = training(splits)
  , .date_col = date_col
  , .pred_col = value
)

wf_sets <- ts_wfs_arima_boost("all_engines", rec_objs)
wf_sets
```

ts_wfs_auto_arima

Auto Arima (Forecast auto_arima) Workflowset Function

Description

This function is used to quickly create a workflowsets object.
ts_wfs_auto_arima

Usage

 ts_wfs_auto_arima(.model_type = "auto_arima", .recipe_list)

Arguments

.model_type This is where you will set your engine. It uses `modeltime::arima_reg()` under the hood and can take one of the following:

• "auto_arima"

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This only uses the option `set_engine("auto_arima")` and therefore the .model_type is not needed. The parameter is kept because it is possible in the future that this could change, and it keeps with the framework of how other functions are written.

`modeltime::arima_reg()` `arima_reg()` is a way to generate a specification of an ARIMA model before fitting and allows the model to be created using different packages. Currently the only package is `forecast`.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

 https://workflowsets.tidymodels.org/

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(),
ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(), ts_wfs_xgboost()

Examples

 suppressPackageStartupMessages(library(modeltime))
 suppressPackageStartupMessages(library(timetk))
 suppressPackageStartupMessages(library(dplyr))
 suppressPackageStartupMessages(library(rsample))

 data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)
splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits)
 , .date_col = date_col
 , .pred_col = value
)

wf_sets <- ts_wfs_auto_arima("auto_arima", rec_objs)
wf_sets

ts_wfs_ets_reg
Auto ETS Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

```r
ts_wfs_ets_reg(
  .model_type = "all_engines",
  .recipe_list,
  .seasonal_period = "auto",
  .error = "auto",
  .trend = "auto",
  .season = "auto",
  .damping = "auto",
  .smooth_level = 0.1,
  .smooth_trend = 0.1,
  .smooth_seasonal = 0.1
)
```

Arguments

- `.model_type`
 This is where you will set your engine. It uses `modeltime::exp_smoothing()` under the hood and can take one of the following:
 - "ets"
 - "croston"
 - "theta"
• "smooth_es"
• "all_engines" - This will make a model spec for all available engines.

.recipe_list You must supply a list of recipes. list(rec_1, rec_2, ...)

.seasonal_period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

.error The form of the error term: "auto", "additive", or "multiplicative". If the error is
multiplicative, the data must be non-negative.

.trend The form of the trend term: "auto", "additive", "multiplicative" or0 "none".

.season The form of the seasonal term: "auto", "additive", "multiplicative" or "none".

.damping Apply damping to a trend: "auto", "damped", or "none".

.smooth_level This is often called the "alpha" parameter used as the base level smoothing factor
for exponential smoothing models.

.smooth_trend This is often called the "beta" parameter used as the trend smoothing factor for
exponential smoothing models.

.smooth_seasonal This is often called the "gamma" parameter used as the seasonal smoothing fac-
tor for exponential smoothing models.

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an
automated workflow process. There are sensible defaults set for the model specification, but if you
choose you can set them yourself if you have a good understanding of what they should be. The
mode is set to "regression".

This uses the following engines:

modeltime::exp_smoothing() exp_smoothing() is a way to generate a specification of an Expo-
nential Smoothing model before fitting and allows the model to be created using different packages.
Currently the only package is forecast. Several algorithms are implemented:

• "ets"
• "croston"
• "theta"
• "smooth_es"

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH
See Also

https://workflowsets.tidymodels.org/

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_lin_reg(),
 ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(),
 ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits)
 , .date_col = date_col
 , .pred_col = value
)

wf_sets <- ts_wfs_ets_reg("all_engines", rec_objs)
wf_sets

ts_wfs_lin_reg Auto Linear Regression Workflowset Function

Description

This function is used to quickly create a workflowset object.

Usage

ts_wfs_lin_reg(.model_type, .recipe_list, .penalty = 1, .mixture = 0.5)
Arguments

.model_type This is where you will set your engine. It uses `parsnip::linear_reg()` under the hood and can take one of the following:

- "lm"
- "glmnet"
- "all_engines" - This will make a model spec for all available engines.

Not yet implemented are:

- "stan"
- "spark"
- "keras"

.recipe_list You must supply a list of recipes. `list(rec_1, rec_2, ...)`

.penalty The penalty parameter of the glmnet. The default is 1

.mixture The mixture parameter of the glmnet. The default is 0.5

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the glmnet model specification, but if you choose you can set them yourself if you have a good understanding of what they should be.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/(workflowsets)

Examples

```r
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)
```
splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits)
 , .date_col = date_col
 , .pred_col = value
)

wf_sets <- ts_wfs_lin_reg("all_engines", rec_objs)
wf_sets

ts_wfs_mars
Auto MARS (Earth) Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

```r
ts_wfs_mars(
  .model_type = "earth",
  .recipe_list,
  .num_terms = 200,
  .prod_degree = 1,
  .prune_method = "backward"
)
```

Arguments

- **.model_type**
 This is where you will set your engine. It uses `parsnip::mars()` under the hood and can take one of the following:
 - "earth"

- **.recipe_list**
 You must supply a list of recipes. list(rec_1, rec_2, ...)

- **.num_terms**
 The number of features that will be retained in the final model, including the intercept.

- **.prod_degree**
 The highest possible interaction degree.

- **.prune_method**
 The pruning method. This is a character, the default is "backward". You can choose from one of the following:
 - "backward"
This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This only uses the option set_engine("earth") and therefore the .model_type is not needed. The parameter is kept because it is possible in the future that this could change, and it keeps with the framework of how other functions are written.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/mars.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf(), ts_wfs_xgboost()

Examples

```
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data,
  date_col = ,
  assess = 12,
  skip = 3,
  cumulative = TRUE
```
ts_wfs_nnetar_reg

)
rec_objs <- ts_auto_recipe(
 .data = training(splits)
 , .date_col = date_col
 , .pred_col = value
)

wf_sets <- ts_wfs_mars("earth", rec_objs)
wf_sets

ts_wfs_nnetar_reg Auto NNETAR Workflowset Function

Description
This function is used to quickly create a workflowsets object.

Usage

```
ns_wfs_nnetar_reg(
  .model_type = "nnetar",
  .recipe_list,
  .non_seasonal_ar = 0,
  .seasonal_ar = 0,
  .hidden_units = 5,
  .num_networks = 10,
  .penalty = 0.1,
  .epochs = 10
)
```

Arguments

- `.model_type` This is where you will set your engine. It uses `modeltime::nnetar_reg()` under the hood and can take one of the following:
 - "nnetar"
- `.recipe_list` You must supply a list of recipes. `list(rec_1, rec_2, ...)`
- `.non_seasonal_ar` The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.
- `.seasonal_ar` The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in PDQ-notation.
- `.hidden_units` An integer for the number of units in the hidden model.
- `.num_networks` Number of networks to fit with different random starting weights. These are then averaged when producing forecasts.
- `.penalty` A non-negative numeric value for the amount of weight decay.
- `.epochs` An integer for the number of training iterations.
Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This uses the following engines:

`modeltime::nnetar_reg()` nnetar_reg() is a way to generate a specification of an NNETAR model before fitting and allows the model to be created using different packages. Currently the only package is forecast.

- "nnetar"

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/

Examples

```r
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data,
  date_col,
  assess = 12,
  skip = 3,
  cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
  .data = training(splits),
  .date_col = date_col
)```
Description

This function is used to quickly create a workflows object.

Usage

```r
ts_wfs_prophet_reg(
 .model_type = "all_engines",
 .recipe_list,
 .growth = NULL,
 .changepoint_num = 25,
 .changepoint_range = 0.8,
 .seasonality_yearly = "auto",
 .seasonality_weekly = "auto",
 .seasonality_daily = "auto",
 .season = "additive",
 .prior_scale_changepoints = 25,
 .prior_scale_seasonality = 1,
 .prior_scale_holidays = 1,
 .logistic_cap = NULL,
 .logistic_floor = NULL,
 .trees = 50,
 .min_n = 10,
 .tree_depth = 5,
 .learn_rate = 0.01,
 .loss_reduction = NULL,
 .stop_iter = NULL
)
```

Arguments

- `.model_type` This is where you will set your engine. It uses `modeltime::prophet_reg()` under the hood and can take one of the following:
  - "prophet" Or `modeltime::prophet_boost()` under the hood and can take one of the following:
    - "prophet_xgboost" You can also choose:
    - "all_engines" - This will make a model spec for all available engines.
You must supply a list of recipes. list(rec_1, rec_2, ...)

String 'linear' or 'logistic' to specify a linear or logistic trend.

Number of potential changepoints to include for modeling trend.

Adjusts the flexibility of the trend component by limiting to a percentage of data before the end of the time series. 0.80 means that a changepoint cannot exist after the first 80% of the data.

One of "auto", TRUE or FALSE. Set to FALSE for prophet_xgboost. Toggles on/off a seasonal component that models year-over-year seasonality.

One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models week-over-week seasonality. Set to FALSE for prophet_xgboost

One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that models day-over-day seasonality. Set to FALSE for prophet_xgboost

'additive' (default) or 'multiplicative'.

Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints.

Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality.

Parameter modulating the strength of the holiday components model, unless overridden in the holidays input.

When growth is logistic, the upper-bound for "saturation".

When growth is logistic, the lower-bound for "saturation"

An integer for the number of trees contained in the ensemble.

An integer for the minimum number of data points in a node that is required for the node to be split further.

An integer for the maximum depth of the tree (i.e. number of splits) (specific engines only).

A number for the rate at which the boosting algorithm adapts from iteration-to-iteration (specific engines only).

A number for the reduction in the loss function required to split further (specific engines only).

The number of iterations without improvement before stopping (xgboost only).
This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the `prophet` and `prophet_xgboost` model specification, but if you choose you can set them yourself if you have a good understanding of what they should be.

Returns a workflowsets object.

Steven P. Sanderson II, MPH


Examples

```r
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits)
 , .date_col = date_col
 , .pred_col = value
)

wf_sets <- ts_wfs_prophet_reg("all_engines", rec_objs)
wf_sets
```
ts_wfs_svm_poly

Auto SVM Poly (Kernlab) Workflowset Function

Description
This function is used to quickly create a workflowsets object.

Usage
```
ts_wfs_svm_poly(
 .model_type = "kernlab",
 .recipe_list,
 .cost = 1,
 .degree = 1,
 .scale_factor = 1,
 .margin = 0.1
)
```

Arguments
- `.model_type` This is where you will set your engine. It uses `parsnip::svm_poly()` under the hood and can take one of the following:
  - "kernlab"
- `.recipe_list` You must supply a list of recipes. `list(rec_1, rec_2, ...)`
- `.cost` A positive number for the cost of predicting a sample within or on the wrong side of the margin.
- `.degree` A positive number for polynomial degree.
- `.scale_factor` A positive number for the polynomial scaling factor.
- `.margin` A positive number for the epsilon in the SVM insensitive loss function (regression only.)

Details
This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This only uses the option `set_engine("kernlab")` and therefore the `.model_type` is not needed. The parameter is kept because it is possible in the future that this could change, and it keeps with the framework of how other functions are written.

`parsnip::svm_poly()` defines a support vector machine model. For classification, the model tries to maximize the width of the margin between classes. For regression, the model optimizes a robust loss function that is only affected by very large model residuals.

This SVM model uses a nonlinear function, specifically a polynomial function, to create the decision boundary or regression line.
Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/svm_poly.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_rbf(), ts_wfs_xgboost()

Examples

```r
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
 ts_to_tbl() %>%
 select(-index)

splits <- time_series_split(
 data
 , date_col
 , assess = 12
 , skip = 3
 , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
 .data = training(splits)
 , .date_col = date_col
 , .pred_col = value
)

wf_sets <- ts_wfs_svm_poly("kernlab", rec_objs)
wf_sets
```
Auto SVM RBF (Kernlab) Workflowset Function

Description

This function is used to quickly create a workflowsets object.

Usage

```r
ts_wfs_svm_rbf(
 .model_type = "kernlab",
 .recipe_list,
 .cost = 1,
 .rbf_sigma = 0.01,
 .margin = 0.1
)
```

Arguments

- `.model_type`: This is where you will set your engine. It uses `parsnip::svm_rbf()` under the hood and can take one of the following:
  - "kernlab"
- `.recipe_list`: You must supply a list of recipes. `list(rec_1, rec_2, ...)`
- `.cost`: A positive number for the cost of predicting a sample within or on the wrong side of the margin.
- `.rbf_sigma`: A positive number for the radial basis function.
- `.margin`: A positive number for the epsilon in the SVM insensitive loss function (regression only).

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This only uses the option `set_engine("kernlab")` and therefore the `.model_type` is not needed. The parameter is kept because it is possible in the future that this could change, and it keeps with the framework of how other functions are written.

`parsnip::svm_rbf()` defines a support vector machine model. For classification, the model tries to maximize the width of the margin between classes. For regression, the model optimizes a robust loss function that is only affected by very large model residuals.

This SVM model uses a nonlinear function, specifically a polynomial function, to create the decision boundary or regression line.
ts_wfs_svm_rbf

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/svm_rbf.html

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_xgboost()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)

splits <- time_series_split(
  data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
  .data = training(splits)
  , .date_col = date_col
  , .pred_col = value
)

wf_sets <- ts_wfs_svm_rbf("kernlab", rec_objs)
wtf_sets
Description

This function is used to quickly create a workflowsets object.

Usage

```r
ts_wfs_xgboost(
 .model_type = "xgboost",
 .recipe_list,
 .trees = 15L,
 .min_n = 1L,
 .tree_depth = 6L,
 .learn_rate = 0.3,
 .loss_reduction = 0,
 .sample_size = 1,
 .stop_iter = Inf
)
```

Arguments

- `.model_type` This is where you will set your engine. It uses `parsnip::boost_tree` under the hood and can take one of the following:
  - "xgboost"
- `.recipe_list` You must supply a list of recipes. `list(rec_1, rec_2, ...)`
- `.trees` The number of trees (type: integer, default: 15L)
- `.min_n` Minimal Node Size (type: integer, default: 1L)
- `.tree_depth` Tree Depth (type: integer, default: 6L)
- `.learn_rate` Learning Rate (type: double, default: 0.3)
- `.loss_reduction` Minimum Loss Reduction (type: double, default: 0.0)
- `.sample_size` Proportion Observations Sampled (type: double, default: 1.0)
- `.stop_iter` The number of iterations Before Stopping (type: integer, default: Inf)

Details

This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".

This only uses the option `set_engine("xgboost")` and therefore the `.model_type` is not needed. The parameter is kept because it is possible in the future that this could change, and it keeps with the framework of how other functions are written.
parsnip::boost_tree() xgboost::xgb.train() creates a series of decision trees forming an ensemble. Each tree depends on the results of previous trees. All trees in the ensemble are combined to produce a final prediction.

Value

Returns a workflowsets object.

Author(s)

Steven P. Sanderson II, MPH

See Also

https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/details_boost_tree_xgboost.html
https://arxiv.org/abs/1603.02754

Other Auto Workflowsets: ts_wfs_arima_boost(), ts_wfs_auto_arima(), ts_wfs_ets_reg(), ts_wfs_lin_reg(), ts_wfs_mars(), ts_wfs_nnetar_reg(), ts_wfs_prophet_reg(), ts_wfs_svm_poly(), ts_wfs_svm_rbf()

Examples

suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))

data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)

splits <- time_series_split(
  data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)

rec_objs <- ts_auto_recipe(
  .data = training(splits)
  , date_col = date_col
  , pred_col = value
)

wf_sets <- ts_wfs_xgboost("xgboost", rec_objs)
wf_sets
util_difflog_ts

Differencing with Log Transformation to Make Time Series Stationary

Description

This function attempts to make a non-stationary time series stationary by applying differencing with a logarithmic transformation. It iteratively increases the differencing order until stationarity is achieved or informs the user if the transformation is not possible.

Usage

util_difflog_ts(.time_series)

Arguments

.time_series A time series object to be made stationary.

Details

The function calculates the frequency of the input time series using the stats::frequency function and checks if the minimum value of the time series is greater than 0. It then applies differencing with a logarithmic transformation incrementally until the Augmented Dickey-Fuller test indicates stationarity (p-value < 0.05) or until the differencing order reaches the frequency of the data.

If differencing with a logarithmic transformation successfully makes the time series stationary, it returns the stationary time series and related information as a list with the following elements:

- stationary_ts: The stationary time series after the transformation.
- ndiffs: The order of differencing applied to make it stationary.
- adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.
- trans_type: Transformation type, which is "diff_log" in this case.
- ret: TRUE to indicate a successful transformation.

If the data either had a minimum value less than or equal to 0 or requires more differencing than its frequency allows, it informs the user and suggests trying double differencing with a logarithmic transformation.

Value

If the time series is already stationary or the differencing with a logarithmic transformation is successful,

Author(s)

Steven P. Sanderson II, MPH
See Also

Other Utility: `auto_stationarize()`, `calibrate_and_plot()`, `internal_ts_backward_event_tbl()`, `internal_ts_both_event_tbl()`, `internal_ts_forward_event_tbl()`, `model_extraction_helper()`, `ts_get_date_columns()`, `ts_info_tbl()`, `ts_is_date_class()`, `ts_lag_correlation()`, `ts_model_auto_tune()`, `ts_model_compare()`, `ts_model_rank_tbl()`, `ts_model_spec_tune_template()`, `ts_qq_plot()`, `ts_scedacity_scatter_plot()`, `ts_to_tbl()`, `util_doublediff_ts()`, `util_doubledifflog_ts()`, `util_log_ts()`, `util_singlediff_ts()`

Examples

# Example 1: Using a time series dataset
util_doubledifflog_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_doubledifflog_ts(BJsales)$ret

util_doubledifflog_ts  Double Differencing with Log Transformation to Make Time Series Stationary

Description

This function attempts to make a non-stationary time series stationary by applying double differencing with a logarithmic transformation. It iteratively increases the differencing order until stationarity is achieved or informs the user if the transformation is not possible.

Usage

util_doubledifflog_ts(.time_series)

Arguments

.time_series  A time series object to be made stationary.

Details

The function calculates the frequency of the input time series using the `stats::frequency` function and checks if the minimum value of the time series is greater than 0. It then applies double differencing with a logarithmic transformation incrementally until the Augmented Dickey-Fuller test indicates stationarity (p-value < 0.05) or until the differencing order reaches the frequency of the data.

If double differencing with a logarithmic transformation successfully makes the time series stationary, it returns the stationary time series and related information as a list with the following elements:

- stationary_ts: The stationary time series after the transformation.
- ndiffs: The order of differencing applied to make it stationary.
• adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.
• trans_type: Transformation type, which is "double_diff_log" in this case.
• ret: TRUE to indicate a successful transformation.

If the data either had a minimum value less than or equal to 0 or requires more differencing than its frequency allows, it informs the user that the data could not be stationarized.

Value

If the time series is already stationary or the double differencing with a logarithmic transformation is successful, it returns a list as described in the details section. If the transformation is not possible, it informs the user and returns a list with ret set to FALSE, indicating that the data could not be stationarized.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(), util_log_ts(), util_singlediff_ts()

Examples

# Example 1: Using a time series dataset
util_doubledifflog_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_doubledifflog_ts(BJsales)$ret

---

**util_doublediff_ts**  
**Double Differencing to Make Time Series Stationary**

**Description**

This function attempts to make a non-stationary time series stationary by applying double differencing. It iteratively increases the differencing order until stationarity is achieved.

**Usage**

util_doublediff_ts(.time_series)
Arguments

.time_series A time series object to be made stationary.

Details

The function calculates the frequency of the input time series using the stats::frequency function. It then applies double differencing incrementally until the Augmented Dickey-Fuller test indicates stationarity (p-value < 0.05) or until the differencing order reaches the frequency of the data.

If double differencing successfully makes the time series stationary, it returns the stationary time series and related information as a list with the following elements:

- stationary_ts: The stationary time series after double differencing.
- ndiffs: The order of differencing applied to make it stationary.
- adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.
- trans_type: Transformation type, which is "double_diff" in this case.
- ret: TRUE to indicate a successful transformation.

If the data requires more double differencing than its frequency allows, it informs the user and suggests trying differencing with the natural logarithm instead.

Value

If the time series is already stationary or the double differencing is successful, it returns a list as described in the details section. If additional differencing is required, it informs the user and returns a list with ret set to FALSE, suggesting trying differencing with the natural logarithm.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doubledifflog_ts(), util_log_ts(), util_singlediff_ts()

Examples

# Example 1: Using a time series dataset
util_doublediff_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_doublediff_ts(BJsales)$ret
util_log_ts

Logarithmic Transformation to Make Time Series Stationary

Description

This function attempts to make a non-stationary time series stationary by applying a logarithmic transformation. If successful, it returns the stationary time series. If the transformation fails, it informs the user.

Usage

util_log_ts(.time_series)

Arguments

.time_series A time series object to be made stationary.

Details

This function checks if the minimum value of the input time series is greater than or equal to zero. If yes, it performs the Augmented Dickey-Fuller test on the logarithm of the time series. If the p-value of the test is less than 0.05, it concludes that the logarithmic transformation made the time series stationary and returns the result as a list with the following elements:

• stationary_ts: The stationary time series after the logarithmic transformation.
• ndiffs: Not applicable in this case, marked as NA.
• adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.
• trans_type: Transformation type, which is "log" in this case.
• ret: TRUE to indicate a successful transformation.

If the minimum value of the time series is less than or equal to 0 or if the logarithmic transformation doesn’t make the time series stationary, it informs the user and returns a list with ret set to FALSE.

Value

If the time series is already stationary or the logarithmic transformation is successful, it returns a list as described in the details section. If the transformation fails, it returns a list with ret set to FALSE.

Author(s)

Steven P. Sanderson II, MPH
util_singlediff_ts

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(),
ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(),
ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(),
ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflog_ts(), util_doublediff_ts(),
util_doubledifflog_ts(), util_singlediff_ts()

Examples

# Example 1: Using a time series dataset
util_log_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_log_ts(BJsales.lead)$ret

util_singlediff_ts  Single Differencing to Make Time Series Stationary

Description

This function attempts to make a non-stationary time series stationary by applying single differencing. It iteratively increases the differencing order until stationarity is achieved.

Usage

util_singlediff_ts(.time_series)

Arguments

.time_series  A time series object to be made stationary.

Details

The function calculates the frequency of the input time series using the stats::frequency function. It then applies single differencing incrementally until the Augmented Dickey-Fuller test indicates stationarity (p-value < 0.05) or until the differencing order reaches the frequency of the data.

If single differencing successfully makes the time series stationary, it returns the stationary time series and related information as a list with the following elements:

- stationary_ts: The stationary time series after differencing.
- ndiffs: The order of differencing applied to make it stationary.
- adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.
- trans_type: Transformation type, which is "diff" in this case.
util_singlediff_ts

• ret: TRUE to indicate a successful transformation.

If the data requires more single differencing than its frequency allows, it informs the user and returns a list with ret set to FALSE, indicating that double differencing may be needed.

Value

If the time series is already stationary or the single differencing is successful, it returns a list as described in the details section. If additional differencing is required, it informs the user and returns a list with ret set to FALSE.

Author(s)

Steven P. Sanderson II, MPH

See Also

Other Utility: auto_stationarize(), calibrate_and_plot(), internal_ts_backward_event_tbl(), internal_ts_both_event_tbl(), internal_ts_forward_event_tbl(), model_extraction_helper(), ts_get_date_columns(), ts_info_tbl(), ts_is_date_class(), ts_lag_correlation(), ts_model_auto_tune(), ts_model_compare(), ts_model_rank_tbl(), ts_model_spec_tune_template(), ts_qq_plot(), ts_scedacity_scatter_plot(), ts_to_tbl(), util_difflag_ts(), util_doublediff_ts(),
util_doubledifflag_ts(), util_log_ts()

Examples

# Example 1: Using a time series dataset
util_singlediff_ts(AirPassengers)

# Example 2: Using a different time series dataset
util_singlediff_ts(BJsales)$ret
Index

* Augment Function
  ts_acceleration_augment, 19
  ts_growth_rate_augment, 78
  ts_velocity_augment, 111

* Auto Workflowsets
  ts_wfs_arima_boost, 114
  ts_wfs_auto_arima, 116
  ts_wfs_ets_reg, 118
  ts_wfs_lin_reg, 120
  ts_wfs_mars, 122
  ts_wfs_nnetar_reg, 124
  ts_wfs_prophet_reg, 126
  ts_wfs_svm_poly, 129
  ts_wfs_svm_rbf, 131
  ts_wfs_xgboost, 133

* Boilerplate
  ts_auto_arima, 24
  ts_auto_arima_xgboost, 26
  ts_auto_croston, 28
  ts_auto_exp_smoothing, 31
  ts_auto_glmnet, 33
  ts_auto_lm, 35
  ts_auto_mars, 37
  ts_auto_mnetar, 39
  ts_auto_prophet_boost, 41
  ts_auto_prophet_reg, 44
  ts_auto_smooth_es, 48
  ts_auto_svm_poly, 50
  ts_auto_svm_rbf, 52
  ts_auto_theta, 54
  ts_auto_xgboost, 56

* Boilerplate Utility
  ts_extract_auto_fitted_workflow, 67

* Helper
  ts_model_spec_tune_template, 95

* Clustering
  ts_feature_cluster, 68
  ts_feature_cluster_plot, 70

* Data Generator
  tidy_fft, 17
  ts_brownian_motion, 59
  ts_brownian_motion_augment, 60
  ts_geometric_brownian_motion, 74
  ts_geometric_brownian_motion_augment, 76
  ts_random_walk, 100

* Model Tuning
  ts_model_auto_tune, 86
  ts_model_spec_tune_template, 95

* Plot
  ts_brownian_motion_plot, 62
  ts_event_analysis_plot, 66
  ts_qq_plot, 98
  ts_scedacity_scatter_plot, 103

* Recipes
  step_ts_acceleration, 13
  step_ts_velocity, 15

* SVM
  ts_auto_svm_poly, 50
  ts_auto_svm_rbf, 52

* Simulator
  ts_arima_simulator, 22
  ts_forecast_simulator, 72

* Statistic
  ci_hi, 7
  ci_lo, 8
  ts_adf_test, 21

* Time Filtering
  ts_compare_data, 64
  ts_time_event_analysis_tbl, 108

* Utility
  auto_stationarize, 4
  calibrate_and_plot, 5
  internal_ts_backward_event_tbl, 9
  internal_ts_both_event_tbl, 10
  internal_ts_forward_event_tbl, 11
  model_extraction_helper, 12
INDEX

143

ts_get_date_columns, 77
  ts_info_tbl, 81
  ts_is_date_class, 82
  ts_model_auto_tune, 86
  ts_model_compare, 90
  ts_model_rank_tbl, 93
  ts_model_spec_tune_template, 95
  ts_qq_plot, 98
  ts_scedacity_scatter_plot, 103
  ts_to_tbl, 110
  ts_to_tbl, 110
  util_difflog_ts, 135
  util_doublediff_TS, 137
  util_doubledifflog_TS, 136
  util_log_ts, 139
  util_singlediff_ts, 140

* Vector Function
  ts_acceleration_vec, 20
  ts_growth_rate_vec, 79
  ts_velocity_vec, 112

* arima
  ts_auto_arima, 24
  ts_auto_arima_xgboost, 26

* croston
  ts_auto_croston, 28

* ets
  ts_auto_exp_smoothing, 31

* exp_smoothing
  ts_auto_croston, 28
  ts_auto_exp_smoothing, 31
  ts_auto_smooth_es, 48
  ts_auto_theta, 54

* glmnet
  ts_auto_glmnet, 33

* lm
  ts_auto_lm, 35

* mars
  ts_auto_mars, 37

* nnetar
  ts_auto_nnetar, 39

* poly
  ts_auto_svm_poly, 50

* prophet
  ts_auto_prophet_boost, 41
  ts_auto_prophet_reg, 44

* rbf
  ts_auto_svm_rbf, 52

  * smooth_es
    ts_auto_smooth_es, 48

  * theta
    ts_auto_theta, 54

  * xgboost
    ts_auto_xgboost, 56

Arima, 12, 73
auto.arima, 12, 73
auto_stationarize, 4, 6, 10–13, 78, 82, 84, 89, 91, 93, 96, 99, 104, 111, 136–138, 140, 141

calibrate_and_plot, 4, 5, 10–13, 78, 82, 84, 89, 91, 93, 96, 99, 104, 111, 136–138, 140, 141

ci_hi, 7, 8, 22
ci_lo, 7, 8, 22
color_blind, 9
dials::grid_latin_hypercube(), 87

ets, 12, 73

forecast::simulate.Arima(), 73

modeltime::arima_boost(), 115
modeltime::arima_reg(), 117
modeltime::default_forecast_accuracy_metric_set(), 25, 27, 29, 32, 34, 38, 40, 42, 45, 49, 51, 53, 57
modeltime::exp_smoothing(), 118, 119
modeltime::modeltime_calibrate(), 5
modeltime::nnetar_reg(), 124, 125
modeltime::plot_modeltime_forecast(), 5
modeltime::prophet_boost(), 126
modeltime::prophet_reg(), 126
nnetar, 12, 73
parsnip::boost_tree, 133
parsnip::boost_tree(), 134
parsnip::linear_reg(), 121
parsnip::mars(), 122
parsnip::set_engine(), 95
parsnip::svm_poly(), 129
parsnip::svm_rbf(), 131
plotly::ggplotly(), 63
recipes::step_nzv(), 47
recipes::step_rm(), 14, 16
recipes::step_YeoJohnson(), 47
rlang::enquo(), 19, 111
simulate, 72
stats::arima.sim, 23
stats::arima.sim(), 23
stats::fft(), 17
stats::median(), 22
step_ts_acceleration, 13, 16
step_ts_velocity, 14, 15
tidy_fft, 17, 60, 61, 75, 77, 101
timetk::slidify_vec(), 106
timetk::step_fourier(), 47
timetk::step_timeseries_signature(), 46
timetk::time_series_cv(), 25, 27, 29, 32,
34, 38, 40, 42, 43, 49, 51, 53, 57, 87,
88
timetk::tk_index(), 73
timetk::tk_tbl(), 110
ts_acceleration_augment, 19, 79, 112
ts_acceleration_augment(), 20
ts_acceleration_vec, 20, 80, 113
tsd_adf_test, 7, 8, 21
ts_arima_simulator, 22, 74
ts_auto_arima, 24, 28, 30, 32, 34, 36, 38, 41,
43, 45, 49, 51, 54, 56, 58
ts_auto_arima_xgboost, 25, 26, 30, 32, 34,
36, 38, 41, 43, 45, 49, 51, 54, 56, 58
ts_auto_croston, 25, 28, 28, 32, 34, 36, 38,
41, 43, 45, 49, 51, 54, 56, 58
ts_auto_exp_smoothing, 25, 28, 30, 31, 34,
36, 38, 41, 43, 45, 49, 51, 54, 56, 58
ts_auto_glmnet, 25, 28, 30, 32, 33, 36, 38,
41, 43, 45, 49, 51, 54, 56, 58
ts_auto_lm, 25, 28, 30, 32, 34, 35, 38, 41, 43,
45, 49, 51, 54, 56, 58
ts_auto_mars, 25, 28, 30, 32, 34, 36, 37, 41,
43, 45, 49, 51, 54, 56, 58
ts_auto_nnetar, 25, 28, 30, 32, 34, 36, 38,
39, 43, 45, 49, 51, 54, 56, 58
ts_auto_prophet_boost, 25, 28, 30, 32, 34,
36, 38, 41, 43, 45, 49, 51, 54, 56, 58
ts_auto_prophet_reg, 25, 28, 30, 32, 34, 36,
38, 41, 43, 44, 49, 51, 54, 56, 58
ts_auto_recipe, 46
ts_auto_smooth_es, 25, 28, 30, 32, 34, 36,
38, 41, 43, 45, 48, 51, 54, 56, 58
ts_auto_svm_poly, 25, 28, 30, 32, 34, 36, 38,
41, 43, 45, 49, 50, 54, 56, 58
ts_auto_svm_rbf, 25, 28, 30, 32, 34, 36, 38,
41, 43, 45, 49, 51, 52, 56, 58
ts_auto_theta, 25, 28, 30, 32, 34, 36, 38,
41, 43, 45, 49, 51, 54, 56, 58
ts_auto_xgboost, 25, 28, 30, 32, 34, 36, 38,
41, 43, 45, 49, 51, 54, 56, 58
ts_brownian_motion, 18, 59, 61, 75, 77, 101
ts_brownian_motion_augment, 18, 60, 60,
75, 77, 101
ts_brownian_motion_plot, 62, 67, 99, 104
ts_calendar_heatmap_plot, 63
ts_compare_data, 64, 109
ts_plot, 62, 66, 99, 104
ts_extract_auto_fitted_workflow, 67
ts_feature_cluster, 68, 72
ts_feature_cluster_plot, 70, 70
ts_forecast_simulator, 24, 72
ts_geometric_brownian_motion, 18, 60, 61,
74, 77, 101
ts_geometric_brownian_motion_augment,
18, 60, 61, 75, 76, 101
ts_get_date_columns, 4, 6, 10–13, 77, 82,
84, 89, 91, 93, 96, 99, 104, 111,
136–138, 140, 141
ts_growth_rate_augment, 20, 78, 112
ts_growth_rate_vec, 21, 79, 113
ts_info_tbl, 4, 6, 10–13, 78, 81, 82, 84, 89,
91, 93, 96, 99, 104, 111, 136–138,
140, 141
ts_is_date_class, 4, 6, 10–13, 78, 82, 82,
84, 89, 91, 93, 96, 99, 104, 111,
INDEX

136–138, 140, 141
ts_lag_correlation, 4, 6, 10–13, 78, 82, 83, 89, 91, 93, 96, 99, 104, 111, 136–138, 140, 141
ts_ma_plot, 85
ts_model_auto_tune, 4, 6, 10–13, 78, 82, 84, 86, 91, 93, 96, 99, 104, 111, 136–138, 140, 141
ts_model_auto_tune(), 95
ts_model_compare, 4, 6, 10–13, 78, 82, 84, 89, 90, 93, 96, 99, 104, 111, 136–138, 140, 141
ts_model_rank_tbl, 4, 6, 10–13, 78, 82, 84, 89, 91, 93, 96, 99, 104, 111, 136–138, 140, 141
ts_model_spec_tune_template, 4, 6, 10–13, 78, 82, 84, 89, 91, 93, 95, 99, 104, 111, 136–138, 140, 141
ts_scale_color_colorblind, 102
ts_sma_plot, 105
ts_splits_plot, 107
ts_time_event_analysis_tbl, 65, 108
ts_to_tbl, 4, 6, 10–13, 78, 82, 84, 89, 91, 93, 96, 99, 104, 110, 136–138, 140, 141
ts_velocity_augment, 20, 79, 111
ts_velocity_augment(), 112
ts_velocity_vec, 21, 80, 112
ts_vva_plot, 113
ts_wfs_arima_boost, 114, 117, 120, 121, 123, 125, 128, 130, 132, 134
ts_wfs_auto_arima, 116, 117, 120, 121, 123, 125, 128, 130, 132, 134
ts_wfs_ets_reg, 116, 117, 118, 121, 123, 125, 128, 130, 132, 134
ts_wfs_lin_reg, 116, 117, 120, 120, 123, 125, 128, 130, 132, 134
ts_wfs_mars, 116, 117, 120, 121, 122, 125, 128, 130, 132, 134
ts_wfs_nnetar_reg, 116, 117, 120, 121, 123, 124, 128, 130, 132, 134
ts_wfs_prophet_reg, 116, 117, 120, 121, 123, 125, 128, 129, 132, 134
ts_wfs_svm_rbf, 116, 117, 120, 121, 123, 125, 128, 130, 131, 134
ts_wfs_xgboost, 116, 117, 120, 121, 123, 125, 128, 130, 132, 133
util_difflog_ts, 4, 6, 10–13, 78, 82, 84, 89, 91, 93, 96, 99, 104, 111, 135, 137, 138, 140, 141
util_doublediff_ts, 4, 6, 10–13, 78, 82, 84, 89, 91, 93, 96, 99, 104, 111, 136, 137, 139, 140, 141
util_doubledifflog_ts, 4, 6, 10–13, 78, 82, 84, 89, 91, 93, 96, 99, 104, 111, 136, 137, 140, 141
util_log_ts, 4, 6, 10–13, 78, 82, 84, 89, 91, 93, 96, 99, 104, 111, 136–138, 140, 141
util_singlediff_ts, 4, 6, 10–13, 78, 82, 84, 89, 91, 93, 96, 99, 104, 111, 136–138, 140, 140
xts::plot.xts(), 85